Reduce Power Transfer Loss in Transmission Line by Integrating AC & DC Transmission

Size: px
Start display at page:

Download "Reduce Power Transfer Loss in Transmission Line by Integrating AC & DC Transmission"

Transcription

1 Reduce Power Transfer Loss in Transmission Line by Integrating AC & DC Transmission Alok Kumar 1, Surya Prakash 2, Department of Electrical Engineering, CMJ University, Shillong Meghalaya-India¹ Department of Electrical Engineering, SHIATS Deemed University, Allahabad U.P-India² Abstract In this paper it is possible to load the transmission lines very close to their thermal limits by allowing the conductors to carry usual ac along with dc super imposed on it. The added dc power flow does not cause any transient instability. This project gives the feasibility of converting a double circuit ac line into composite ac dc power transmission line to get the advantages of parallel ac dc transmission to improve stability and damping out oscillations. Simulation and experimental studies are carried out for the coordinated control as well as independent control of ac and dc power transmissions. No alterations of conductors, insulator strings, and towers of the original line are needed. The present situation demands the review of traditional power transmission theory and practice, on the basis of new concepts that allow full utilization of existing transmission facilities without decreasing system availability and security. To achieve this is by simultaneous ac dc power transmission in which the conductors are allowed to carry superimposed dc current along with ac current. Ac and dc power flow independently, and the added dc power flow does not cause any transient instability. Simultaneous ac dc power transmission was first proposed through a single circuit ac transmission line. In these proposals Mono-polar dc transmission with ground as return path was used. There were certain limitations due to use of ground as return path. Moreover, the instantaneous value of each conductor voltage with respect to ground becomes higher by the amount of the dc voltage, and more discs are to be added in each insulator string to withstand this increased voltage. In this paper, the feasibility study of conversion of a double circuit ac line to composite ac dc line without altering the original line conductors, tower structures, and insulator strings has been presented. In this scheme, the dc power flow is point-to point bipolar transmission system. The novelty of our proposed scheme is that the power transfer enhancement is achieved without any alteration in the existing EHV ac line. The main object is to gain the advantage of parallel ac dc transmission and to load the line close to its thermal limit. Key Words Flexible AC transmission system (FACTS),Extra high voltage (EHV)transmission, Mat- Lab, Simultaneous ac-dc power transmission I. INTRODUCTION From In Recent years, environmental, right-of-way, and cost concerns have delayed the construction of a new transmission line, while demand of electric power has shown steady but geographically uneven growth. The power is often available at locations not close to the growing load centers but at remote locations. The wheeling of this available energy through existing long ac lines to load centers has a certain upper limit due to stability considerations. Thus, these lines are not loaded to their thermal limit to keep sufficient margin against transient instability. The present situation demands the review of traditional power transmission theory and practice, on the basis of new concepts that allow full utilization of existing transmission facilities without decreasing system availability and security. To achieve this is by simultaneous ac dc power transmission in which the conductors are allowed to carry superimposed dc current along with ac current. Ac and dc power flow independently, and the added dc power flow does not cause any transient instability. Simultaneous ac dc power transmission was first proposed through a single circuit ac transmission line. The basic proof justifying the simultaneous ac dc power transmission is explained in an IEEE paper Simultaneous ac-dc power transmission, by K. P. Basu and B. H. Khan. In the above reference, simultaneous ac dc power transmission was first proposed through a single circuit ac transmission line. In these proposals Mono-polar dc transmission with ground as return path was used. There were certain limitations due to use of ground as return path. Moreover, the instantaneous value of each conductor voltage with respect to ground becomes higher by the amount of the dc voltage, and more discs are to be added in each insulator string to withstand this increased voltage. However, there was no change in the conductor separation distance, as the line-to-line voltage remains unchanged. In this paper, the feasibility study of conversion of a double circuit ac line to composite ac dc line without altering the original line conductors, tower structures, and insulator strings has been presented. II. PROBLEM DEFINITION The main object of my paper is to show that by superimposing DC in AC transmission, the capacity of the transmission line can be increased by nearly 70 % of that if only AC is transmitted. In our existing transmission ISSN: Page 2491

