DEVELOPMENT OF AN AUTOMATIC DECLINATION- INCLINATION MAGNETOMETER. SEBASTIEN A. VAN LOO 13 JEAN L. RASSON Institut Royal Météorologique de Belgique

Size: px
Start display at page:

Download "DEVELOPMENT OF AN AUTOMATIC DECLINATION- INCLINATION MAGNETOMETER. SEBASTIEN A. VAN LOO 13 JEAN L. RASSON Institut Royal Météorologique de Belgique"

Transcription

1 DEVELOPMENT OF AN AUTOMATIC DECLINATION- INCLINATION MAGNETOMETER SEBASTIEN A. VAN LOO 13 JEAN L. RASSON Institut Royal Météorologique de Belgique Abstract. The first results in the design of an automatic DIM are presented. This instrument should be completely operational in 3 years. By associating it with other instruments which are already automatic, like variometers and proton magnetometers, it will be possible to install absolute magnetic observatories, all around the Earth, even in inaccessible places like on islands and on the ocean floor, since there is no need for an operator or maintenance. Automation is difficult because several key components generate considerable magnetic disturbances. Solutions to carry out the operations of rotation of the sensor, precision reading of the angles, and the pointing of an azimuth reference without disturbing the magnetic field, are proposed. Keywords: DIM, absolute magnetic observation, declination, inclination, theodolite, fluxgate, piezoelectric motor, electronic angular encoder, automation 1. Introduction Many automatic instruments are able to provide recordings of the value of the total geomagnetic field as well as its variations. But the declination and the inclination still must be measured manually by an observer, using a DIM (declination-inclination magnetometer). If this instrument could be automated, it would become possible to establish completely autonomous magnetic observatories, working without need of an operator or maintenance (Rasson 1996). The Earth could then be totally and uniformly covered with magnetic observatories, by adding new stations to the current 13 To whom correspondence should be addressed at: Institut Royal Météorologique de Belgique, Centre de Physique du Globe, B-5670 Dourbes, Belgium. sebvl@oma be J.L. Rasson and T. Delipetrov (eds.), Geomagnetics for Aeronautical Safety, Springer. Printed in the Netherlands. 177

2 178 S.A. VAN LOO AND J.L. RASSON network, with installations far from base observatories, at inaccessible places like the ocean floor (70% of the Earth s total surface), high altitudes, deserted areas, etc. Since January 2004, we have worked on the development of an absolute, automatic instrument for measurement of the direction of the geomagnetic field. At the beginning of 2006, the first phase of the project will be completed. The objective of this first phase is to obtain a completely functional and automatic instrument, with a total error on the measured angles D and I smaller than 6 arc-seconds, and using a far target as azimuth reference. Figure 94. At left, a prototype of the theodolite; At right, a plan of the final theodolite. The second phase, which ends in January 2008, will be devoted to the development of an automatic gyroscopic North-seeker, which will be used as azimuth reference for the instrument (Chave 1995). The errors on the measured angles will then be kept smaller than 6 arc-seconds for I, and smaller than 20 arc-seconds for D (Table 22). Table 22. Specifications of the automatic declination-inclination magnetometer. Time Error on D Error on I Azimuth reference Jan 2006 < 6 arc-seconds < 6 arc-seconds automatic pointing of a far target Jan 2008 < 20 arc seconds < 6 arc-seconds automatic gyroscopic North-seeker The instrument will be similar to a robotized DIM system. The fundamental principles leading to the automation of the measurement are first presented. Then technological solutions to minimize error are proposed so that the instrument will meet the high precision and magnetic cleanliness

3 DEVELOPMENT OF AN AUTOMATIC DIM 179 constraints. Last, the electronic system for reading the angles, the use of non-magnetic piezoelectric motors, and the automatic pointing of the target are covered in depth. 2. Automation of the measurement An automatic measurement must have the same metrological qualities as a manual measurement. Thus, the same operations should be reproduced (see Table 23). In accordance with the traditional method of measurement with a DIM, the declination and the inclination are measured in 4 different positions (Rasson 2005). The instrumental errors should be equivalent to those of a traditional theodolite. The target is also measured in two positions. The execution of this protocol for each measurement ensures the absolute character of the result. Table 23. Operations to carry out in order to make an absolute measurement of the direction of the geomagnetic field. 1. Synchronization with universal time. 2. Leveling of the instrument. 3. Pointing an azimuth reference (2 positions). 4. Measurement of the declination (4 positions). 5. Measurement of the inclination (4 positions). 6. Pooling the results with those of scalar magnetometer, and variometer. It was necessary to design and use a non-magnetic theodolite. Instead of a telescope, the theodolite is equipped with a directional magnetic sensor (fluxgate), and with a laser to point at the target. To make 4 positions of measurement for declination and inclination, the sensor must be able to make a complete rotation around the horizontal and vertical axes. Finally, the angular position of the sensor must be measured very precisely. 3. Technological solutions The two principal problems to overcome are avoiding magnetic parts or parts which cause a magnetic disturbance, and designing a precision device (from the mechanical and electronic points of view). Ferromagnetic materials cannot be used in construction, nor can electric lines conveying detectable DC current. Electronic circuits must be kept far away from the magnetic sensor. Figure 94 shows the present status of the theodolite. Its final version has not yet been realized. A device for controlling and correcting the leveling is also under development.

