ALARGE body of literature devoted to the frequency domain

Size: px
Start display at page:

Download "ALARGE body of literature devoted to the frequency domain"

Transcription

1 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY Describing Functions of Power Electronics Circuits Using Progressive Analysis of Circuit Waveforms Henry S.-H. Chung, Member, IEEE, Adrian Ioinovici, Senior Member, IEEE, and J. Zhang Abstract This paper presents a technique for calculating the ac line-to-output and control-to-output transfer characteristics of dc/dc converters, in which the time instants switching from one topology to the next one are a priori unknown and are determined by threshold conditions (i.e., by the time evolution of the converter waveforms). Describing functions are defined for small perturbations in either the input voltage or the control signal. After injecting a sinusoidal perturbation at the frequency of interest into the converter, the fundamental component of the output spectrum is determined. The describing functions are thus evaluated and provide the required ac transfer characteristics. The proposed method is integrated with a previously developed time-domain simulation algorithm, which is based on monitoring the switches positions, allowing the simulator to find automatically the switching instants and topological sequence of operation. Different examples are illustrated, including a classical pulse-width-modulated (PWM) converter, a current-programmed PWM regulator, and a switchedcapacitor converter. The simulated results are compared with the experimental measurements and the results in the available literature. Index Terms Circuit simulation, power electronics, switching circuits. I. INTRODUCTION A. Previous Work ALARGE body of literature devoted to the frequency domain analysis of periodically switching circuits is available. However, they cannot be directly applied to power electronics circuits, since the switch s operation is generally dictated by threshold conditions. Turning a switch on or off is dependent on the converter waveforms. In addition the topology sequence is unknown a priori, because it depends on the behavior of the switches that are controlled by the feedback circuit, as well as on the behavior of the internally controlled switches. For the same converter, different dynamic behaviors can be exhibited for different input voltage or output load. For example, depending on the load and switching frequency, a classical pulse-width-modulated (PWM) dc/dc converter can operate in two or three topologies in one switching cycle. Recently many analysis techniques have been developed for studying the dynamic behaviors of power electronics circuits. The methodologies can be classified into two main Manuscript received November 2, 1998; revised June 18, 1999 and November 16, This paper was recommended by Associate Editor M. K. Kazimierczkuk. H. S.-H. Chung and J. Zhang are with the Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong. A. Ioinovici is with the Department of Electrical and Electronic Engineering, Institute for Technological Education, Holon 58102, Israel. Publisher Item Identifier S (00) categories, including the averaging technique and the discrete or sampled-data modeling technique. For the averaging technique, starting from the state-space description of each converter topology and applying small-ripple approximation, an averaged time-invariant model is derived to represent the time-varying circuit [1] [4]. Then, the averaged signals are perturbed and the equations obtained are linearized by neglecting second- or higher order terms, such as the products of the time-dependent quantities. After separating the ac and dc parts, various s-domain transfer functions are formulated. Although this approach is elegant and it is possible to derive a closed-form solution of the transfer functions, its accuracy is limited to a predetermined operating sequence and low-frequency response [5]. Variants of the averaging technique have also been developed. In [6] and [7], a subcircuit formed by the switches and a minimum number of other components is separated and replaced by an averaged model. A topology-independent approach is developed in [8], in which a switched inductor formed by an inductor and a switch is replaced by an averaged model. An averaged model that replaces the PWM switch is another idea used in [9]. The discrete or sampled-data modeling technique [10] [13] also starts from the state-space equation sets for describing each converter topology and transforms them into difference equations. Some of these models go so far as to include the threshold conditions in a constrained equation, which is an integral part of the system equations that characterize the circuit dynamics [13]. However, all discrete models introduce inaccuracy either by carrying out multivariable Taylor series expansions around the nominal operating point and retaining the linear terms, or by approximating the transition matrix by the first two linear terms in the switching period of the exponential series. Another discrete-time technique is given in [14], in which numerous timedomain transient analyses of the circuit are performed. Each analysis is started with a different initial condition, in order to find the state-space matrices. Therefore, both averaged and discrete or sampled-data methods introduce two fundamental inaccuracies, including the small-ripple approximation and the small-signal linearization. The first one is due to the neglect of the terms containing second- or higher order of the switching period. The second one is introduced when the nonlinear terms in the perturbed equations are neglected. A detailed comparison of different approaches for small-signal analysis of switching power converters can be found in [15]. An important contribution to the frequency-domain simulation of power electronics circuits is given by applying the concept of the describing function [16] [17]. The control-to-output /00$ IEEE