2 system, long extra high voltage (EHV) ac lines cannot be loaded to their thermal limits in order to keep sufficient margin against transient instability. With the scheme proposed in this project, it is possible to load these lines very close to their thermal limits. The conductors are allowed to carry usual ac along with dc superimposed on it. This report presents the Power Upgrading of Transmission line by combining AC and DC transmission. The flexible ac transmission system (FACTS) concepts, based on applying state-of-the-art power electronic technology to existing ac transmission system, improve stability to achieve power transmission close to its thermal limit. Another way to achieve the same goal is simultaneous ac dc power transmission in which the conductors are allowed to carry superimposed dc current along with ac current. Ac and dc power flow independently, and the added dc power flow does not cause any transient instability. The authors, H. Rahman and B. H. Khan, have earlier shown that extra high voltage (EHV) ac line may be loaded to a very high level by using it for simultaneous ac dc power transmission as reported in references [5] and [6]. The basic proof justifying the simultaneous ac dc power transmission is explained in reference [6]. In the above references, simultaneous ac dc power transmission was first proposed through a single circuit ac transmission line. In these proposals Mono-polar dc transmission with ground as return path was used. There were certain limitations due to use of ground as return path. Moreover, the instantaneous value of each conductor voltage with respect to ground becomes higher by the amount of the dc voltage, and more discs are to be added in each insulator string to withstand this increased voltage. However, there was no change in the conductor separation distance, as the line-to-line voltage remains unchanged. In this paper, the feasibility study of conversion of a double circuit ac line to composite ac dc line without altering the original line conductors, tower structures, and insulator strings has been presented. In this scheme, the dc power flow is point-to point bipolar transmission system. Clerici et al. [7] suggested the conversion of ac line to dc line for substantial power upgrading of existing ac line. However, this would require major changes in the tower structure as well as replacement of ac insulator strings with high creepage dc insulators. The novelty of our proposed scheme is that the power transfer enhancement is achieved without any alteration in the existing EHV ac line. The main object is to gain the advantage of parallel ac dc transmission and to load the line close to its thermal limit. inverter bridge at the receiving end. The inverter bridge is again connected to the neutral of zigzag connected winding of the receiving end transformer. Star connected primary windings in place of delta-connected windings for the transformers may also be used for higher supply voltage. The single circuit transmission line carriers both 3 phase ac and dc power. It is to be noted that a part of the total ac power at the sending end is converted into dc by the tertiary winding of the transformer connected to rectified bridge. The same dc power is reconverted to ac at the received end by the tertiary winding of the receiving end transformer connected to the inverter bridge. Each conductor of the line carries one third of the total dc current along with ac current Ia.The return path of the dc current is through the ground. Zigzag connected winding is used at both ends to avoid saturation of transformer due to dc current flow. A high value of reactor, Xd is used to reduce harmonics in dc current. Fig.1 Basic scheme for composite ac dc transmission. In the absence of zero sequence and third harmonics or its multiple harmonic voltages, under normal operating conditions, the ac current flow will be restricted between the zigzag connected windings and the three conductors of the transmission line. Even the presence of these components of voltages may only be able to produce negligible current through the ground due to high of Xd. Assuming the usual constant current control of rectifier and constant extinction angle control of inverter, the equivalent circuit of the scheme under normal steady state operating condition is shown in Fig.2 III. INTEGRATING AC-DC POWER TRANSMISSION The circuit diagram in Figure1 shows the basic scheme for simultaneous ac-dc transmission. The dc power is obtained through the rectifier bridge and injected to the neutral point of the zigzag connected secondary of sending end transformer, and again it is reconverted to ac by the ISSN: Page 2492

3 PL = (Ps + Pdr) (PR + Pdi) (14) Ia being the rms ac current per conductor at any point of the line, the total rms current per conductor becomes: The dotted line in the figure shows the path of ac return current only. The ground carries the full dc current Id only and each conductor of the line carries Id/3 along with the ac current per phase. The expressions for ac voltage and current and the power equations in terms of A,B,C and D parameters of each line when the resistive drop in transformer winding and in the line conductors due to dc current are neglected can be written as: Sending end voltage: Vs = AVR + BIR (1) Sending end current: Is = CVR + DIR (2) Sending end power: Ps+ jqs = (- VSV*R)/B* + (D*/B*) Vs₂ (3) Receiving end power: PR + jqr = (VS*VR) / B* - (A*/B*)VR₂ (4) The expressions for dc current and the dc power, when the ac resistive drop in the line and transformer are neglected, Dc current: Id = (Vdrcosα - Vdicosγ)/(Rer + (R/3) Rci (5) Power in inverter: Pdi = Vdi x Id (6) Power in rectifier: Pdr = Vdr x Id (7) Where R is the line resistance per conductor, Rcr and Rci commutating resistances, α and γ, firing and extinction angles of rectifier and inverter respectively and Vdr and Vdi are the maximum dc voltages of rectifier and inverter side respectively. Values of Vdr and Vdi are 1.35 times line to line tertiary winding ac voltages of respective sides. Reactive powers required by the converters are: Qdi=Pdi tanθi (8) Qdr = Pdr tanθr (9) CosθI = (cos γ + cos (γ + μi) ) / 2 (10) Cosθr = (cos α + cos (α + μr) ) / 2 (11) Where µi and µr are commutation angles of inverter and rectifier respectively and total active and reactive powers at the two ends are Pst = Ps + Pdr and Prt = PR + Pdi (12) Qst = Qs + Qdr and Qrt = QR + Qdi (13) Total transmission line loss is: I = sqrt (Ia2 + (Id/3)2) and PL 3I2R (15) If the rated conductor current corresponding to its allowable temperature rise is Ith and Ia = X * Ith; X being less than unity, the dc current becomes: Id = 3 x (sqrt (1-x2) ) Ith (16) The total current I in any conductor is asymmetrical but two natural zero-crossings in each cycle in current wave are obtained for (Id/3Ia) < The instantaneous value of each conductor voltage with respect to ground becomes the dc voltage Vd with a superimposed sinusoidally varying ac voltages having rms value Eph and the peak value being: Emax = V Ep Electric field produced by any conductor voltage possesses a dc component superimposed with sinusoidally varying ac component. But the instantaneous electric field polarity changes its sign twice in cycle if (Vd/Eph) < Therefore, higher creepage distance requirement for insulator discs used for HVDC lines are not required. Each conductor is to be insulated for Emax but the line to line voltage has no dc component and ELL(max) = 2.45 Eph.Therefore, conductor to conductor separation distance is determined only by rated ac voltage of the line. Assuming Vd/Eph = k Pdc/ Pac (Vd * Id)/(3 * Eph * Ia * cosθ) = (k * sqrt(1- x2)) / (x * cosθ ) (17) Total power Pt = Pdc + Pac = (1 + [k * sqrt (1-x2)] / (x * cosθ)) * Pac (18) Detailed analysis of short current ac design of protective scheme, filter and instrumentation network required for the proposed scheme is beyond the scope of present work, but preliminary qualitative analysis presented below suggests that commonly used techniques in HVDC/AC system may be adopted for this purposes. IV. EXPERIMENTAL VERIFICATION The feasibility of the basic scheme of simultaneous ac-dc transmission was verified in the laboratory. Transformer having a rating of 2 kva, 400/230/110V are used at each end. A supply of 3-phase, 400V, 50Hz are given at the sending end and a 3-phase, 400 V, 50 Hz,1 HP induction motor in addition to a 3-phase, 400V, 0.7 KW resistive load was connected at the receiving end. A 10 A, 110 Vdc reactor (Xd) was used at each end with the 230V zigzag connected neutral. Two identical SCR bridges were used for rectifier and inverter. The dc voltages of rectifier and inverter bridges were adjusted between 145 V to135 V to vary dc current between 0 to 3A. The same experiment was repeated by replacing the rectifier at the sending and and the inverter at receiving end by 24V battery and a 5A, 25 rheostat respectively, between Xd and ground. ISSN: Page 2493