4 180 S.A. VAN LOO AND J.L. RASSON The signals produced by the electronic acquisition system (readings of the angle, fluxgate, level, and pointing at the target) are collected by a microcontroller which uses analog to digital converters. Signals are then processed, and instructions are sent to the motor drivers in order to carry out the desired operation (Figure 95). The data storage, time control, and user interface are ensured by a computer, connected to the microcontroller via a USB bus. Figure 95. Interactions between the different subsystems THE ANGULAR ENCODERS In order to electronically evaluate angles, optical angular encoders are used. One system is used for each of the two orthogonal axes of the theodolite. Figure 96. General diagram of an optical encoder. A graduated disc, fixed on one axis of the theodolite, rotates between a light source and a detection system (Figure 96). Gratings, with the same period as the graduated disc, are placed behind the light source in order to amplify the signal by the optical moiré effect. There are four gratings and one photodiode for each graduated disc. The gratings are shifted by a quarter of a period (Figure 97). By subtracting the light signals c from a,

5 DEVELOPMENT OF AN AUTOMATIC DIM 181 and d from b, we obtain two sinusoidal signals free from the common mode. The disc is also equipped with a third track which produces only one reference pulse per rotation. Figure 97. Graduated disc and gratings. Since discs with 2500 graduations are used, a resolution of is obtained (simply by counting the graduations). Then, because the two sinusoidal signals are in phase quadrature (Figure 98), calculating the arctangents of the signals sine/cosine leads to an analog signal having a linear dependence on the angle. Depending upon the quality of the encoders, the electronic disturbances, and the mechanical alignment of the system, a precision of up to 1 arcsecond can be achieved. The reference pulse is used to make this incremental encoder absolute. Figure 98. Electric signals allowing (a) the period count and (b) the continuous evaluation of the angle by interpolation between the graduation period increments. Good signals lead to good precision. So the errors related to encoder and electronics quality, like amplitude modulation and undesired offset, are corrected in real-time by a digital processing algorithm (Figure 99). Errors, related to mechanical misalignment of the encoder compared to the rotation axis, are corrected by placing two encoders around the same disc 180 apart (Figure 100). Taking the average of the two measured angles provides a result free from eccentricity errors.

6 182 S.A. VAN LOO AND J.L. RASSON Figure 99. Signals before (a) and after shaping (b). Figure 100. Two encoders placed around the horizontal axis.

7 DEVELOPMENT OF AN AUTOMATIC DIM 183 Available encoders are generally not magnetically clean, and cannot be placed symmetrically in pairs on the same disc. Some parts (the detector board and others) have to be replaced by specially designed circuits (Figure 101). Figure 101. Example of a detector board for angular encoders where a ready-made IC is used as a detector, and linear amplifiers are included on the board. Preliminary tests show that the error can easily be made lower than 3.6 arc-seconds. More rigorous tests are presently under development THE PIEZOELECTRIC MOTORS The movement around the axis of the theodolite is driven by piezoelectric motors, which can be bought in totally non-magnetic versions. The rotational movement of the shaft is obtained by pressing its base against an annular piezoelectric crystal, on the surface of which a revolving traveling wave is maintained (Figure 102). This traveling wave is obtained by stimulating the crystal with two high voltage signals (300Vpp), one cosine and one sine, at a frequency of about 40 khz. In this way, power is produced as a small, non-disturbing AC current. Sometimes, a slow speed is necessary, primarily because of the computing and reaction times of the electronic circuits (for example when the angle has to be calculated precisely, or when a position has to be reached very finely). Other times, in order to save time, large displacements can be carried out at high speed. Smooth accelerations and decelerations are

8 184 S.A. VAN LOO AND J.L. RASSON also necessary to avoid vibrations at start and stop. For these reasons it is very important to have total control of the rotation speed. The motor shafts can be used directly as axes for the theodolite, with no need for a transmission or reduction system. Three parameters of the motor drive sine waveforms can be varied to control the motor rotation speed: amplitude, phase, and frequency. Changes in amplitude led to a loss of torque at slow speed. Tests varying the phase demonstrated that speed variation was strongly non linear, and repeatability was too low for effective control. Adjusting the frequency of the excitation signals allowed us to obtain satisfactory motor speed control with adequate torque, linearity, and repeatability. Figure 102. General diagram of a rotary piezoelectric motor THE AZIMUTH REFERENCE In order to reference the horizontal angle measurements to True North the theodolite must acquire a known azimuth reference. This process is traditionally performed by an observer who points the telescope at a far target. To automate the process, the following method is presented. A laser diode module is installed in place of the telescope. It points toward a corner cube reflector which is centered at the point whose azimuth is precisely known (actually the visual target). According to the properties of the corner cube reflector, an incident light ray is reflected along the incoming beam, but offset by a distance, e, (Figure 103) depending on the angle, between the incident ray and the line which connects the center of the corner cube to the vertical axis of the theodolite. Two solar cells are positioned around the laser in order to evaluate the offset of the reflected

