Study of GEM-like detectors

Size: px
Start display at page:

Download "Study of GEM-like detectors"

Transcription

1 Study of GEM-like detectors with resistive electrodes for RICH applications A.G. Agocs 1, A. Di Mauro 2, A. Ben David 3, B. Clark 4, P. Martinengo 2, E. Nappi 2,5, V. Peskov 2,6, 1 Eötvös ö University, it Budapest, Hungary 2 CERN, Switzerland 3 Tel Aviv University, Israel 4 North Carolina State University, USA 5 Bari University 6 Ecole Superior des Mines, St Etienne, France 1

2 Recent results from RHIC as well as numerous theoretical predictions indicate that a very high momentum particle identification (VHMPID) may be needed in the future ALICE experiments. In connection to this the ALICE-HMPID collaboration is studying the possibility to make a new detector to identify charged particles with momentum p > 5 10 GeV/c VHMPID (Very High Momentum Particle Identification Detector). t t ) Several Cherenkov detector designs were preliminary considered and simulated by the ALICE VHMPID collaboration : a threshold type as well as a RICH type (see G. Volpe talk at this Conference). 2

3 One of the complication- there is a very limited space available for VHMPID So only compact and simple VHMPID designs can be considered 3

4 Focusing setup The focusing properties of a spherical mirror of radius R = 240 cm, are exploited. The photons emitted in the radiator are focused in a plane that is located at R/2 from the mirror center, where the photon detector is placed. Charged particle 100 cm 100 cm Photon detector CaF 2 window 120 cm Gas C 5 F 12 volume Mirror (from G. Volpe talk at this Conference). 4

5 One of the promising photodetector element in this RICH design could be GEM-like detectors combined with CsI photocathodes Advantages : They are compact Can operate at higher gains and in badly quenched gases including inflammable gases Can be used in the same gas as a radiator Have high QE Have potential for higher special resolution 5

6 For the last several years we were focused on developing more robust GEM-like detectors for RICH application 6

7 First attempt- Optimized /Thick GEM Further development of this detector was performed by Breskin group- see R. Chechik presentation 7

8 Photo of one of the optimized or thick GEM developed by us earlier L. Periale et al., NIM A478,2002,377 J. Ostling et al., IEEE Nucl. Sci 50,2003,809 TGEM is manufactured by standard PCB techniques of precise drilling in G-10 (+ other materials) and Cu etching. 8

9 We would like present today a new promising direction- resistive electrodes TGEMs 9

10 The main advantage of these detectors t is that t they are fully spark-protected protected 10

11 Thick GEM with resistive electrodes (RETGEM)- a fully spark protected detector A. Di Mauro et al, Presented at the Vienna Conf. on Instrum; to be published in NIM Principle of operation Geometrical and electrical characteristics: Holes diameter mm, pitch mm, 30mm thickness mm. Resitivity: kΩ/ or Kapton type: 100XC10E 70mm 11

12 F u l l y s p a r k - p r o t e c t e Summary of the main preliminary results obtained with kapton RETGEMs 1 mm thick Gain 1.00E E+05 nar 1.00E+04 Ne 1.00E E Voltage (V) Ar+CO 2 Energy resolution ~30%FWHM for 6 kev Discovery: kapton can be coated with CsI and have after high QE Filled symbols-single RETGEM, open symbols double RETGEMs Stars-gain measurements with double RETGEM coated with CsI layer. 15 min continues discharge harm ether the detector or the electronics e am plitude (m V ) Puls E E E E E+08 Rate (Hz/cm 2 ) QE~30% at λ=120nm With increase of the rate the amplitude drop, but now discharges d 12

13 Confirmation of high QE (QE measurements at 185 nm) 13

14 QE calibration TMAE filled single-wire gas counter Hg lamp Windows Monochromator Lens CsI Q CsI =Q TMAE N CsI /N TMAE Double-step RETGEMS with CsI photocathode 14

15 Photo of the experimental set up Hg lamp Lens Monochromator Gas chamber with RETGEM coated with CsI 15

16 Experimental set up for studies RETGEM with CsI photocathodes UV light Window HV feedthrough Drift mesh Top RETGEM CsI (0.35μm) -V dr V 1 top V 2 top Gas out Bottom RETGEM Gas in Charge sensitive or current amplifier 16

17 Counting plateau TMAE detector Counting Rate (Hz) Fe before Fe after Fe UV light TMAE detector Voltage (V) Double RETGEM 17

18 Hg lamp spectra, measured with TMAE (a) () detector and RETGEM () (b) TMAE QE vs. wavelength (c) a) c) b) Q CsI =33%N CsI /N TMAE ~ 14.5% (assuming that TMAE is clean enough) 18

19 Measurements of the stability of the RETGEM, using Hg as a source, at 185nm. The light is concentrated on a small slit. About 30min without light have passed between each run. 19

20 Stability measurements of photosensitive RETGEM 20

21 Very low single photoelectron counting rate Double K- RETGEM with CsI pc Counting rate Time (min) Gas gain~

22 Single electron (CsI pc) counting rate at a constant threshold Gas gain~ 10 6 This behavior is similar to RPC 22

23 Long term stability of CsI pcs measures at low counting rate K-TGEM, CsI pc#1 QE (%) Time (days) K-TGEM, CsI pc#2 QE (% %) Time (days) 23

24 Unexpected problem-very difficult to get the resistive kapton from the US Dear Mr. Peshkov, I'm in charge of sales and marketing of Kapton polyimide film in Europe. As explained in attached notes Kapton 100XC10E5 is subject to an ITAR license to be exported from the US and this is indeed quite a complex procedure to go through. Suggest you call me at in order to discuss how we can proceed. My best regards, Giulio Cecchetelli High Performance Films DuPont de Nemours (Luxembourg) S.à r.l. Société à responsabilité limitée au capital de Euro Rue Général Patton L-2984 Luxembourg R.C.S. Luxembourg B