2 1027 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 Fig. 1. Minimal period for integrating H for the case T =2T =7T. describing function is defined under the condition of constant line voltage and the line-to-output describing function is defined under the condition of constant control signal. The voltage at the output of the modulator is expressed as a Fourier series expansion. The resulting output voltage component at the same frequency as that of the perturbation signal is found by calculating the amplitude and phase of the fundamental term in the Fourier series. These values are used to determine the transfer functions at the frequency of interest. Extending the describing function concept for resonant converters has also been proposed in [18] [19], in which an accurate analytical model for small-signal analysis of resonant converters is derived. Despite the fact that the methods were developed specifically for particular converters, they present good possibilities for generalization. By applying Zadeh s bifrequency transfer function and the control-to-output describing function, a method for analyzing power electronics circuits is developed in [20] and [21]. The approach permits accurate prediction of the magnitude and phase of the component in the output spectrum that has the same frequency as that of the injected sinusoidal perturbation in the control signal. A general expression for the magnitude and phase of the fundamental Fourier component in the output spectrum is determined in terms of the system time-varying transfer function. This method requires the formulation of the state-space equation sets for each topology and exact analytical solutions of each set of equations, including an exact calculation of an exponential matrix. The closed-form solution of the control-tooutput describing function is analytically determined. However, the advantage is offset by the explicitly defined switching instants in the final formulas. This factor makes this approach difficult for analyzing converters that have a priori unknown switching instants and sequence of operation and calculating the line-to-output transfer function of closed-loop regulators with multifeedback loops, in which the switching times are affected by the minor internal feedback loop. B. Statement of the Goals Determination of frequency-domain models of power electronics circuits is essential for a correct design of their feedback control. The stability can be assured only by knowing accurately the transfer functions of the switching-mode converter. The accuracy requirements make the averaged models, the discrete models, or other methods that only keep the first two terms in the expression of exponential series inadequate for the above purpose. Though accuracy is the first concern, as in any computer-aided-design tool, the algorithm speed is also of interest. Many methods make use of state-space equation sets for each topology. However, a modern converter might contain several inductors and capacitors and possibly go through five, six, or even more topologies in one switching cycle, such as quasiresonant converters with extended period operating at constant switching frequency [22]. Hence, formulation of such a large number of system equations is time consuming and requires considerable computer memory. Moreover, the simulator has to be general, i.e., applicable to any power electronics circuit and independent of any a prior knowledge of the switches operation. This paper presents a technique that meets the above requirements. It starts from the use of describing functions, in which the fundamental component in the complex Fourier series of the output voltage is calculated at the frequency of injected sinusoidal perturbations in either the control or line voltage. Unlike [20] and [21], the proposed method is general and independent of a specific circuit. No state-space equations are required. The switching instants do not appear explicitly in the final formulas, which open a way for applying it to complex regulators that have many topologies in one switching cycle. The steady-state output waveform at any time instant is obtained by a previously developed stepwise time-domain simulation algorithm [23] which automatically determines the switching times and topological sequence of operation.