9 DEVELOPMENT OF AN AUTOMATIC DIM 185 ray. The difference of light touching the two solar cells is directly related to the pointing of the center of this electronic target: when the reflected ray returns precisely in the center, the laser exactly points to the center of the target. Figure 103. The corner cube reflector. The goal of the second phase of the project is to replace this azimuth reference system with an automatic gyroscope.. This would allow the instrumentation to work in a closed system with no need to connect to external references. References Chave, A.D., Green, A.W., Evans, R.L., Filloux, J.H., Law, L.K., Petitt, R.A., Rasson J.L., Schultz, A., Spiess, F.N., Tarits, P., Tivey, N. and Webb, S.P. (1995). Report of a Workshop on Technical Appoaches to Construction of a Seafloor Geomagnetic Observatory, Technical Report WHOI-95-12, Woods Hole Oceanographic Institution, Woods Hole, USA. Rasson J.L. (1996). Progress in the design of an automatic DIflux, in Proceedings of the VIth Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing (JL Rasson Ed.), Publ. Sci. et Techn. No 003, Institut Royal Meteorologique de Belgique, Brussels p Rasson J.L., (2005). About Absolute Geomagnetic Measurements in the Observatory and in the Field, Publication Scientifique et Technique No 040, Institut Royal Meteorologique de Belgique, Brussels, 43 p DISCUSSION Question (Jordan Zivanovic): Is the microcontroller with 8 gates or more? Answer (Sebastien van Loo): I currently use a microcontroller with a 16 bit digital port, having 8 analog inputs (ADCs), and a USB interface Question (Jürgen Matzka): How to find the zero-position of the fluxgate sensor (slow movement or stepwise moving)?

10 186 S.A. VAN LOO AND J.L. RASSON Answer (Sebastien van Loo): Piezoelectric motors offer the possibility to rotate so slowly that the zero-position of the sensor can be found by moving continuously. Question (Spomenko J. Mihajlovic): What about magnetic influence of electronic parts. Can you use photo-resistors? Answer (Sebastien van Loo): The majority of the electronic systems are kept far away from the sensor. For the circuits which must be closer, like the angular encoders, I take many precautions to minimize the disturbances, like avoiding current loops, and choosing SMD-packaged parts. Actually, I use photodiodes rather that photo-resistors (angular encoders, target pointing). But if the use of photo-resistors appeared essential later, I think that it would be possible to find some models which are magnetically clean enough. Question (Valery Korepanov): How do you find true azimuth in small closed volume? Answer (Sebastien van Loo): Initially, the azimuth reference will be obtained, by the automatic pointing of a far target. The second phase of the project is devoted to the replacement of this system by an automatic gyroscope. It would then be possible to obtain true azimuth in a small volume. Question (Angelo de Santis): In your automatic system have you considered the possibility to make an absolute measurement of D and I practically simultaneously by placing the fluxgate element at a given nonzero inclination with respect to horizontal plane and rotating it at the usual four positions of zero-current findings? Answer (Sebastien van Loo): The measurement algorithm that I chose consists in measuring the declination while the fluxgate is placed horizontally and the inclination while the fluxgate is in the magnetic meridian. But the instrument can be programmed to execute any other algorithm, without need of hardware adaptations.

An Improved Version of the Fluxgate Compass Module V. Petrucha

An Improved Version of the Fluxgate Compass Module V. Petrucha An Improved Version of the Fluxgate Compass Module V. Petrucha Satellite based navigation systems (GPS) are widely used for ground, air and marine navigation. In the case of a malfunction or satellite

More information

Detection of mechanical instability in DI-fluxgate sensors

Detection of mechanical instability in DI-fluxgate sensors Downloaded from orbit.dtu.dk on: Nov 18, 2018 Detection of mechanical instability in DI-fluxgate sensors Pedersen, Lars William; Matzka, Jürgen Published in: Proceedings of the XVth IAGA Workshop on Geomagnetic

More information

A QUASI ABSOLUTE OPTICALLY PUMPED MAGNETOMETER FOR THE PERMANENT RECORDING OF THE EARTH S MAGNETIC FIELD VECTOR (OPC)

A QUASI ABSOLUTE OPTICALLY PUMPED MAGNETOMETER FOR THE PERMANENT RECORDING OF THE EARTH S MAGNETIC FIELD VECTOR (OPC) A QUASI ABSOLUTE OPTICALLY PUMPED MAGNETOMETER FOR THE PERMANENT RECORDING OF THE EARTH S MAGNETIC FIELD VECTOR (OPC) E. Pulz*, K.-H. Jäckel, O. Bronkalla Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum

More information

Rotary Encoder System Compact Model Range

Rotary Encoder System Compact Model Range we set the standards RIK Rotary Encoder System Compact Model Range 2 Incremental rotary encoder Features Compact design, consisting of scanning head with round cable, 15pin D-sub connector and grating