25 Very new (preliminary) results: RETGEMs manufactured by screen printing technology For more details see: B. Clark et al., Preprint/Physics/ , Aug

26 26

27 Screen printing is widely used in microelectronics to produce patterns of different shape and resistivity. Therefore, RETGEM technology produced with screen printing techniques offers a convenient and widely available alternative to RETGEMs made of Kapton. Advantages of the screen printing technology: Offers cost-effectiveness, convenience, and easy optimization RETGEMs resistivity and geometry. It is also important to mention that large -area RETGEMs can be produced by this technology. 27

28 Consequent steps in RETGEM manufacturing in by screen printing technique (Oliveira Workshop): a) DE-156, an Isola product, is used as the base material. b) Excess copper is removed from the top and bottom, thereby creating a copper border. c) A resistive paste (Encre MINICO ) is applied to the top and bottom surfaces using screen printing techniques and technology. The paste is cured in air at 200 C for one hour. After the curing process is complete, the resistive layer is 15μmthick thick. d) Drill consistently tl sized holes at even intervals in the region enclosed by the copper border. 28

29 Two types of RETGEM were manufactured by screen printing technology and tested RETGEM type- 1 Geometrical and Resistive Characteristics Thickness = 1mm Hole Diameter = 0.5mm Pitch = 0.8mm Active Area = 30mm x 30mm Resistive Layer Thickness = 15μm Resistivity = 1 MΩ/ or 0.5 MΩ/ RETGEM type -2 Geometrical and Resistive Characteristics Thickness = 0.5mm Hole Diameter = 0.3mm Pitch = 0.7mm Active Area = 30mm x 30mm Resistive Layer Thickness = 15μm Resistivity = 0.5 MΩ/ 29

30 Photo of holes at various magnifications: a) medium magnification b) higher magnification 30

31 Experimental set up for studies RETGEM manufactured by screen printing technology Radioactive source Drift mesh Window HV feedthrough -V dr Gas out RETGEM Gas in Charge sensitive amplifier 31

32 Experimental set up for studies RETGEM manufactured by screen printing technology Radioactive source Drift mesh Window HV feedthrough -V dr Top RETGEM V 1 top V 2 top Gas out Bottom RETGEM Gas in Charge sensitive amplifier 32

33 Results of measurements in Ne (SP-RETGEM type 1) Signal (V) B A Alpha particles Voltage (V) Gain curve measured with single SP-RETGEM ( 55 Fe). Gain 1.00E E E E E E E Voltage (V) 1.00E+06 Gain 1.00E E+04 Breakdownn Gain curve measured with double SP-RETGEM operating in Ne ( 55 Fe). 100E E Voltage across RETGEM-2 33

34 Results obtained in Ar (SP-RETGEM type1) gain Fe-55 Single step SP-RETGEM 1 gain 1 alpha GEM voltage (V) V 2300V 2100V Double SP-RETGEM gain GEM bottom2 (V) 34

35 Results obtained in Ar+CO 2 (type1) 1000 gain Single step GEM bottom plate voltage (V) V 2700V 2500V 2400V gain 1000 Double SP-RETGEM GEM bottom2 (V) 35

36 Low resistivity (0.5MΩ/ ) it )1mm thick double step in Ne (preliminary!) Double SP-RETGEM, low resistivity in Ne 1.00E E E V gain 1.00E E V 300V 1.00E E Voltage on bottom RETGEM 36

37 The maximum achievable gain with a 0.5 mm thick SP- RETGEM was the same as in the case of the 1 mm thick, however there voltages were considerably smaller Gain of RETGEM type 2 Gain 1.00E E E+01 Alphas 1.00E Fe 1.00E Voltage (V) Some samples had excess of high amplitude spurious pulses 37

38 Preliminary tests of photosensitive RETGEM manufactured by a screen printing technology 38

39 Experimental set up for studies RETGEM with CsI photocathodes manufactured by screen printing technology Hg lamp Monochromator Window Filter HV feedthrough Drift mesh -V dr Top RETGEM CsI V 1 top V 2 top Gas out Bottom RETGEM Gas in Charge sensitive amplifier 39

40 Hg lamp spectra, measured with TMAE (a) () detector and RETGEM () (b) TMAE QE vs. wavelength (c) a) c) SP-RETGEM b) C ounting rate (H z) Wavelength (nm) Gas gain 3x10 5 Q CsI =33%N CsI /N TMAE ~ 12.2% - for SP-RETGEM 40

41 Long-term stability SP-RETGEM QE (%) Time (days) 41

42 Can ~12-14% QE be sufficient for VHMPID? 1 C 5 F 12 transmittance CaF 2 transmittance mirror reflectivity 0.4 CsI quantum efficiency 12% 0.2 (40%-are holes) total convolution photon energy (ev) 185 nm Volpe talk at this Conference Yes, it looks O K OK 42

43 Preliminary comparison of K- RETGEMs with SP-RETGEMs In all gases tested K-RETGEMs allow to achieve at least 10 times higher gains than SP-RETGEMs Some samples of SP-RETGEM exhibit high amplitude spurious pulses (it is not the case for K-TGEMs!) Both detectors are spark-protected, however after 10 min of continuous glow discharge a low resistivity SP-RETGEM can be damage (it is not the case of K-RETGEM!)-the counting rate of spurious pulses increased Energy resolution in the case of SP-TGEM was worse Photosensitive K-RETGEMS and SP RETGEMS have almost the same QE at 185 nm: % at 185 nm -and these values remained stable at least in a month scale 43

44 Conclusions: RETGEM detectors are fully spark protected (the energy released in sparks is at least 100 times less than in the case of metallic TGEMs) At low rate they behave like GEM ( and the gas gain is stable with time) and at high rates and high gains RETGEMs are more resembling RPCs ( gain reduces with rate) Being coated by a CsI layer RETGEMs operate stable at high gains and low rates and their QE is % at 185nm Long term (few months) stability of RETGEMs with CsI pc was demonstrated We believe that RETGEMs can be good candidates for the VHPMID and some other RICH detectors 44