4 The power transmission with and without dc component was found to be satisfactory in all the cases. To check the saturation of zigzag connected transformer for high value of Id, ac loads were disconnected and dc current was increased to 1.2 times the rated current for a short time with the input transformer kept energized from 400V ac. But no changes in exciting current and terminal voltage of transformer were noticed verifying no saturation even with high value of Id. Power Angle PS (MW) Pac(MW) Pdc(MW) Pac loss (MW) Pdc loss (MW) PR (MW) V. AC & INTEGRATING AC DC MODEL Power Angle AC Current(kA) DC Current(kA) AC Power(MW) DC Power(MW) Total Power(MW) Figure.3 Diagram for AC transmission system ISSN: Page 2494

5 Fig.6 Sending and receiving currents Fig.7 Integrating AC-DC current Figur.4 Diagram for integrating AC & DC transmission system TABLE 1 Computed Results VI. RESULT In this paper, it is shown that by injecting DC power in AC power transmission lines, we can improve the transmission capacity of the line by 2 to 4 times without altering the physical equipment. This work can be extended for analyzing the effect of faults on this type of transmission. This work is done on double circuit AC transmission lines but it can be extended to other types of transmission methods. VII. DISCUSSION TABLE 2 Simulation Result Fig.5 Sending end and receiving end voltages A simple scheme of simultaneous EHV ac-dc power transmission through the same transmission line has been presented. Expressions of active and reactive powers associated with ac and dc, conductor voltage level and total power have been obtained for steady state normal operating condition. The possible applications of the proposed scheme may be listed as: loading a line close to its thermal limit, improvement of transient and dynamic stability and damping of oscillations. In LV and MV distribution system the proposed scheme may be applied in a workplace having high ambient temperature or fed with high frequency supply or with PV solar cells. Only the basic scheme has been presented with qualitative assessment for its implementation. Details of practical adaptation are beyond the scope of the present work. VIII. CONCLUSION The feasibility to convert ac transmission line to a composite ac dc line has been demonstrated. For the particular system studied, there is substantial increase in ISSN: Page 2495

6 the loadability of the line. The line is loaded to its thermal limit with the superimposed dc current. The dc power flow does not impose any stability problem. The advantage of parallel ac dc transmission is obtained. Dc current regulator may modulate ac power flow. There is no need for any modification in the size of conductors, insulator strings, and towers structure of the original line. References: 1. L. K. Gyugyi, Unified power flow concept for flexible A.C. transmission system, Proc. Inst. Elect. Eng., p. 323, Jul L. K. Gyugyi et al., The unified power flow controller; a new approach to power transmission control, IEEE Trans. Power Del., vol. 10, no. 2, pp , Apr N. G.Hingorani, FACTS flexible A.C. transmission system, in Proc. Inst. Elect. Eng. 5th. Int. Conf. A.C. D.C. Power Transmission, London, U.K., P. S. Kundur, Power System Stability and Control. New York: Mc-Graw-Hill, K. P. Basu and B. H. Khan, Simultaneous ac-dc power transmission, Inst. Eng. (India) J.-EL, vol. 82, pp , Jun H. Rahman and B. H. Khan, Enhanced power transfer by simultaneous transmission of AC-DC: a new FACTS concept, in Proc. Inst. Elect. Eng. Conf. Power Electronics, Machines, Drives, Edinburgh, U.K., Mar. 31 Apr , vol. 1, pp A. Clerici, L. Paris, and P. Danfors, HVDC conversion of HVAC line to provide substantial power upgrading, IEEE Trans. Power Del., vol. 6, no. 1, pp , Jan Stella M., Dash P. K., and Basu K. P. A neurosliding mode controller for STATCOM, Elect. Power Compon. Syst., vol. 32, pp , Feb Szechtman M., Wees T., and C. V. Thio C. V., First benchmark model for HVDC control studies, Electra, no. 135, pp , Apr Sen K. K., SSSC Static Synchronous Series Compensator: Theory, Modelling, and Applications, IEEE Transactions on Power Delivery, Vol. 13, No. 1, January 1998, pp A. Clerici, L. Paris, and P. Danfors, HVDC conversion of HVAC line to provide substantial power upgrading, IEEE Trans. Power Del., vol. 6, no. 1, pp , Jan E. W. Kimbark, Direct Current Transmission. New York: Wiley, 1971, vol. I. 13. H. Rahman H. and Khan B H Stability Improvement of Power System by Simultaneous AC-DC Power Transmission Electric Power System Research Journal, Elsevier, Paper Editorial ID No. EPSRD , Press Article No. EPSR-2560 Digital Object. 14. Kimbark I W. Direct Current Transmission Vol- I. Wiley, New York, Hatziadoniu C. J. and Funk A. T., Development of a Control Scheme for Series- Connected Solid- State Synchronous Voltage Source, IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996, pp Kimbark I W. Direct Current Transmission Vol- I. Wiley, New York, Liu Y. H., Zhang R. H., Arrillaga J., and Watson N. R., An Overview of Self-Commutating Converters and Their Application in Transmission and Distribution, 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, Padiyar K. R., Pai M. A., and Radhakrishna C., Analysis of D.C. link control for system stabilization, in Proc. Inst. Elect. Eng. Conf. Publ. No. 205, London, U.K., PSCAD/EMTDC, User s Guide, Manitoba- HVDC Research Centre. Winnipeg, MB, Canada, Jan [21] Padiyar K.R. HVDC Power Transmission System. Wiley Eastern, New Delhi, 1993). 20. Litzenberger Wayne H., (ed.), An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, Portland, OR, USA: Bonneville Power Administration and Western Area Power Administration, Authors Biography Surya Prakash belongs to Allahabad, Received his Bachelor of Engineering degree from The Institution of Engineers (India) in 2003, He obtained his M.Tech. in Electrical Engg.(Power System) from KNIT, Sultanpur.UP-India in Presently he is working as Asst. Prof. in Electrical Engg. Dept. SSET, SHIATS (Formerly Allahabad Agriculture Institute, Allahabad- India). His field of interest includes power system operation & control, Artificial Intelligent control sprakashgiri0571@yahoo.com ISSN: Page 2496