More information

New INTERMAGNET Fluxgate Magnetometer

New INTERMAGNET Fluxgate Magnetometer PUBLS. INST. GEOPHYS. POL. ACAD. SC., C-99 (398), 2007 New INTERMAGNET Fluxgate Magnetometer V. KOREPANOV 1, YE. KLYMOVYCH 1, O. KUZNETSOV 1, A. PRISTAY 1, A. MARUSENKOV 1 and J. RASSON 2 1 Lviv Centre

More information

INTERFACING MAIN AXIS ENCODERS TO THE CONTROL SYSTEM OF THE GEMINI 8M TELESCOPES

INTERFACING MAIN AXIS ENCODERS TO THE CONTROL SYSTEM OF THE GEMINI 8M TELESCOPES INTERFACING MAIN AXIS ENCODERS TO THE CONTROL SYSTEM OF THE GEMINI 8M TELESCOPES John Wilkes and Chris Carter ABSTRACT The Gemini Telescopes project is building two eight metre opticavinfrared telescopes,

More information

A Comparison of Performance Characteristics of On and Off Axis High Resolution Hall Effect Encoder ICs

A Comparison of Performance Characteristics of On and Off Axis High Resolution Hall Effect Encoder ICs A Comparison of Performance Characteristics of On and Off Axis High Resolution Hall Effect Encoder ICs Sensor Products Mark LaCroix A John Santos Dr. Lei Wang 8 FEB 13 Orlando Originally Presented at the

More information

Development of Control Algorithm for Ring Laser Gyroscope

Development of Control Algorithm for Ring Laser Gyroscope International Journal of Scientific and Research Publications, Volume 2, Issue 10, October 2012 1 Development of Control Algorithm for Ring Laser Gyroscope P. Shakira Begum, N. Neelima Department of Electronics

More information

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities.

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Shaft Encoders: Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Encoder Types: Shaft encoders can be classified into two categories depending

More information

Programmable Adaptive Microstep Table

Programmable Adaptive Microstep Table DRIVER & CONTROLLER FOR STEPPER MOTORS INTEGRATED CIRCUITS Programmable Adaptive Microstep Table Valid for TMC50xx, TMC5130, TMC2130, TMC429, TMC457, TMC4331 and TMC4361A This application note is meant

More information

DS Absolute Position, Rotary Electric Encoder

DS Absolute Position, Rotary Electric Encoder DS-90-64 Data Sheet, V 1.0, Jan. 2010 DS-90-64 Absolute Position, Rotary Electric Encoder The DS-90 is a member of the DS series of Electric Encoders, based on Netzer Precision proprietary technology.

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

Fluxgate Magnetometer

Fluxgate Magnetometer 6.101 Final Project Proposal Woojeong Elena Byun Jack Erdozain Farita Tasnim 7 April 2016 Fluxgate Magnetometer Motivation: A fluxgate magnetometer is a highly precise magnetic field sensor. Its typical

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description.

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR Data Sheet Description The AEDT-9140 series are three channel optical incremental encoder modules.

More information

Linear, angular and rotary. encoders. Over 30 years of continuous evolution

Linear, angular and rotary. encoders. Over 30 years of continuous evolution Linear, angular and rotary encoders Over 30 years of continuous evolution Fagor Automation has been manufacturing high quality linear and rotary encoders using precision optical technology for more than

More information

A Radiation-Hardened, High-Resolution Optical Encoder for Use in Aerospace Applications

A Radiation-Hardened, High-Resolution Optical Encoder for Use in Aerospace Applications A Radiation-Hardened, High-Resolution Optical Encoder for Use in Aerospace Applications Pat Kreckie * Abstract Advances in aerospace applications have created a demand for the development of higher precision,

More information

Model 25B-F/S/L Solid Shaft Low Line Incremental Optical Rotary Encoder

Model 25B-F/S/L Solid Shaft Low Line Incremental Optical Rotary Encoder Model 25B-F/S/L Solid Shaft Low Line Incremental Optical Rotary Encoder DRC Encoder Up to 1250 line count disc Chrome on glass disc +/- 45 arc sec accuracy Optional internal 2X, 5X, or 10X cycle interpolation

More information

Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair

Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair Smart off axis absolute position sensor solution and UTAF piezo motor enable closed loop control of a miniaturized Risley prism pair By David Cigna and Lisa Schaertl, New Scale Technologies Hall effect

More information

Position Sensors. The Potentiometer.

Position Sensors. The Potentiometer. Position Sensors In this tutorial we will look at a variety of devices which are classed as Input Devices and are therefore called "Sensors" and in particular those sensors which are Positional in nature

More information

Single-phase or three phase AC220V (-15% ~ +10%) 50 ~ 60Hz

Single-phase or three phase AC220V (-15% ~ +10%) 50 ~ 60Hz KT270-H Servo Drive Features: The use of DSP ( digital signal processor ) chip, greatly accelerating the speed of data acquisition and processing, the motor running with good performance. Application of

More information

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs

Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Real-Time Scanning Goniometric Radiometer for Rapid Characterization of Laser Diodes and VCSELs Jeffrey L. Guttman, John M. Fleischer, and Allen M. Cary Photon, Inc. 6860 Santa Teresa Blvd., San Jose,