45 Future tasks: In contrast to K-TGEMs, the SP-RETGEMs require more tuning up: optimization its resistivity and geometry, understanding some detail in operation, tests in C 5 H 12 gas 5 12 g Final evaluation and conclusions can be drowned only after a beam test 45

46 Plans for future beam test Proto-4 Pad plain Should be manufactured 5 RETGEMs 40 mm New, exists 4 CsI Drift mesh Should be modified 3 Old, exist 2 Old, exist 1 Liquid radiator 46

47 The photodetectors to be tested : GEM TGEM RETGEM The beam test will allow to select the best one 47

48 Spairs

49 Wire chamber with CaF 2 window approach is not excluded yet!

50 Optimization of the RPC electrodes resistivity for high rate applications P. Fonte et al., NIM A413,1999,154

51 TMAE detector cross checks

52 Counting rate measurements from TMAE detector as function of radius Efficiency i scan ing rate H z) Count (H Distance from the center (mm)

53 Ionization chamber check (with a 185 nm filter)

54 Current measurements: Hg lamp Filter Window HV feedthrough Drift mesh A CsI -V Gas out RETGEM Gas in Charge sensitive amplifier

55 Ionization chamber check (with a 185 nm filter) Current (p pico A) TMAE detector RETGEM, Ne Voltage (V)

56 Backdiffusion

57 Ne Series1 Series2 Ar+25%CO2 my Kethley Series1 Series2 CO Series1 Series2

58 Active area r Π(1+3)r 2 /πr 2 = =0.25/0.64=40% R

59 Giacomo related slides

60 6th International Workshop on Ring Imaging gcherenkov Counters October, Trieste Gas Cherenkov detectors for high momentum charged particle identification in the ALICE experiment at LHC G. Volpe, D. Di Bari, E. Garcia, A. Di Mauro, E. Nappi, P. Martinengo, V. Peskov, G. Paic, K. A. Shileev, N. Smirnov A talk presented by G. Volpe yesterday

61 EMCal High energy γ TRD Electron ID, Tracking TPC Main Tracking, PID with de/dx ALICE experiment HMPID RICH, high p T pioni RICH ALICE is designed to study the physics of strongly interacting matter TOFand the quark- gluon plasma (QGP) in PID i t l di t collisions at the LHC. The p-p physics will be study as well as reference data for the nucleus-nucleus analysis. intermediate p T ITS Vertexing, low p t tracking and PID with de/dx MUON μ-id PHOS γ,π 0 -ID pioni i + L3 Magnet B= T T0,V0, PMD,FMD and ZDC Forward rapidity region

62 ALICE RICH How it was designed How it is looked just before the installation ALICE RICH is installed inside the magnet and is in a commissioning phase now. We are looking forward for the first physics results!

63 ~ 2m ALICE Club - May 2, 2005 Paolo Martinengo

64 Example of a single radiator threshold imaging Cherenkov A. Braem, C.W. Fabjan et al., NIM A409, 1998, 426

65 Another idea AeroGel, 10cm UV Mirror, spherical shape in ZY 50 cm Double sided read-out plane: planar detectors with CsI CF 4 gas CaF 2 Window 50 cm C 4 F 10 gas Z X Y R position: 500 cm. Bz: 0.5 T Particle track & UV photons Nikolai Smirnov, Yale University

66 Blob diameter for C 4 F 10, pad size = 0.8x0.8 cm 2 Diameter (cm) Pions Kaons 10 8 Protons Momentum (GeV/c)

67 VHMPID volumes

68

69

70 Radiator gas options: VHMPID CF 4 (n , γ th 31.6) has the drawback to produce scintillation photons (N ph 1200/MeV), that increase the background. C 4 F 10 (n , γ th 18.9) is no more commercially available. C 5 F 12 (n 1.002, γ th 15.84) has been chosen. Photon detector options: Pad-segmented CsI photocathode is combined with a MWPC with the same structure and characteristic of that used in the HMPID detector. The gas used is CH 4 4, the pads size is cm 2 (wire pitch 4.2 mm), and the single electron pulse height is of 34 ADC channels. The chamber is separated from the radiator by a CaF 2 window (4 mm of thickness). The other option for the photon detector could be a GEM-like detector combined with a CsI photocathode (higher gain, photons feedback suppression). (see G. Volpe talk at this Conference)

71 Study of the detector response for the focusing setup In the case of focusing setup the determination of emission Cherenkov angle is possible. Pattern recognition algorithm is needed to retrieve the emission angle. A back-tracing algorithm has been implemented to retrieve the Cherenkov emission angle. It calculates the angle starting from the photon hit point coordinates, on the photon detector. Radiator vessel Photodetector Charged particle Mirror (from G. Volpe talk at this Conference). 120 cm

72 ) Simulation results: Cherenkov angle angle(rad) π K Cherenkov angle ring p The points and the bars in the plot correspond to mean and RMS of a sample of 100 events, respectively Momentum (GeV/c) Momentum π < 2.5 GeV/c 2.5< Kp < 8 GeV/c p 2.5 < p < 8 GeV/c 8 < p < 15 GeV/c C 5 F Particle Id.? π K, p π, K 8 < p < 15 GeV/c 0 p from G. Volpe talk at this Conference 15 < p < 30 GeV/c 1 p

Development and tests of a large area CsI-TGEM-based RICH prototype

Development and tests of a large area CsI-TGEM-based RICH prototype Development and tests of a large area CsI-TGEM-based RICH prototype G. Bencze 1,2, A. Di Mauro 1, P. Martinengo 1, L. Mornar 1, D. Mayani Paras 3, E. Nappi 4, G. Paic 1,3, V. Peskov 1,3 1 CERN, Geneva,