7 Alok kumar belongs to Allahabad, He obtained his M.Tech. in Electrical Engg.(Power System) from SHIATS Deemed University, Allahabad UP-India in Presently he is doing P.hd from CMJ University, Shillong Meghalaya- India. His field of interest HVDC Transmission Line, ISSN: Page 2497

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer C.GOPI*, M.KISHOR** *(Department. of Electrical and Electronics Engineering, SVPCET, Puttur)

More information

Power System Stability Enhancement by Simultaneous AC-DC Power Transmission

Power System Stability Enhancement by Simultaneous AC-DC Power Transmission Power System Stability Enhancement by Simultaneous AC-DC Power Transmission Abhishek Chaturvedi 1, V. K. Tripathi 2, T Vijay Muni 3, Neeraj Singh 4 PG Student [Power System] Dept. Of Electrical Engineering,

More information

Power Transmission of AC-DC Supply in a Single Composite Conductor

Power Transmission of AC-DC Supply in a Single Composite Conductor IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 03 August 2015 ISSN (online): 2349-6010 Power Transmission of AC-DC Supply in a Single Composite Conductor P.

More information

Power System Stability Enhancement by Simultaneous AC-DC Power Transmission

Power System Stability Enhancement by Simultaneous AC-DC Power Transmission Power System Stability Enhancement by Simultaneous AC-DC Power Transmission A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Electrical Engineering

More information

K.K.Vasishta Kumar, K.Sathish Kumar

K.K.Vasishta Kumar, K.Sathish Kumar Upgradation of Power flow in EHV AC transmission K.K.Vasishta Kumar, K.Sathish Kumar Dept of Electrical & Electronics Engineering, Gitam University, Hyderabad, India Email: vasishtakumar@gmail.com, satish.swec@gmail.com

More information

POWER UPGRADATION AND POSSIBILITY OF SMALL POWER TAPPING FROM COMPOSITE AC- DC TRANSMISSION SYSTEM

POWER UPGRADATION AND POSSIBILITY OF SMALL POWER TAPPING FROM COMPOSITE AC- DC TRANSMISSION SYSTEM Int. J. Elec&Electr.Eng&Telecoms. 2013 K Shobha Rani and C N Arpitha, 2013 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 2, No. 3, July 2013 2013 IJEETC. All Rights Reserved POWER UPGRADATION AND POSSIBILITY

More information

Improvement of Power System Stability by Simultaneous AC-DC Power Transmission

Improvement of Power System Stability by Simultaneous AC-DC Power Transmission International Journal of Scientific & Engineering Research Volume 2, Issue 4, pril-2011 1 Improvement of Power System Stability by Simultaneous -D Power Transmission T.Vijay Muni, T.Vinoditha, D.Kumar

More information

International Journal of Digital Application & Contemporary research Website: (Volume 2, Issue 7, February 2014)

International Journal of Digital Application & Contemporary research Website:   (Volume 2, Issue 7, February 2014) Increasing Efficiency of Transmission Lines by Simultaneous AC-DC Power Transmission Scheme and their Performance at Fault Operation Om Prakash Verma Abhijit Mandal Amit Goswami opksverma@gmail.com abhijitmandal1986@gmail.com

More information

Simultaneous AC-DC Transmission Scheme Under Unbalanced Load Condition

Simultaneous AC-DC Transmission Scheme Under Unbalanced Load Condition Simultaneous AC-DC Transmission Scheme Under Unbalanced Load Condition M. A. Hasan, Priyanshu Raj, Krritika R Patel, Tara Swaraj, Ayush Ansuman Department of Electrical and Electronics Birla Institute