More information

Autonomous. Chess Playing. Robot

Autonomous. Chess Playing. Robot Autonomous Chess Playing Robot Team Members 1. Amit Saharan 2. Gaurav Raj 3. Riya Gupta 4. Saumya Jaiswal 5. Shilpi Agrawal 6. Varun Gupta Mentors 1. Mukund Tibrewal 2. Hardik Soni 3. Zaid Tasneem Abstract

More information

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method Velocity Resolution with Step-Up Gearing: As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method It follows that

More information

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation 6.1 Principle of Operation PART 2 - ACTUATORS 6.0 The actuator is the device that mechanically drives a dynamic system - Stepper motors are a popular type of actuators - Unlike continuous-drive actuators,

More information

New Approach on Development a Dual Axis Solar Tracking Prototype

New Approach on Development a Dual Axis Solar Tracking Prototype Wireless Engineering and Technology, 2016, 7, 1-11 Published Online January 2016 in SciRes. http://www.scirp.org/journal/wet http://dx.doi.org/10.4236/wet.2016.71001 New Approach on Development a Dual

More information

Navigation problem. Jussi Suomela

Navigation problem. Jussi Suomela Navigation problem Define internal navigation sensors for a ground robot with car type kinematics (4 wheels + ackerman steering + rear wheel drive) Sensors? Where? Why? ~ 15-20 min. Describe your system

More information

AMG-GR Series Gear-Driven Gimbals

AMG-GR Series Gear-Driven Gimbals AMG-GR Series Gear-Driven Gimbals Economical, high-accuracy, two-axis gimbal design Travels from 90 degrees to continuous rotation available Circular (100 to 300 mm) and custom cells available Front surface

More information

Design and Development of Novel Two Axis Servo Control Mechanism

Design and Development of Novel Two Axis Servo Control Mechanism Design and Development of Novel Two Axis Servo Control Mechanism Shailaja Kurode, Chinmay Dharmadhikari, Mrinmay Atre, Aniruddha Katti, Shubham Shambharkar Abstract This paper presents design and development

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1

HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1 HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output Data Sheet Description The HEDS-973X is a high performance incremental encoder module. When operated in conjunction with either

More information

Realization of Absolute Capacitive Rotary Encoder System Based on Capacitive Gate Technology

Realization of Absolute Capacitive Rotary Encoder System Based on Capacitive Gate Technology www.as-se.org/ccse Communications in Control Science and Engineering (CCSE) Volume 4, 2016 Realization of Absolute Capacitive Rotary Encoder System Based on Capacitive Gate Technology Lu Zhang 1, Dezhi

More information

Data Sheet. HEDS-9710, HEDS-9711 Small Optical Encoder Modules 360 Ipi Analog Current Output. Features. Description. Block Diagram.

Data Sheet. HEDS-9710, HEDS-9711 Small Optical Encoder Modules 360 Ipi Analog Current Output. Features. Description. Block Diagram. HEDS-9710, HEDS-9711 Small Optical Encoder Modules 360 Ipi Analog Current Output Data Sheet Description The HEDS-971x is a high performance incremental encoder module. When operated in conjunction with

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

NEW DIGITAL ANGLE MEASUREMENT FACILITY BASED ON FPGA

NEW DIGITAL ANGLE MEASUREMENT FACILITY BASED ON FPGA 30 th ovember 202. Vol. 45 o.2 ISS: 992-8645 www.jatit.org E-ISS: 87-395 EW DIGITAL AGLE MEASUREMET FACILITY BASED O FPGA HAO ZHAO, 2 HAO FEG Jiaxing University, Jiaxing Zhejiang China 2 Hangzhou Dianzi

More information

INTERMAGNET Technical Note

INTERMAGNET Technical Note INTERMAGNET Technical Note Title: INTERMAGNET Definitive One-second Data Standard Document number: TN6 Version number: v1.0 Creation date: 22 October 2014 Related documents: DD20, DD17, Technical Manual

More information

PVA Sensor Specifications

PVA Sensor Specifications Position, Velocity, and Acceleration Sensors 24.1 Sections 8.2-8.5 Position, Velocity, and Acceleration (PVA) Sensors PVA Sensor Specifications Good website to start your search for sensor specifications:

More information

Design and Development of a Fluxgate Magnetometer for Small Satellites in Low Earth Orbit

Design and Development of a Fluxgate Magnetometer for Small Satellites in Low Earth Orbit Journal of Space Technology, Vol 1, No. 1, June 2011 Design and Development of a Fluxgate Magnetometer for Small Satellites in Low Earth Orbit Owais Talaat Waheed, Atiq-ur-Rehman AOCS Section, Satellite

More information

Glossary. Glossary Engineering Reference. 35

Glossary. Glossary Engineering Reference. 35 Glossary Engineering Reference Glossary Abbe error The positioning error resulting from angular motion and an offset between the measuring device and the point of interest. Abbe offset The value of the

More information

CHAPTER 2: INSTRUMENTATION AND DATA COLLECTION

CHAPTER 2: INSTRUMENTATION AND DATA COLLECTION CHAPTER 2: INSTRUMENTATION AND DATA COLLECTION 2.1 Palaeomagnetism A significant portion of the current study deals with analyzing previously collected and new palaeomagnetic data and a comparison between