More information

Fast Drift CRID with GEM*

Fast Drift CRID with GEM* SLAC-PUB-8 164 May, 1999 Fast Drift CRID with GEM* J. Va vra,# G. Manzin, M. McCulloch, P. Stiles Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A. F. Sauli CERN, Geneva,

More information

Performance of 8-stage Multianode Photomultipliers

Performance of 8-stage Multianode Photomultipliers Performance of 8-stage Multianode Photomultipliers Introduction requirements by LHCb MaPMT characteristics System integration Test beam and Lab results Conclusions MaPMT Beetle1.2 9 th Topical Seminar

More information

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009 , Ljubljana, 7-9 July 2009 Outline: MCP aging waveform readout (MPPC) summary (slide 1) Aging preliminary news from Photonis Old information: Current performance (no Al protection layer): 50% drop of efficiency

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

Novel MPGD based Detectors of Single Photons for COMPASS RICH-1 Upgrade

Novel MPGD based Detectors of Single Photons for COMPASS RICH-1 Upgrade Outline Basics Why this upgrade and how R&D and Detector commissioning Results Conclusions Novel MPGD based Detectors of Single Photons for COMPASS RICH-1 Upgrade Shuddha Shankar Dasgupta INFN Sezzione

More information

SiPMs as detectors of Cherenkov photons

SiPMs as detectors of Cherenkov photons SiPMs as detectors of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Light07, September 26, 2007 Contents Photon detection for Ring Imaging CHerenkov counters Can G-APDs

More information

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors

Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors Multianode Photo Multiplier Tubes as Photo Detectors for Ring Imaging Cherenkov Detectors F. Muheim a edin]department of Physics and Astronomy, University of Edinburgh Mayfield Road, Edinburgh EH9 3JZ,

More information

Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA R E C E I V E D: December 18, 2007 R E V I S E D: January 13, 2008 A C C E P T E D: January 28, 2008 P U B L I S H E D: February 18, 2008 Detectors

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

R & D for Aerogel RICH

R & D for Aerogel RICH 1 R & D for Aerogel RICH Ichiro Adachi KEK Proto-Collaboration Meeting March 20, 2008 2 1 st Cherenkov Image detected by 3 hybrid avalanche photon detectors from a beam test About 3:00 AM TODAY Clear image

More information

Full characterization tests of Micromegas with elongated pillars

Full characterization tests of Micromegas with elongated pillars University of Würzburg Full characterization tests of Micromegas with elongated pillars B. Alvarez1 Gonzalez, L. Barak1, J. Bortfeldt1, F. Dubinin3, G. Glonti1, F. Kuger1,2, P. Iengo1, E. Oliveri1, J.

More information

Thick GEM versus thin GEM in two-phase argon avalanche detectors

Thick GEM versus thin GEM in two-phase argon avalanche detectors Eprint arxiv:0805.2018 Thick GEM versus thin GEM in two-phase argon avalanche detectors A. Bondar a, A. Buzulutskov a *, A. Grebenuk a, D. Pavlyuchenko a, Y. Tikhonov a, A. Breskin b a Budker Institute

More information

Single-avalanche response mesurement method for MPGD detectors

Single-avalanche response mesurement method for MPGD detectors Single-avalanche response mesurement method for MPGD detectors András László laszlo.andras@wigner.mta.hu Wigner RCP, Budapest, Hungary joint work with Gergő Hamar, Gábor Kiss, Dezső Varga ISSP2015, Erice,

More information

Recent developments on. Micro-Pattern Gaseous Detectors

Recent developments on. Micro-Pattern Gaseous Detectors Recent developments on 0.18 mm CMOS VLSI Micro-Pattern Gaseous Detectors CMOS high density readout electronics Ions 40 % 60 % Electrons Micromegas GEM THGEM MHSP Ingrid Matteo Alfonsi (CERN) Outline Introduction

More information

The trigger system of the muon spectrometer of the ALICE experiment at the LHC

The trigger system of the muon spectrometer of the ALICE experiment at the LHC The trigger system of the muon spectrometer of the ALICE experiment at the LHC Francesco Bossù for the ALICE collaboration University and INFN of Turin Siena, 09 June 2010 Outline 1 Introduction 2 Muon

More information

Overall Design Considerations for a Detector System at HIEPA

Overall Design Considerations for a Detector System at HIEPA Overall Design Considerations for a Detector System at HIEPA plus more specific considerations for tracking subdetectors Jianbei Liu For the USTC HIEPA detector team State Key Laboratory of Particle Detection

More information

Construction and Performance of the stgc and Micromegas chambers for ATLAS NSW Upgrade

Construction and Performance of the stgc and Micromegas chambers for ATLAS NSW Upgrade Construction and Performance of the stgc and Micromegas chambers for ATLAS NSW Upgrade Givi Sekhniaidze INFN sezione di Napoli On behalf of ATLAS NSW community 14th Topical Seminar on Innovative Particle

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

Development of TOP counter for Super B factory

Development of TOP counter for Super B factory 2009/5/11-13 Workshop on fast Cherenkov detectors - Photon detection, DIRC design and DAQ Development of TOP counter for Super B factory - Introduction - Design study - Focusing system - Prototype development

More information

Timing and cross-talk properties of Burle multi-channel MCP PMTs

Timing and cross-talk properties of Burle multi-channel MCP PMTs Timing and cross-talk properties of Burle multi-channel MCP PMTs Peter Križan University of Ljubljana and J. Stefan Institute RICH07, October 15-20, 2007 Contents Motivation for fast single photon detection

More information

A Large Low-mass GEM Detector with Zigzag Readout for Forward Tracking at EIC

A Large Low-mass GEM Detector with Zigzag Readout for Forward Tracking at EIC MPGD 2017 Applications at future nuclear and particle physics facilities Session IV Temple University May 24, 2017 A Large Low-mass GEM Detector with Zigzag Readout for Forward Tracking at EIC Marcus Hohlmann