More information

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System Rajkumar Pal 1, Rajesh Kumar 2, Abhay Katyayan 3 1, 2, 3 Assistant Professor, Department of Electrical

More information

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-6, January 2012 Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for

More information

Designing Of Distributed Power-Flow Controller

Designing Of Distributed Power-Flow Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 01-09 Designing Of Distributed Power-Flow Controller 1 R. Lokeswar Reddy (M.Tech),

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

Power Control Scheme of D-Statcom

Power Control Scheme of D-Statcom ISSN : 48-96, Vol. 4, Issue 6( Version 3), June 04, pp.37-4 RESEARCH ARTICLE OPEN ACCESS Power Control Scheme of D-Statcom A. Sai Krishna, Y. Suri Babu (M. Tech (PS)) Dept of EEE, R.V.R. & J.C. College

More information

Simulation & Performence Analysis Of HVDC Multigrid Transmission System Using Statcom

Simulation & Performence Analysis Of HVDC Multigrid Transmission System Using Statcom Simulation & Performence Analysis Of HVDC Multigrid Transmission System Using Statcom Satya Prakash, Roshan Nayak Abstract This The increasing demand of power supply in modern time increases the complexity

More information

Comparison of Simulation and Experimental Results of UPFC used for Power Quality Improvement

Comparison of Simulation and Experimental Results of UPFC used for Power Quality Improvement Comparison of Simulation and Experimental Results of UPFC used for Power Quality Improvement S. Muthukrishnan and Dr. A. Nirmal Kumar Abstract This paper deals with digital simulation and implementation

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

The unified power quality conditioner: the integration of series and shunt-active filters

The unified power quality conditioner: the integration of series and shunt-active filters Engineering Electrical Engineering fields Okayama University Year 1997 The unified power quality conditioner: the integration of series and shunt-active filters Hideaki Fujita Okayama University Hirofumi

More information

Basic Concept, Operation and Control of HVDC Transmission System

Basic Concept, Operation and Control of HVDC Transmission System Basic Concept, Operation and Control of HVDC Transmission System 13.00-16.00 hrs. July 29, 2008 Room 2003, T.102, EGAT Head Office Nitus Voraphonpiput, Ph.D. Engineer Level 8 Technical Analysis Foreign

More information

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER S. Tara Kalyani 1 and G. Tulasiram Das 1 1 Department of Electrical Engineering, Jawaharlal Nehru Technological University, Hyderabad,

More information

Interline Power Flow Controller: Review Paper

Interline Power Flow Controller: Review Paper Vol. (0) No. 3, pp. 550-554 ISSN 078-365 Interline Power Flow Controller: Review Paper Akhilesh A. Nimje, Chinmoy Kumar Panigrahi, Ajaya Kumar Mohanty Abstract The Interline Power Flow Controller (IPFC)

More information

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization D.Nagaraju M.Tech-PE, Vidya Bharathi Institute of Technology, T.S, India. L.Ramesh Associate Professor, Vidya

More information

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications

New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 38, NO. 1, JANUARY/FEBRUARY 2002 131 New Pulse Multiplication Technique Based on Six-Pulse Thyristor Converters for High-Power Applications Sewan Choi,

More information

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG)

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG) Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG) PATTI.RANADHEER Assistant Professor, E.E.E., PACE Institute

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Enhancement of Power Quality in 14 Bus System using UPFC

Enhancement of Power Quality in 14 Bus System using UPFC Research Journal of Applied Sciences, Engineering and Technology 2(4): 356-361, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: April 07, 2010 Accepted Date: May 21, 2010 Published

More information

ATYPICAL high-power gate-turn-off (GTO) currentsource

ATYPICAL high-power gate-turn-off (GTO) currentsource 1278 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 6, NOVEMBER/DECEMBER 1998 A Novel Power Factor Control Scheme for High-Power GTO Current-Source Converter Yuan Xiao, Bin Wu, Member, IEEE,

More information

Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment

Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment Champa Nandi Assistant Professor Tripura University Ajoy Kr. Chakraborty Associate Professor NIT,Agartala Sujit Dutta, Tanushree

More information

Effects and Mitigation of Post-Fault Commutation Failures in Line-Commutated HVDC Transmission System

Effects and Mitigation of Post-Fault Commutation Failures in Line-Commutated HVDC Transmission System IEEE International Symposium on Industrial Electronics (ISIE 9) Seoul Olympic Parktel, Seoul, Korea July 5-8, 9 Effects and Mitigation of Post-Fault Commutation Failures in Line-Commutated HVDC Transmission

More information

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System 1 Ramesh Gantha 1, Rasool Ahemmed 2 1 eee Kl University, India 2 AsstProfessor, EEE KL University,

More information

Improvement of System Reliability & Power Transfer Capability using Distributed Power- Flow Controller (DPFC)

Improvement of System Reliability & Power Transfer Capability using Distributed Power- Flow Controller (DPFC) International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1 Improvement of System Reliability & Power Transfer Capability using Distributed Power- Flow Controller (DPFC) P.RAMESH

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER

ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER ENHANCEMENT OF POWER FLOW USING SSSC CONTROLLER 1 PRATIK RAO, 2 OMKAR PAWAR, 3 C. L. BHATTAR, 4 RUSHIKESH KHAMBE, 5 PRITHVIRAJ PATIL, 6 KEDAR KULKARNI 1,2,4,5,6 B. Tech Electrical, 3 M. Tech Electrical