More information

Mechatronics System Design - Sensors

Mechatronics System Design - Sensors Mechatronics System Design - Sensors Aim of this class 1. The functional role of the sensor? 2. Displacement, velocity and visual sensors? 3. An integrated example-smart car with visual and displacement

More information

LV-Link 3.0 Software Interface for LabVIEW

LV-Link 3.0 Software Interface for LabVIEW LV-Link 3.0 Software Interface for LabVIEW LV-Link Software Interface for LabVIEW LV-Link is a library of VIs (Virtual Instruments) that enable LabVIEW programmers to access the data acquisition features

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

EL6483: Sensors and Actuators

EL6483: Sensors and Actuators EL6483: Sensors and Actuators EL6483 Spring 2016 EL6483 EL6483: Sensors and Actuators Spring 2016 1 / 15 Sensors Sensors measure signals from the external environment. Various types of sensors Variety

More information

INSTRUMENT SCIENCE AND TECHNOLOGY

INSTRUMENT SCIENCE AND TECHNOLOGY J. Phys. E: Sci. Instrum., Vol. 15, 1982. Printed in Great Britain INSTRUMENT SCIENCE AND TECHNOLOGY Digital transducers G A Woolvet School of Mechanical, Aeronautical and Production Engineering, Kingston

More information

PSW-002. Fiber Optic Polarization Switch. User Guide

PSW-002. Fiber Optic Polarization Switch. User Guide PSW-002 Fiber Optic Polarization Switch User Guide Version: 1.0 Date: May 30, 2014 General Photonics, Incorporated is located in Chino California. For more information visit the company's website at: www.generalphotonics.com

More information

Automatic Control System

Automatic Control System Sensor types Automatic Control System Automatic Control System Construction Material or Power Object Output Signal Sensor Disturbances Converter Measuring Device Controller Industry Controller Executive

More information

Development of Optical Absolute Sensor "ABS-EC" Having High Accuracy and High Resolution

Development of Optical Absolute Sensor ABS-EC Having High Accuracy and High Resolution 1 / 4 SANYO DENKI Technical Report No.6 Nov. 1998 New Products Introduction Development of Optical Absolute Sensor "ABS-EC" Having High Accuracy and High Resolution Hideyuki Ishii Shouji Itou Tomoharu

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Real-time Math Function of DL850 ScopeCorder

Real-time Math Function of DL850 ScopeCorder Real-time Math Function of DL850 ScopeCorder Etsurou Nakayama *1 Chiaki Yamamoto *1 In recent years, energy-saving instruments including inverters have been actively developed. Researchers in R&D sections

More information

LASER VIBROMETER CALIBRATION AT HIGH FREQUENCIES USING CONVENTIONAL CALIBRATION EQUIPMENT

LASER VIBROMETER CALIBRATION AT HIGH FREQUENCIES USING CONVENTIONAL CALIBRATION EQUIPMENT XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 009, Lisbon, Portugal LASER VIBROMETER CALIBRATION AT HIGH FREQUENCIES USING CONVENTIONAL CALIBRATION EQUIPMENT Thomas Bruns,

More information

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful? Brainstorm In addition to cameras / Kinect, what other kinds of sensors would be useful? How do you evaluate different sensors? Classification of Sensors Proprioceptive sensors measure values internally

More information

Development of the Model No.HA035 A Small, High Accuracy, Batteryless Absolute Encoder

Development of the Model No.HA035 A Small, High Accuracy, Batteryless Absolute Encoder New Products Introduction Development of the Model No.HA35 A Small, High Accuracy, Batteryless Absolute Encoder Yoshihiro Shoji Tatsurou Yahiro Tomohiro Akatsu Tomohito Yamazaki Kazuhiro Makiuchi Shoji

More information

Motor Repair Electrical Engineering Maintenance

Motor Repair Electrical Engineering Maintenance 46 Motor Repair Electrical Engineering Maintenance The -Class Facilitate complicated things Tester for checking shaft encoders... 48 www.schleich.com 47 The -Class Tester for checking shaft encoders Ethernet

More information

Sensor system of a small biped entertainment robot

Sensor system of a small biped entertainment robot Advanced Robotics, Vol. 18, No. 10, pp. 1039 1052 (2004) VSP and Robotics Society of Japan 2004. Also available online - www.vsppub.com Sensor system of a small biped entertainment robot Short paper TATSUZO

More information

Data Sheet. AEDx-8xxx-xxx 2- or 3-Channel Incremental Encoder Kit with Codewheel. Description. Features. Assembly View. Housing.