More information

HERA-B RICH. Samo Korpar

HERA-B RICH. Samo Korpar HERA- RICH 1. Introduction 2. The design of the RICH 3. Measured parameters of the RICH 4. Particle identification 5. Conclusions HERA- RICH (page 1) HERA- RICH group P. Križan 1, A. Gorišek 1, S. Korpar

More information

Introduction to TOTEM T2 DCS

Introduction to TOTEM T2 DCS Introduction to TOTEM T2 DCS Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire. Electrical field close to the

More information

The HERA-B Ring Imaging Cerenkov ˇ Detector

The HERA-B Ring Imaging Cerenkov ˇ Detector The HERA-B Ring Imaging Cerenkov ˇ Detector Requirements Physics Genova, July 3, 1998 Jörg Pyrlik University of Houston HERA-B Collaboration Space Limitations Rate Capabilities and Aging Design Radiator

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

MPGDs: a tool for progress in HEP

MPGDs: a tool for progress in HEP MPGDs: a tool for progress in HEP S. Dalla Torre 1 OUTLOOK Introduction: facts about MPGDs APPLICATIONS The overall application panorama (non an exhaustive list) Selected examples Large tracking systems

More information

Introduction Test results standard tests Test results extended tests Conclusions

Introduction Test results standard tests Test results extended tests Conclusions Production and Tests of Hybrid Photon Detectors for the LHCb RICH Detectors, University of Edinburgh On behalf of the LHCb experiment Introduction Test results standard tests Test results extended tests

More information

The HPD DETECTOR. Michele Giunta. VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea"

The HPD DETECTOR. Michele Giunta. VLVnT Workshop Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea The HPD DETECTOR VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea" In this presentation: The HPD working principles The HPD production CLUE Experiment

More information

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010

Seminar. BELLE II Particle Identification Detector and readout system. Andrej Seljak advisor: Prof. Samo Korpar October 2010 Seminar BELLE II Particle Identification Detector and readout system Andrej Seljak advisor: Prof. Samo Korpar October 2010 Outline Motivation BELLE experiment and future upgrade plans RICH proximity focusing

More information

A spark-resistant bulk-micromegas chamber for high-rate applications

A spark-resistant bulk-micromegas chamber for high-rate applications EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN PH EP 2010 061 15 November 2010 arxiv:1011.5370v1 [physics.ins-det] 24 Nov 2010 A spark-resistant bulk-micromegas chamber for high-rate applications Abstract

More information

First Optical Measurement of 55 Fe Spectrum in a TPC

First Optical Measurement of 55 Fe Spectrum in a TPC First Optical Measurement of 55 Fe Spectrum in a TPC N. S. Phan 1, R. J. Lauer, E. R. Lee, D. Loomba, J. A. J. Matthews, E. H. Miller Department of Physics and Astronomy, University of New Mexico, NM 87131,

More information

arxiv:physics/ v1 [physics.ins-det] 19 Oct 2001

arxiv:physics/ v1 [physics.ins-det] 19 Oct 2001 arxiv:physics/0110054v1 [physics.ins-det] 19 Oct 2001 Performance of the triple-gem detector with optimized 2-D readout in high intensity hadron beam. A.Bondar, A.Buzulutskov, L.Shekhtman, A.Sokolov, A.Vasiljev

More information

Status of the LHCb Experiment

Status of the LHCb Experiment Status of the LHCb Experiment Werner Witzeling CERN, Geneva, Switzerland On behalf of the LHCb Collaboration Introduction The LHCb experiment aims to investigate CP violation in the B meson decays at LHC

More information

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Detectors: Muons. [Lecture 11, March 11, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Detectors: Muons [Lecture 11, March 11, 2009] Organization Project 1 (charged track multiplicity) no one handed in so far... well deadline is tomorrow

More information

Recent Developments in Gaseous Tracking Detectors

Recent Developments in Gaseous Tracking Detectors Recent Developments in Gaseous Tracking Detectors Stefan Roth RWTH Aachen 1 Outline: 1. Micro pattern gas detectors (MPGD) 2. Triple GEM detector for LHC-B 3. A TPC for TESLA 2 Micro Strip Gas Chamber

More information

arxiv:hep-ex/ v1 19 Apr 2002

arxiv:hep-ex/ v1 19 Apr 2002 STUDY OF THE AVALANCHE TO STREAMER TRANSITION IN GLASS RPC EXCITED BY UV LIGHT. arxiv:hep-ex/0204026v1 19 Apr 2002 Ammosov V., Gapienko V.,Kulemzin A., Semak A.,Sviridov Yu.,Zaets V. Institute for High

More information

Gas Detectors for μ systems

Gas Detectors for μ systems Gas Detectors for μ systems Marcello Piccolo SNOWMASS August 2005 μ system requirements for gaseous detectors Given the design we have seen up to now, a muon system should comprise a detector that; Is

More information

THE MULTIWIRE CHAMBER REVOLUTION (Georges Charpak, 1968)

THE MULTIWIRE CHAMBER REVOLUTION (Georges Charpak, 1968) 1 THE MULTIWIRE CHAMBER REVOLUTION (Georges Charpak, 1968) 2 ARRAY OF THIN ANODE WIRES BETWEEN TWO CATHODES LARGE MWPC SPLIT FIELD MAGNET DETECTOR (CERN ISR, 1972) G. Charpak et al, Nucl. Instr. and Meth.