More information

A Direct Power Controlled and Series Compensated EHV Transmission Line

A Direct Power Controlled and Series Compensated EHV Transmission Line A Direct Power Controlled and Series Compensated EHV Transmission Line Andrew Dodson, IEEE Student Member, University of Arkansas, amdodson@uark.edu Roy McCann, IEEE Member, University of Arkansas, rmccann@uark.edu

More information

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM REDUCTION OF THD IN POWER SYSTEMS USING STATCOM M.Devika Rani, M.R.P Reddy, Ch.Rambabu devikamothukuri@gmail.com, mrpreddy77@gmail.com, ram_feb7@rediffmail.com EEE Department, Sri Vasavi Engineering College,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 A Statcom-Control Scheme for Power Quality Improvement of Grid Connected Wind Energy System B.T.RAMAKRISHNARAO*, B.ESWARARAO**, L.NARENDRA**, K.PRAVALLIKA** * Associate.Professor, Dept.of EEE, Lendi Inst.Of

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

dr lr dt dt. V = ωl i g m m

dr lr dt dt. V = ωl i g m m International Journal of Advances In Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 1, Issue 1, Feb 2014, 17-21 IIST HUSSAIN BASHA.G 1, SHAIK HAMEED 2 1 (PG scholor),

More information

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme I J E E E C International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626 and Computer Engineering 2(1): 7-12(2013) Transient stability improvement by using shunt FACT device (STATCOM)

More information

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads Vol.2, Issue.2, Mar-Apr 2012 pp-431-435 ISSN: 2249-6645 Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads M. CHANDRA SEKHAR 1, B. KIRAN BABU

More information

SIMULATION OF DSTATCOM FOR POWER FACTOR IMPROVEMENT

SIMULATION OF DSTATCOM FOR POWER FACTOR IMPROVEMENT International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 2250-155X; ISSN(E): 2278-943X Vol. 7, Issue 2, Apr 2017, 23-28 TJPRC Pvt. Ltd. SIMULATION OF DSTATCOM FOR POWER

More information

Enhancement of AC System Stability using Artificial Neural Network Based HVDC System

Enhancement of AC System Stability using Artificial Neural Network Based HVDC System Volume: 02 Issue: 03 June-2015 www.irjet.net p-issn: 2395-0072 Enhancement of AC System Stability using Artificial Neural Network Based HVDC System DR.S.K.Bikshapathy 1, Ms. Supriya Balasaheb Patil 2 1

More information

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India) ISSN: 2349-7637 (Online) RESEARCH HUB International Multidisciplinary Research Journal (RHIMRJ) Research Paper Available online at: www.rhimrj.com Modeling and Simulation of Distribution STATCOM Bhavin

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

Koganti Sri Lakshmi, G.Sravanthi, L.Ramadevi, Koganti Harish chowdary

Koganti Sri Lakshmi, G.Sravanthi, L.Ramadevi, Koganti Harish chowdary International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 795 Power quality and stability improvement of HVDC transmission System using UPFC for Different uncertainty

More information

Power Flow Control in HVDC Link Using PI and Ann Controllers

Power Flow Control in HVDC Link Using PI and Ann Controllers International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 4, Issue 9 (November 2012), PP. 52-58 Power Flow Control in HVDC Link Using PI

More information

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM B.Veerraju M.Tech Student (PE&ED) MIST Sathupally, Khammam Dist, India M.Lokya Assistant Professor in EEE Dept.

More information

Reducing the Fault Current and Overvoltage in a Distribution System with an Active Type SFCL Employed PV System

Reducing the Fault Current and Overvoltage in a Distribution System with an Active Type SFCL Employed PV System Reducing the Fault Current and Overvoltage in a Distribution System with an Active Type SFCL Employed PV System M.S.B Subrahmanyam 1 T.Swamy Das 2 1 PG Scholar (EEE), RK College of Engineering, Kethanakonda,

More information

A Static Synchronous Compensator for Reactive Power Compensation under Distorted Mains Voltage Conditions

A Static Synchronous Compensator for Reactive Power Compensation under Distorted Mains Voltage Conditions 10 th International Symposium Topical Problems in the Field of Electrical and Power Engineering Pärnu, Estonia, January 10-15, 2011 A Static Synchronous Compensator for Reactive Power Compensation under

More information

1-PHASE TRANSFORMATION OF A TRANSFORMER FROM THREE PHASE TO FIVE PHASE USING A NEW CONNECTION

1-PHASE TRANSFORMATION OF A TRANSFORMER FROM THREE PHASE TO FIVE PHASE USING A NEW CONNECTION 1-PHASE TRANSFORMATION OF A TRANSFORMER FROM THREE PHASE TO FIVE PHASE USING A NEW CONNECTION Y N KUMAR 1*, D MANOHAR 2*, M PARAMESH 3* 1*,2*,3* - Dept. of EEE, Gates Institute Of Technology, Gooty, AP,

More information

TRANSFORMER LESS H6-BRIDGE CASCADED STATCOM WITH STAR CONFIGURATION FOR REAL AND REACTIVE POWER COMPENSATION

TRANSFORMER LESS H6-BRIDGE CASCADED STATCOM WITH STAR CONFIGURATION FOR REAL AND REACTIVE POWER COMPENSATION International Journal of Technology and Engineering System (IJTES) Vol 8. No.1 Jan-March 2016 Pp. 01-05 gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0976-1345 TRANSFORMER LESS H6-BRIDGE