Data Sheet. AEDx-8xxx-xxx 2- or 3-Channel Incremental Encoder Kit with Codewheel. Description. Features. Assembly View. Housing. AEDx-8xxx-xxx 2- or 3-Channel Incremental Encoder Kit with Codewheel Data Sheet Description The AEDx-8xxx comes in an option of two-channel or three-channel optical incremental encoder kit with codewheel

More information

MEMS Optical Scanner "ECO SCAN" Application Notes. Ver.0

MEMS Optical Scanner ECO SCAN Application Notes. Ver.0 MEMS Optical Scanner "ECO SCAN" Application Notes Ver.0 Micro Electro Mechanical Systems Promotion Dept., Visionary Business Center The Nippon Signal Co., Ltd. 1 Preface This document summarizes precautions

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

Optical Encoders CP-800/900 Series Size-25 Housed Rotary Optical Encoders Solid or, incremental, sine/cosine, or absolute format Allied Motion s CP-80

Optical Encoders CP-800/900 Series Size-25 Housed Rotary Optical Encoders Solid or, incremental, sine/cosine, or absolute format Allied Motion s CP-80 Cs GROUP SIX LehriAG Avim SEI Ki CO LTD. ^,1 Motion Computer Optical Products, Inc. COPI 800 & 900 ENCODERS - Incremental - Absolute - Sinusoidal Contact Us! 800-433-3434 USA Email info@grp6.com Optical

More information

Final Project: Sound Source Localization

Final Project: Sound Source Localization Final Project: Sound Source Localization Warren De La Cruz/Darren Hicks Physics 2P32 4128260 April 27, 2010 1 1 Abstract The purpose of this project will be to create an auditory system analogous to a

More information

Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications

Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel Data Sheet Description The AEDB-9340 optical encoder series are six-channel optical incremental encoder modules with codewheel.

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Investigation of an optical sensor for small angle detection

Investigation of an optical sensor for small angle detection Investigation of an optical sensor for small angle detection usuke Saito, oshikazu rai and Wei Gao Nano-Metrology and Control Lab epartment of Nanomechanics Graduate School of Engineering, Tohoku University

More information

SERVOSTAR S- and CD-series Sine Encoder Feedback

SERVOSTAR S- and CD-series Sine Encoder Feedback SERVOSTAR S- and CD-series Sine Encoder Feedback The SERVOSTAR S and SERVOSTAR CD family of drives offers the ability to accept signals from various feedback devices. Sine Encoders provide analog-encoded

More information

AN457 APPLICATION NOTE

AN457 APPLICATION NOTE AN457 APPLICATION NOTE TWIN-LOOP CONTROL CHIP CUTS COST OF DC MOTOR POSITIONING by H. Sax, A. Salina The Using a novel control IC that works with a simple photoelectric sensor, DC motors can now compare

More information

AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders

AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders Data Sheet Description The AEDA-3200-T series (top mounting type) are high performance, cost effective, three-channel optical

More information

Automotive Control Solution for Brushless DC Motors

Automotive Control Solution for Brushless DC Motors Page 1 Automotive Control Solution for Brushless DC Motors TTTech provides solutions for setting up distributed systems with brushless DC motors. Today brushless DC motors are used in a variety of applications.

More information

Data Sheet. HEDL-65xx, HEDM-65xx, HEDS-65xx Series Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders. Description.

Data Sheet. HEDL-65xx, HEDM-65xx, HEDS-65xx Series Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders. Description. HEDL-65xx, HEDM-65xx, HEDS-65xx Series Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders Data Sheet Description The HEDS-65xx/HEDL-65xx are high performance two and three channel optical

More information

OPTICS IN MOTION. Introduction: Competing Technologies: 1 of 6 3/18/2012 6:27 PM.

OPTICS IN MOTION. Introduction: Competing Technologies:  1 of 6 3/18/2012 6:27 PM. 1 of 6 3/18/2012 6:27 PM OPTICS IN MOTION STANDARD AND CUSTOM FAST STEERING MIRRORS Home Products Contact Tutorial Navigate Our Site 1) Laser Beam Stabilization to design and build a custom 3.5 x 5 inch,

More information

Lecture 3: Sensors, signals, ADC and DAC

Lecture 3: Sensors, signals, ADC and DAC Instrumentation and data acquisition Spring 2010 Lecture 3: Sensors, signals, ADC and DAC Zheng-Hua Tan Multimedia Information and Signal Processing Department of Electronic Systems Aalborg University,

More information

Agilent AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules

Agilent AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules Agilent AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules Data Sheet Description This is a very small, low package height and high performance incremental encoder module. When operated in conjunction

More information

Agilent AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders Data Sheet

Agilent AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders Data Sheet Description The AEDA-3300 series are high performance, cost effective, three-channel optical incremental encoder modules with integrated bearing stage. By using transmissive encoder technology to sense

More information

New Long Stroke Vibration Shaker Design using Linear Motor Technology

New Long Stroke Vibration Shaker Design using Linear Motor Technology New Long Stroke Vibration Shaker Design using Linear Motor Technology The Modal Shop, Inc. A PCB Group Company Patrick Timmons Calibration Systems Engineer Mark Schiefer Senior Scientist Long Stroke Shaker

More information

DS-25. Absolute position, rotary Electric Encoder

DS-25. Absolute position, rotary Electric Encoder Data Sheet, V 2.0,NOV 2012 Absolute position, rotary Electric Encoder The is a member of the DS series of Electric Encoders, based on Netzer Precision proprietary technology. These encoders offer many