More information

STUDY OF NEW FNAL-NICADD EXTRUDED SCINTILLATOR AS ACTIVE MEDIA OF LARGE EMCAL OF ALICE AT LHC

STUDY OF NEW FNAL-NICADD EXTRUDED SCINTILLATOR AS ACTIVE MEDIA OF LARGE EMCAL OF ALICE AT LHC STUDY OF NEW FNAL-NICADD EXTRUDED SCINTILLATOR AS ACTIVE MEDIA OF LARGE EMCAL OF ALICE AT LHC O. A. GRACHOV Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA T.M.CORMIER

More information

Development of Large Area and of Position Sensitive Timing RPCs

Development of Large Area and of Position Sensitive Timing RPCs Development of Large Area and of Position Sensitive Timing RPCs A.Blanco, C.Finck, R. Ferreira Marques, P.Fonte, A.Gobbi, A.Policarpo and M.Rozas LIP, Coimbra, Portugal. GSI, Darmstadt, Germany Univ. de

More information

Lecture 5. Detectors for Ionizing Particles: Gas Detectors Principles and Detector Concepts

Lecture 5. Detectors for Ionizing Particles: Gas Detectors Principles and Detector Concepts Lecture 5 Detectors for Ionizing Particles: Gas Detectors Principles and Detector Concepts Dates 14.10. Vorlesung 1 T.Stockmanns 21.10. Vorlesung 2 J.Ritman 28.10. Vorlesung 3 J.Ritman 04.11. Vorlesung

More information

Gas Electron Multiplier 2. Detectors Gas Electron Multiplier (GEM) is a thin insulating foil which have thin electrodes on both sides and many

Gas Electron Multiplier 2. Detectors Gas Electron Multiplier (GEM) is a thin insulating foil which have thin electrodes on both sides and many 1 Test of GEM Tracker, Hadron Blind Detector and Lead-glass EMC for the J-PARC E16 experiment D.Kawama 1 ), K. Aoki 1, Y. Aramaki 1, H. En yo 1, H. Hamagaki 2, J. Kanaya 1, K. Kanno 3, A. Kiyomichi 4,

More information

Stato del progetto RICH di LHCb. CSN1 Lecce, 24 settembre 2003

Stato del progetto RICH di LHCb. CSN1 Lecce, 24 settembre 2003 Stato del progetto RICH di LHCb CSN1 Lecce, 24 settembre 2003 LHCb RICH detectors Particle ID over 1 100 GeV/c provided by 2 RICH detectors RICH2: No major changes since RICH TDR PRR in february 2003 Superstructure

More information

Photon Detector with PbWO 4 Crystals and APD Readout

Photon Detector with PbWO 4 Crystals and APD Readout Photon Detector with PbWO 4 Crystals and APD Readout APS April Meeting in Denver, CO on May 4, 2004 presented by Kenta Shigaki (Hiroshima University, Japan) for the ALICE-PHOS Collaboration - Presentation

More information

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Nuclear Physics #1 Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Introduction: In this experiment you will use both scintillation and semiconductor detectors to study γ- ray energy spectra. The

More information

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes

HF Upgrade Studies: Characterization of Photo-Multiplier Tubes HF Upgrade Studies: Characterization of Photo-Multiplier Tubes 1. Introduction Photomultiplier tubes (PMTs) are very sensitive light detectors which are commonly used in high energy physics experiments.

More information

Construction and Performance of the stgc and MicroMegas chambers for ATLAS NSW Upgrade

Construction and Performance of the stgc and MicroMegas chambers for ATLAS NSW Upgrade Construction and Performance of the stgc and MicroMegas chambers for ATLAS NSW Upgrade Givi Sekhniaidze INFN sezione di Napoli On behalf of ATLAS NSW community 14th Topical Seminar on Innovative Particle

More information

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators

AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Grant Agreement No: 654168 AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators Horizon 2020 Research Infrastructures project AIDA -2020 MILESTONE REPORT SMALL-SIZE PROTOTYPE OF THE

More information

Lecture 11. Complex Detector Systems

Lecture 11. Complex Detector Systems Lecture 11 Complex Detector Systems 1 Dates 14.10. Vorlesung 1 T.Stockmanns 1.10. Vorlesung J.Ritman 8.10. Vorlesung 3 J.Ritman 04.11. Vorlesung 4 J.Ritman 11.11. Vorlesung 5 J.Ritman 18.11. Vorlesung

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8 1 Institite of Physics, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan cyhsieh0531@gmail.com

More information

Parallel Ionization Multiplier(PIM) : a new concept of gaseous detector for radiation detection improvement

Parallel Ionization Multiplier(PIM) : a new concept of gaseous detector for radiation detection improvement Parallel Ionization Multiplier(PIM) : a new concept of gaseous detector for radiation detection improvement D. Charrier, G. Charpak, P. Coulon, P. Deray, C. Drancourt, M. Legay, S. Lupone, L. Luquin, G.

More information

Photon Diagnostics. FLASH User Workshop 08.

Photon Diagnostics. FLASH User Workshop 08. Photon Diagnostics FLASH User Workshop 08 Kai.Tiedtke@desy.de Outline What kind of diagnostic tools do user need to make efficient use of FLASH? intensity (New GMD) beam position intensity profile on the

More information

Status of UVa

Status of UVa Status of GEM-US @ UVa Kondo Gnanvo University of Virginia, Charlottesville, SoLID Collaboration Meeting @ JLab 05/15/2015 Outline GEM trackers for SoLID GEM R&D program @ UVa Plans on SoLID-GEM specific

More information

Method for digital particle spectrometry Khryachkov Vitaly

Method for digital particle spectrometry Khryachkov Vitaly Method for digital particle spectrometry Khryachkov Vitaly Institute for physics and power engineering (IPPE) Obninsk, Russia The goals of Analog Signal Processing Signal amplification Signal filtering

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/402 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 06 November 2017 Commissioning of the

More information

Proximity focusing RICH with flat pannel PMTs as photon detector

Proximity focusing RICH with flat pannel PMTs as photon detector Proximity focusing RICH with flat pannel PMTs as photon detector Peter Križan University of Ljubljana and J. Stefan Institute For Belle Aerogel RICH R&D group Contents Motivation and requirements Beam

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection historical example: particle impinging on ZnS screen -> emission of light flash principle

More information

5. Scintillation counters

5. Scintillation counters 5. Scintillation counters to detect radiation by means of scintillation is among oldest methods of particle detection particle impinging on ZnS screen -> emission of light flash principle of scintillation