More information

Modeling and Simulation of STATCOM

Modeling and Simulation of STATCOM Modeling and Simulation of STATCOM Parimal Borse, India Dr. A. G. Thosar Associate Professor, India Samruddhi Shaha, India Abstract:- This paper attempts to model and simulate Flexible Alternating Current

More information

Voltage Control and Power System Stability Enhancement using UPFC

Voltage Control and Power System Stability Enhancement using UPFC International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

SEVERAL static compensators (STATCOM s) based on

SEVERAL static compensators (STATCOM s) based on 1118 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 1999 A New Type of STATCOM Based on Cascading Voltage-Source Inverters with Phase-Shifted Unipolar SPWM Yiqiao Liang,

More information

Three-Phase to Five-Phase Transformation Using a Special Transformer Connection

Three-Phase to Five-Phase Transformation Using a Special Transformer Connection Review Paper Three-Phase to Five-Phase Transformation Using a Special Transformer Connection Authors: 1Koundinya Lanka, 2 Tejaswi Kambhampati, 3V.V.S. Bhavani Kumar, 4 Mukkamala Kalyan Address for Correspondence:

More information

Fundamental Concepts of Dynamic Reactive Compensation. Outline

Fundamental Concepts of Dynamic Reactive Compensation. Outline 1 Fundamental Concepts of Dynamic Reactive Compensation and HVDC Transmission Brian K. Johnson University of Idaho b.k.johnson@ieee.org 2 Outline Objectives for this panel session Introduce Basic Concepts

More information

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 26, 2004 PULSE MULTIPLICATION IN FORCED- COMMUTATED CURRENT SOURCE CONVERTERS BY DC RIPPLE REINJECTION

More information

A REVIEW ON THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING TRANSFORMER

A REVIEW ON THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING TRANSFORMER A REVIEW ON THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING TRANSFORMER Seema Dhill 1, Rahul Baghel 2 1,2Dept. of Electrical Engineering, Shri Shankaracharya Engineering College, Durg, C.G., India -------------------------------------------------------------------------***------------------------------------------------------------------------

More information

A Novel Three-Phase to Nine-Phase Transformation using a Special Transformer Connection

A Novel Three-Phase to Nine-Phase Transformation using a Special Transformer Connection A Novel Three-Phase to Nine-Phase Transformation using a Special Transformer Connection Mohd Rizwan Khalid Research Scholar, Electrical Engineering Dept, Zakir Husain College of Engineering and Technology,

More information

Hybrid AC and DC power distribution

Hybrid AC and DC power distribution Ceylon Journal of Science 46(2) 2017: 69-80 DOI: http://doi.org/10.4038/cjs.v46i2.7431 RESEARCH ARTICLE Hybrid AC and DC power distribution S. Jayawardena 1, P. Binduhewa 2 and J.B. Ekanayake 2,* 1 Sri

More information

Unit-II----Analysis of HVDC Converters

Unit-II----Analysis of HVDC Converters Unit-II----Analysis of HVDC Converters Introduction: HVDC converters converts AC to DC and transfer the DC power, then DC is again converted to AC by using inverter station. HVDC system mainly consists

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations New HVDC Interaction between AC networks 233 JPE 7-3-6 New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations Chan-Ki Kim, Young-Hun Kwon * and Gil-Soo Jang ** KEPRI,

More information

PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE

PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE Amit Kumar Vidyarthi 1, Subrahmanyam Tanala 2, Ashish Dhar Diwan 1 1 M.Tech Scholar, 2 Asst. Prof. Dept. of Electrical Engg.,

More information

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 5 (Nov. - Dec. 2013), PP 41-45 DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF

More information

Designing and Control of Converters used in DPFC for Mitigation of Voltage Sag and Swell In Transmission Line

Designing and Control of Converters used in DPFC for Mitigation of Voltage Sag and Swell In Transmission Line Designing and of Converters used in DPFC for Mitigation of Voltage Sag and Swell In Transmission ine Joydeep Sutradhar M. Tech. Student, Electrical Engg. Abha Gaikwad Patil College of Engineering, Nagpur,

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 330 Power Quality Improvement Using UPQC Chandrashekhar Reddy S Assoc.Professor, Dept.of Electrical

More information

EMERGING distributed generation technologies make it

EMERGING distributed generation technologies make it IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005 1757 Fault Analysis on Distribution Feeders With Distributed Generators Mesut E. Baran, Member, IEEE, and Ismail El-Markaby, Student Member,

More information

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge 2017 IJSRST Volume 3 Issue 2 Print ISSN: 235-6011 Online ISSN: 235-602X National Conference on Advances in Engineering and Applied Science (NCAEAS) 16 th February 2017 In association with International

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

Hybrid Power Quality Compensator for Traction Power System with Photovoltaic Array

Hybrid Power Quality Compensator for Traction Power System with Photovoltaic Array IJMTST Volume: 2 Issue: 07 July 2016 ISSN: 2455-3778 Hybrid Power Quality Compensator for Traction Power System with Photovoltaic Array M. Kalidas 1 B. Lavanya 2 1PG Scholar, Department of Electrical &

More information

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER Rajesh Kr. Ahuja 1, Aasha Chauhan 2, Sachin Sharma 3 Rajesh Kr. Ahuja Faculty, Electrical & Electronics Engineering Dept.