More information

Closed-loop control for power tower heliostats

Closed-loop control for power tower heliostats Closed-loop control for power tower heliostats Mark R. Convery * Waverly Solar, 502 Cornell Avenue, San Mateo, CA, USA 94402 ABSTRACT In a Power Tower solar thermal power plant, alignment and control of

More information

Department of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, , China

Department of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, , China 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 16) Precision Measurement of Displacement with Two Quasi-Orthogonal Signals for Linear Diffraction Grating

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

MODEL S15 Incremental Optical Rotary Encoder

MODEL S15 Incremental Optical Rotary Encoder MODEL S15 Incremental Optical Rotary Encoder Up to 200 KHz frequency response all channels Small compact size: 1.51 diameter 1.00 dia. Bolt circle mount Resolutions up to 12,500 cycles / revolution ( 50,000

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

User s Guide Modulator Alignment Procedure

User s Guide Modulator Alignment Procedure User s Guide Modulator Alignment Procedure Models 350, 360, 370, 380, 390 series Warranty Information Conoptics, Inc. guarantees its products to be free of defects in materials and workmanship for one

More information

1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10 (0.070 ± 0.004) 2.92 ± 0.10 (0.115 ± 0.004) (0.400)

1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10 (0.070 ± 0.004) 2.92 ± 0.10 (0.115 ± 0.004) (0.400) HEDS-9000/9100 Two Channel Optical Incremental Encoder Modules Data Sheet Description The HEDS-9000 and the HEDS-9100 series are high performance, low cost, optical incremental encoder modules. When used

More information

Gurley Model HR2A High-resolution Interpolator. High resolution - Industrial ruggedness

Gurley Model HR2A High-resolution Interpolator. High resolution - Industrial ruggedness Gurley Model High-resolution Interpolator Application: Selected linear and rotary incremental encoders Output: Compatible with virtually all counter circuits, dedicated encoder interface cards and PLCs

More information

Industrial Sensors. Proximity Mechanical Optical Inductive/Capacitive. Position/Velocity Potentiometer LVDT Encoders Tachogenerator

Industrial Sensors. Proximity Mechanical Optical Inductive/Capacitive. Position/Velocity Potentiometer LVDT Encoders Tachogenerator Proximity Mechanical Optical Inductive/Capacitive Position/Velocity Potentiometer LVDT Encoders Tachogenerator Force/Pressure Vibration/acceleration Industrial Sensors 1 Definitions Accuracy: The agreement

More information

CMOS Based Compact Spectrometer

CMOS Based Compact Spectrometer CMOS Based Compact Spectrometer Mr. Nikhil Kulkarni Ms. Shriya Siraskar Ms. Mitali Shah. Department of Electronics and Department of Electronics and Department of Electronics and Telecommunication Engineering

More information

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

PRESENTED BY HUMANOID IIT KANPUR

PRESENTED BY HUMANOID IIT KANPUR SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017 WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators.

More information

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif Introduction In automation industry every mechatronic system has some sensors to measure the status of the process variables. The analogy between the human controlled system and a computer controlled system

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

Data Sheet. HEDS-978x Series Small Optical Encoder Modules. Description. Features. Package Dimensions

Data Sheet. HEDS-978x Series Small Optical Encoder Modules. Description. Features. Package Dimensions HEDS-978x Series Small Optical Encoder Modules Data Sheet Description The HEDS-978x series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with either

More information

Agilent AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders

Agilent AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders Agilent AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders Data Sheet Features Two channel quadrature output with index pulse Quick and easy assembly using Plug and Play tool Cost-effective

More information

MECE 3320 Measurements & Instrumentation. Data Acquisition

MECE 3320 Measurements & Instrumentation. Data Acquisition MECE 3320 Measurements & Instrumentation Data Acquisition Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Sampling Concepts 1 f s t Sampling Rate f s 2 f m or

More information

Speed Rate Corrected Antenna Azimuth Axis Positioning System

Speed Rate Corrected Antenna Azimuth Axis Positioning System International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 2 (2017) pp. 151-158 Research India Publications http://www.ripublication.com Speed Rate Corrected Antenna Azimuth

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Introduction to Data Acquisition Basics and Terminology Litkei Márton District Sales Manager National Instruments What Is Data Acquisition (DAQ)? 3 Why Measure? Engineers

More information

Encoders. Series 21 Hollow-Shaft Rotary Optical Encoders Digital incremental or sine/cosine and absolute format. Features & Benefits.

Encoders. Series 21 Hollow-Shaft Rotary Optical Encoders Digital incremental or sine/cosine and absolute format. Features & Benefits. Digital incremental or sine/cosine and absolute format Allied Motion s Series 21 are cost effective, hollow shaft optical encoders that are easy to mount and provide high data rate capabilities. These

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

MT6801 Magnetic Rotary Encoder IC

MT6801 Magnetic Rotary Encoder IC Features and Benefits Based on advanced magnetic field sensing technology Measures magnetic field direction rather than field intensity Non-contacting angle measurement Large air gap Excellent accuracy,

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information