3 CHUNG et al.: FUNCTIONS OF POWER ELECTRONICS CIRCUITS USING ANALYSIS OF CIRCUIT WAVEFORMS 1028 Fig. 2. Explanation of (14) for a generic cycle k. Basic definitions and formulas are reviewed in Section I-C. The methodology is presented in Section II. It can be applied to any dc/dc converter, regardless of the type of control such as duty-cycle control or frequency-control, single-loop or multiloop feedback, and the number of topologies in one switching cycle. Illustrative examples are given in Section III. The simulated results are compared with the experimental measurements and the results in the available literature. C. Basic Definitions and Formulas Let us denote the input voltage by having a steady-state value of and the control signal by having a dc value of. For example, in PWM regulators is one of the inputs of the modulator. It is obtained by amplifying the difference between the reference voltage and the actual output voltage. The other input is the clock ramp waveform. The intersection of these two inputs dictates the driving signal for the power stage. In order to calculate the line-to-output transfer function, a small-signal sinusoidal perturbation is introduced in. That is Similarly, by injecting a sinusoidal perturbation The sinusoidal component at frequency can be denoted as in (4) in the output voltage The following control-to-output describing function is defined under constant line voltage: The describing functions depend on the amplitude of perturbation (i.e., or ). The limits of (3) and (6) are found for infinitely small amplitude in or [16]. A general form of the component in the output spectrum of (2) and (5) is expressed as follows: (5) (6) The sinusoidal component at frequency is denoted by (1) in the output voltage where is either or is either or, and is either or, with and calculated as (7) The line-to-output describing function is defined as the relation between the sinusoidal perturbation in the input voltage and the sinusoidal component in the output voltage at the same frequency under the condition of constant control signal [16] (2) It is found that (8) (9) (3) In (8), it is assumed that the period. is a multiple of

4 1029 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 II. ALGORITHM DESCRIPTION A. Calculation of the AC Small-Signal Transfer Functions of Converters Based on the definitions in Section I-C, the major steps for frequency-domain analysis of power electronics circuits are as follows. a) A small-signal sinusoidal perturbation with frequency is injected in either the line voltage or control voltage, under the condition of either constant control voltage or constant line voltage, respectively. b) In each of the above cases, the expression of (10) is calculated. It can be noted that is equivalent to the zeroth term of the time-varying transfer function as defined in [20] and [21]. c) According to (9), the quantities, or are calculated as Arg (11) d) For the frequency, the describing functions in (3) and (6) are calculated. e) The process is repeated for different values of for finding the amplitude and phase characteristics of the small signal line-to-output and control-to-output transfer functions. The crucial step in the above algorithm is in Step b) and it is here where the basic differences between our approach and those available in literature reside. In order to include the complete operation of the circuit in a steady-state cycle, the integration in Step b) has to cover at least one cycle of duration. For calculating and in (8), the integration has to cover at least one cycle of variation of the sinusoidal perturbation of duration. As and are independent quantities, one can generally assume no relationship between these two numbers. Therefore,, the minimum period over which the integration must take place, has to be the least common multiple of and (12) Fig. 1 illustrates an example of and. The least common multiple interval of periodicity for the switching frequency and the perturbation frequency is. Thus, is the time interval that the perturbation signal has to cover two complete cycles and the switching signal has to cover seven complete cycles. In the actual computation, is chosen at such values as to minimize the integration time by minimizing the value of. For example, if khz, it is better to avoid choosing khz. If the frequency response at this value is of interest, khz is the preferred choice, otherwise the computer will automatically determine a large due to the incompatible numbers 43.3 and Moreover, as the length of integration in (10) depends on the value of, it will be shorter for a smaller value of. Thus, as shown in (12), the simulation time will be short for determining high-frequency responses because the value of becomes smaller. According to (10), is calculated as (13) A power electronic circuit goes through a number of configurations in each cycle. As the switching instants and even the number of cyclical configurations are not a priori known, it is preferable that they do not appear explicitly in the formula used for the calculation of. A stepwise time-domain simulation algorithm for power electronic converters is presented in the following section. It allows the simulator itself to determine a correct topology at each integration step. According to this method, the switching interval is divided into subintervals of different duration. The duration of each subinterval and consequently the number of subintervals in each cycle are determined by the simulator. Let us denote the duration of a subinterval in cycle by. The output voltage has the value within this subinterval. The integration in (13) is taken over switching cycles and can be solved numerically by (14) This formula is exemplified in Fig. 2 for a generic cycle. The step varies during the integration over a cycle. The simulator chooses a certain step at the beginning of the cycle and diminishes the step value when the integration approaches a switching instant. The simulator returns to the initial step value after each switching instant. is a complex number, allowing for the calculation of its magnitude and phase, as required by (11). B. Time-Domain Evaluation of the Steady-State Output Waveform (Summary of [23]) Based on progressive analysis of the switches positions, a method for the time-domain analysis of cyclically switched circuits with threshold conditions has been developed in [23]. Instead of deriving state-space equations, a modified nodal approach is applied. For the reader s convenience, a summary of [23] is given here. In this method, the simulator must find the switching sequence in each cycle by validating the position of each switch at each step. In order to illustrate the algorithm, a generic steady-state cycle is considered. Assume that the topology has been validated at the beginning of an integration step. The capacitor voltages and inductor currents calculated at this time are consistent initial conditions for the next interval.by assuming that within the interval the nodal voltages calculated at remain constant, the capacitor voltages and inductor currents at are calculated as (15)