More information

A tracking detector to study O(1 GeV) ν μ CC interactions

A tracking detector to study O(1 GeV) ν μ CC interactions A tracking detector to study O(1 GeV) ν μ CC interactions Laura Pasqualini on behalf of the mm-tracker Collaboration IPRD16, 3-6 October 2016, Siena Motivations ν/μ Tracking system for a light magnetic

More information

PandaX-III High Pressure Gas TPC and its Prototype

PandaX-III High Pressure Gas TPC and its Prototype PandaX-III High Pressure Gas TPC and its Prototype Ke HAN ( 韩柯 ) Shanghai Jiao Tong University On Behalf of the PandaX-III Collaboration May 25, 2017 Outline PandaX-III project overview Design features

More information

TPC Readout with GEMs & Pixels

TPC Readout with GEMs & Pixels TPC Readout with GEMs & Pixels + Linear Collider Tracking Directional Dark Matter Detection Directional Neutron Spectroscopy? Sven Vahsen Lawrence Berkeley Lab Cygnus 2009, Cambridge Massachusetts 2 Our

More information

Update on ITS PID and SDD calibration

Update on ITS PID and SDD calibration Update on ITS PID and SDD calibration Emanuele Biolcati Università e INFN di Torino Physics Working Group 1 29.06.2009 1/22 Emanuele Biolcati Update on ITS PID and SDD calibration Outline I. Introduction

More information

Status of the Continuous Ion Back Flow Module for TPC Detector

Status of the Continuous Ion Back Flow Module for TPC Detector Status of the Continuous Ion Back Flow Module for TPC Detector Huirong QI Institute of High Energy Physics, CAS August 25 th, 2016, USTC, Heifei - 1 - Outline Motivation and goals Hybrid Gaseous Detector

More information

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors G.Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik Jožef Stefan Institute Ljubljana,

More information

GEM beam test for the BESIII experiment

GEM beam test for the BESIII experiment RD51 week meeting CERN, Dec 09 2014 GEM beam test for the BESIII experiment Riccardo Farinelli (INFN Ferrara) a joint Kloe / BES III CGEM groups effort (INFN Ferrara, Frascati, Torino) Partially supported

More information

Plans for RPC DHCAL Prototype. David Underwood Argonne National Laboratory

Plans for RPC DHCAL Prototype. David Underwood Argonne National Laboratory Plans for RPC DHCAL Prototype David Underwood Argonne National Laboratory Linear Collider Meeting, SLAC 7-10 January 2004 Outline Collaborators Goals Motivation Mechanical Structure Chamber Description

More information

Silicon Photomultiplier

Silicon Photomultiplier Silicon Photomultiplier Operation, Performance & Possible Applications Slawomir Piatek Technical Consultant, Hamamatsu Corp. Introduction Very high intrinsic gain together with minimal excess noise make

More information

Timing and cross-talk properties of BURLE multi-channel MCP PMTs

Timing and cross-talk properties of BURLE multi-channel MCP PMTs Timing and cross-talk properties of BURLE multi-channel MCP PMTs Faculty of Chemistry and Chemical Engineering, University of Maribor, and Jožef Stefan Institute, Ljubljana, Slovenia E-mail: samo.korpar@ijs.si

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

Detector Checkout and Optics Commissioning

Detector Checkout and Optics Commissioning Detector Checkout and Optics Commissioning Jure Bericic Brad Sawatzky with SHMS optics working group Hall C Winter Collaboration Meeting January 20, 2017 overview HMS overview SHMS overview commissioning

More information

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration

The LHCb Upgrade BEACH Simon Akar on behalf of the LHCb collaboration The LHCb Upgrade BEACH 2014 XI International Conference on Hyperons, Charm and Beauty Hadrons! University of Birmingham, UK 21-26 July 2014 Simon Akar on behalf of the LHCb collaboration Outline The LHCb

More information

Small-pad Resistive Micromegas for Operation at Very High Rates. M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C.

Small-pad Resistive Micromegas for Operation at Very High Rates. M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C. Small-pad Resistive Micromegas for Operation at Very High Rates CERN; E-mail: paolo.iengo@cern.ch M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, C. Grieco University of Naples and

More information

Applications Information

Applications Information Applications Information Window Materials % TRANSMISSION 100 90 80 70 60 50 40 30 20 10 UV Sapphire UV Quartz Pyrex & Glass 100 200 300 400 500 600 700 800 900 Wavelength (nm) Pyrex only In applications

More information

Gas Electron Multiplier Detectors

Gas Electron Multiplier Detectors Muon Tomography with compact Gas Electron Multiplier Detectors Dec. Sci. Muon Summit - April 22, 2010 Marcus Hohlmann, P.I. Florida Institute of Technology, Melbourne, FL 4/22/2010 M. Hohlmann, Florida

More information

event physics experiments

event physics experiments Comparison between large area PMTs at cryogenic temperature for neutrino and rare Andrea Falcone University of Pavia INFN Pavia event physics experiments Rare event physics experiment Various detectors

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

A high resolution TOF counter - a way to compete with a RICH detector?