More information

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC)

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC) Girish Kumar Prasad 1, Dr. Malaya S Dash 2 1M-Tech Scholar, Dept. of Electrical & Electronics Engineering, Technocrats

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Direct Harmonic Analysis of the Voltage Source Converter

Direct Harmonic Analysis of the Voltage Source Converter 1034 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 3, JULY 2003 Direct Harmonic Analysis of the Voltage Source Converter Peter W. Lehn, Member, IEEE Abstract An analytic technique is presented for

More information

Impact Assessment Generator Form

Impact Assessment Generator Form Impact Assessment Generator Form This connection impact assessment form provides information for the Connection Assessment and Connection Cost Estimate. Date: (dd/mm/yyyy) Consultant/Developer Name: Project

More information

Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller

Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller E.Kumaresan*, S.Parthasarathy, B.Vidya Department of Electrical& Electronics Engineering Valliammai Engineering College,

More information

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter

More information

Power Quality Analysis in Power System with Non Linear Load

Power Quality Analysis in Power System with Non Linear Load International Journal of Electrical Engineering. ISSN 0974-2158 Volume 10, Number 1 (2017), pp. 33-45 International Research Publication House http://www.irphouse.com Power Quality Analysis in Power System

More information

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S Dr.Chandrashekhar

More information

Performance of DVR & Distribution STATCOM in Power Systems

Performance of DVR & Distribution STATCOM in Power Systems International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Volume: 3 Issue: 2 83 89 Performance of DVR & Distribution STATCOM in Power Systems Akil Ahemad Electrical

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1787 Performance analysis of D-STATCOM with Consideration of Power Factor Correction M.Bala krishna Naik 1 I.Murali

More information

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM)

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM) International Journal of Advanced Computer Research (ISSN (print): 49777 ISSN (online): 77797) Volume Number4 Issue7 December Transfer Capability Enhancement of Transmission Line using Static Synchronous

More information

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling 2, rue d Artois, F-758 PARIS B4-7 CIGRE 28 http : //www.cigre.org A cost effective hybrid HVDC transmission system with high performance in DC line fault handling Mats Andersson, Xiaobo ang and ing-jiang

More information

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407 International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 4 (June 2012), PP.17-25 www.ijerd.com Svpwm Technique to Eliminate Harmonics and Power Factor Improvement

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method Vol.2, Issue.3, May-June 2012 pp-682-686 ISSN: 2249-6645 Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method C. Prakash 1, N. Suparna 2 1 PG Scholar,

More information

THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING PI CONTROLLER AND TRANSFORMER

THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING PI CONTROLLER AND TRANSFORMER THREE-PHASE TO SEVEN-PHASE POWER CONVERTER USING PI CONTROLLER AND TRANSFORMER Seema Dhill 1, Rahul Baghel 2 1,2Dept. of Electrical Engineering, Shri Shankaracharya Engineering College, Durg, C.G., India

More information

MMC based D-STATCOM for Different Loading Conditions

MMC based D-STATCOM for Different Loading Conditions International Journal of Engineering Research And Management (IJERM) ISSN : 2349-2058, Volume-02, Issue-12, December 2015 MMC based D-STATCOM for Different Loading Conditions D.Satish Kumar, Geetanjali

More information

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System Paramjit Singh 1, Rajesh Choudhary 2 1 M.Tech, Dept, Elect, Engg, EMax group of institute, Badauli (H.R.) 2 Astt.Prof.,

More information

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of

More information

MOST electrical systems in the telecommunications field

MOST electrical systems in the telecommunications field IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 2, APRIL 1999 261 A Single-Stage Zero-Voltage Zero-Current-Switched Full-Bridge DC Power Supply with Extended Load Power Range Praveen K. Jain,

More information

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC N. Uma Maheshwar, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions. T. Sreekanth,

More information

Three-Phase/Six-Phase Conversion Autotransformers

Three-Phase/Six-Phase Conversion Autotransformers 1554 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 4, OCTOBER 2003 Three-Phase/Six-Phase Conversion Autotransformers Xusheng Chen, Member, IEEE Abstract The first commercial demonstration of six-phase

More information

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source International Journal of Emerging Engineering Research and Technology Volume 2, Issue 3, June 2014, PP 220-229 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Load Compensation at a Reduced DC Link Voltage

More information

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S M.L.SAMPATH KUMAR*1, FIROZ-ALI-MD*2 M.Tech Student, Department of EEE, NCET, jupudi, Ibrahimpatnam, Vijayawada,

More information

A New Network Proposal for Fault-Tolerant HVDC Transmission Systems

A New Network Proposal for Fault-Tolerant HVDC Transmission Systems A New Network Proposal for Fault-Tolerant HVDC Transmission Systems Malothu Malliswari 1, M. Srinu 2 1 PG Scholar, Anurag Engineering College 2 Assistant Professor, Anurag Engineering College Abstract:

More information

PERFORMANCE OF DISTRIBUTION STATIC COMPENSATOR IN LOW VOLTAGE DISTRIBUTION SYSTEM

PERFORMANCE OF DISTRIBUTION STATIC COMPENSATOR IN LOW VOLTAGE DISTRIBUTION SYSTEM PERFORMANCE OF DISTRIBUTION STATIC COMPENSATOR IN LOW VOLTAGE DISTRIBUTION SYSTEM Bhupali P. Kumbhar 1, Prof. V. V. Khatavkar 2 1 PG Student, Dept. of Electrical Engineering, 2 Asst. Professor, Dept. of

More information