5 CHUNG et al.: FUNCTIONS OF POWER ELECTRONICS CIRCUITS USING ANALYSIS OF CIRCUIT WAVEFORMS 1030 Fig. 3. Flowchart for the calculation of the ac transfer function at a frequency f.

6 1031 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 where is the voltage across the branch formed by capacitor and its equivalent series resistance (ESR), and is the voltage across the branch formed by inductor and its series dc resistance, both of them calculated by using the nodal voltages determined at time. is chosen to be smaller than each reactive element time constant in the circuit in order to avoid the degradation of accuracy. At the instant, the capacitors are replaced by independent voltage sources of values and the inductors by independent current sources of values. At this point, the dynamic circuit has been transformed into a resistive circuit which can be analyzed by an algebraic system of modified nodal equations, in which the feedback circuit is also included. Thus, the nodal voltages and the output signals of the feedback circuit at are calculated. The voltages/currents across/through all switches are calculated at this instant. If the output signals of the feedback circuit point to no change in the switches positions and if no contradiction in the polarity of the waveforms associated with the switches appears, the simulator will validate the present topology at time. If at the driving signal of a switch points to a switching action, or if a contradiction between the assumed position of the switches and their associated waveforms polarities appears, proving that a transition took place between and, the simulator will backtrack to in order to find the switching instant. The process will be repeated with a reduced step every time, until the switching moment is found with the desired accuracy and will then be recovered to the original value. More sophisticated algorithms for finding (such as the Newton Raphson algorithm) could be used for the same purpose. The advantage of this elementary approach is its guaranteed convergence for any complex converter. The proposed method does not require solving differential equations or performing inverse Laplace transformation. In [24], a logical representation of Dirac impulses in the frame of a state-space network simulation is presented. Thus, solution of differential equations was necessary. The methods proposed in [25] and [26] require inverse Laplace transformation. In addition, the proposed method has the following advantages. a) By incorporating the parasitic resistive losses of the reactive elements and switches, the simulator does not generate Dirac impulses. b) To validate each topology, resistive circuit analyses have to be performed, (in some other methods, dynamic circuits must be analyzed). c) At each step, the solution is given by solving an algebraic system of nodal equations. According to (14), the simulator will collect the data not only for one steady-state cycle of duration but over a period. C. Interface Between the Time-Domain Simulation and Calculation of At each step of the time-domain integration during the period, the values of and in (14) must be stored. For the th cycle and the th step, it starts at. is the (a) (b) (c) Fig. 4. (a) Boost PWM converter. (b) Magnitude characteristic of the control-to-output transfer function. (c) Phase characteristic of the control-to-output transfer function. value of the output voltage at the beginning of this step. If the simulator finds that no switching action took place within the step will be used as the value of and the product in (14) is calculated. The output voltage calculated at the end of the step is used as in (14) for the next step. The simulator continues the time-domain integration for a new step by keeping constant. This value is a candidate for. If the simulator finds that between and a transition took place, it backtracks to and repeats the process with a smaller step, let s say. This new value of the step is used in (14) as in the product of. The new