A high resolution TOF counter - a way to compete with a RICH detector? A high resolution TOF counter - a way to compete with a RICH detector? J. Va vra, SLAC representing D.W.G.S. Leith, B. Ratcliff, and J. Schwiening Note: This work was possible because of the Focusing DIRC

More information

Operation and performance of the CMS Resistive Plate Chambers during LHC run II

Operation and performance of the CMS Resistive Plate Chambers during LHC run II Operation and performance of the CMS Resistive Plate Chambers during LHC run II, Isabel Pedraza Benemérita Universidad Autónoma de Puebla On behalf of the CMS collaboration XXXI Reunión Anual de la División

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

High collection efficiency MCPs for photon counting detectors

High collection efficiency MCPs for photon counting detectors High collection efficiency MCPs for photon counting detectors D. A. Orlov, * T. Ruardij, S. Duarte Pinto, R. Glazenborg and E. Kernen PHOTONIS Netherlands BV, Dwazziewegen 2, 9301 ZR Roden, The Netherlands

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS PREPRINT LIP 1 / 99 9 July 1999 (Revised on 16 August 1999) HIGH RESOLUTION RPC S FOR LARGE TOF SYSTEMS P. Fonte 1,3, #, R. Ferreira Marques

More information

Tracking and Alignment in the CMS detector

Tracking and Alignment in the CMS detector Tracking and Alignment in the CMS detector Frédéric Ronga (CERN PH-CMG) for the CMS collaboration 10th Topical Seminar on Innovative Particle and Radiation Detectors Siena, October 1 5 2006 Contents 1

More information

Studies of a Bulk Micromegas using the Cornell/Purdue TPC

Studies of a Bulk Micromegas using the Cornell/Purdue TPC Studies of a Bulk Micromegas using the Cornell/Purdue TPC Cornell University Purdue University T. Anous K. Arndt R. S. Galik G. Bolla D. P. Peterson I. P. J. Shipsey The Bulk Micromegas, was prepared on

More information

Effects of the induction-gap parameters on the signal in a double-gem detector

Effects of the induction-gap parameters on the signal in a double-gem detector WIS/27/02-July-DPP Effects of the induction-gap parameters on the signal in a double-gem detector G. Guedes 1, A. Breskin, R. Chechik *, D. Mörmann Department of Particle Physics Weizmann Institute of

More information

MWPC Gas Gain with Argon-CO 2 80:20 Gas Mixture

MWPC Gas Gain with Argon-CO 2 80:20 Gas Mixture IMA Journal of Mathematical Control and Information Page 1 of 10 doi:10.1093/imamci/dri000 1. Principles of Operation MWPC Gas Gain with Argon-CO 2 80:20 Gas Mixture Michael Roberts A multi-wire proportional

More information

PoS(VERTEX 2008)038. Micropattern Gas Detectors. Jochen Kaminski University of Bonn, Germany

PoS(VERTEX 2008)038. Micropattern Gas Detectors. Jochen Kaminski University of Bonn, Germany University of Bonn, Germany E-mail: kaminski@physk.uni-bonn.de An overview of Micropattern Gas Detectors is given. Recent progress of detector research, especially in the context of Micromegas and Gas

More information

Al-core TPC collection plane test results CENBG option J. Giovinazzo, J. Pibernat, T. Goigoux (R. de Oliveira CERN)

Al-core TPC collection plane test results CENBG option J. Giovinazzo, J. Pibernat, T. Goigoux (R. de Oliveira CERN) Al-core TPC collection plane test results CENBG option J. Giovinazzo, J. Pibernat, T. Goigoux (R. de Oliveira CERN) Collection plane R&D Prototypes characterization - collection plane tests - individual

More information

HAPD Status. S. Nishida KEK. Dec 11, st Open Meeting of the SuperKEKB collaboration. HAPD Status. 1st SuperKEKB Meeting 1

HAPD Status. S. Nishida KEK. Dec 11, st Open Meeting of the SuperKEKB collaboration. HAPD Status. 1st SuperKEKB Meeting 1 S. Nishida KEK 1st Open Meeting of the SuperKEKB collaboration Dec 11, 2008 1 Contents 144ch HAPD Key Issues Summary I. Adachia, R. Dolenecb, K. Harac, T. Iijimac, H. Ikedad, Y. Ishiie, H. Kawaie, S. Korparb,f,

More information

MPD. Fast Forward Detector

MPD. Fast Forward Detector Version 4 MPD Fast Forward Detector Technical Design Report LHEP / JINR May 2017 1 FFD group Project leader: V. I. Yurevich Participants: Joint Institute for Nuclear Research, Dubna G. N. Agakishiev, G.

More information

Testing the Electronics for the MicroBooNE Light Collection System

Testing the Electronics for the MicroBooNE Light Collection System Testing the Electronics for the MicroBooNE Light Collection System Kathleen V. Tatem Nevis Labs, Columbia University & Fermi National Accelerator Laboratory August 3, 2012 Abstract This paper discusses

More information

Advances in microchannel plate detectors for UV/visible Astronomy

Advances in microchannel plate detectors for UV/visible Astronomy Advances in microchannel plate detectors for UV/visible Astronomy Dr. O.H.W. Siegmund Space Sciences Laboratory, U.C. Berkeley Advances in:- Photocathodes (GaN, Diamond, GaAs) Microchannel plates (Silicon

More information

Study of a scintillation counter consisting of a pure CsI crystal and APD

Study of a scintillation counter consisting of a pure CsI crystal and APD Study of a scintillation counter consisting of a pure CsI crystal and APD Yifan JIN, Denis Epifanov The University of Tokyo Oct 20th, 2015 1 Outline Belle II calorimeter upgrade Electronics noise in the

More information

Inner Tracking System PID

Inner Tracking System PID Inner Tracking System PID Emanuele Biolcati (Università and INFN Torino) Marek Chojnacki (Universiteit Utrecht) PID task force meeting July 2, 2009 Outlines Introduction: two PID algorithms for the ITS

More information

A BaF2 calorimeter for Mu2e-II

A BaF2 calorimeter for Mu2e-II A BaF2 calorimeter for Mu2e-II I. Sarra, on behalf of LNF group Università degli studi Guglielmo Marconi Laboratori Nazionali di Frascati NEWS General Meeting 218 13 March 218 Proposal (1) q This technological

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-PPE/95-98 July 5, 1995 A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS S. Simone, M.G. Catanesi, D. Di Bari, V. Didonna,

More information

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8

Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 Development of large readout area, high time resolution RPCs for LEPS2 at SPring-8 1 Department of physics, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan E-mail: natsuki@scphys.kyoto-u.ac.jp

More information