7 CHUNG et al.: FUNCTIONS OF POWER ELECTRONICS CIRCUITS USING ANALYSIS OF CIRCUIT WAVEFORMS 1032 (a) (b) Fig. 5. (a) Current-programmed boost converter. (b) Magnitude characteristic of the control-to-output transfer function. is. is used as for the next step. The simulator continues the integration with this new step, until it comes closer to the switching instant when a further reduction of the step value will be required. At the end of the cycle, the sum in (14) is determined by taking into account the partial products calculated for all valid steps, in which no switching took place. A flowchart of this algorithm is given in Fig. 3. III. ILLUSTRATIVE EXAMPLES In the following examples, perturbations of 1% of the steadystate values in either the line voltage or the control variable are considered. In all examples, the magnitude and phase characteristics of the small-signal control-to-output transfer characteristics have been obtained by using three methods, including a) the experimental measurement; b) the proposed algorithm; and c) the state-space averaging technique. The measured results are obtained by using a gain phase analyzer HP4194A. In the time-domain simulation of the circuits (Section II-B), if the absolute current flowing through a switch is less than 10 A, the computer will take the current as zero and a switching instant is assumed. This is a constant requirement in the algorithm. Though this may introduce errors in the simulation, it has been illustrated in [23] that the simulated results are in close agreement with the method in [26]. A. Example 1 Open-Loop Boost Converter The same boost converter analyzed in [20] is considered. The circuit is shown in Fig. 4(a). The component values are V, H,, F,,, and khz and the steady-state duty cycle is 0.4. The control-to-output and line-to-output transfer characteristics are shown in Fig. 4(b) and (c). With the proposed algorithm, the simulation time for determining the characteristics at khz on a MHz PC computer was 14 s. As shown in Fig. 3, the simulation time is dependent on the frequency of interest. The simulation time will be shorter in determining high-frequency characteristics,

8 1033 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 (c) (d) (e) Fig. 5. (Continued.) (c) Phase characteristic of the control-to-output transfer function. (d) Magnitude characteristic of the line-to-output transfer function. (e) Phase characteristic of the line-to-output transfer function. since the value of in (12) is smaller. Totally 50 frequency points are taken. The simulated curve is fitted with a simple straight-line interpolation technique. Compared to the averaging technique, the proposed method is slower in computation because the results of the averaging technique is based on a derived continuous time-invariant transfer function. However, the procedures of performing the mathematical formulations are circuit-dependent and time-consuming for circuits with multiple feedback loops and many topologies in one switching cycle. It can be observed that the above three analysis methods give the same results at the low-frequency range up to 15 khz, while the averaging technique deviates from the measured ones at the

9 CHUNG et al.: FUNCTIONS OF POWER ELECTRONICS CIRCUITS USING ANALYSIS OF CIRCUIT WAVEFORMS 1034 (a) (b) Fig. 6. (a) Switched-capacitor-based dc-to-dc converter. (b) Control-to-output magnitude response. high frequency range. Beyond 15 khz, the averaging method gives a transfer characteristics below 20 db, but the experimental results show that some resonant peaks appear around the switching frequency.this is because the high-frequency information has been discarded in the averaging process. The results of the proposed method and the one in [20] show close agreement with the measured ones over the frequency range. However, comparing these two methods, some mathematical expressions in [20] vanished at but the proposed algorithm is still feasible to perform analysis at these frequencies, such as at 40.3 khz and 80.6 khz (i.e., equals and, respectively). Another advantage of the proposed method is that it is not circuit specific and does not require considerable mathematical manipulations as in [20]. B. Example 2 Current-Programmed Boost Converter The next example is a current-programmed boost converter, which has been analyzed in [4] and [8]. The circuit is shown in Fig. 5(a), consisting of a minor current feedback loop around the power stage and a major voltage feedback loop via the error amplifier. In order to calculate the control-to-output transfer characteristics, the external loop is open and a small perturbation is applied to the dc control signal and the internal current loop is not affected. The control-to-output and line-to-output transfer characteristics are shown in Fig. 5(b) (e). Compared to the results obtained by the averaging techniques in [4] and [8], they give accurate results at a low-frequency range up to few hundred Hertz, but fail to determine the responses accurately at a

10 1035 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 (c) (d) (e) Fig. 6. (Continued.) (c) Control-to-output phase response. (d) Line-to-output magnitude response. (e) Line-to-output phase response. high frequency range. The averaging technique can predict accurately the cutoff frequency at about 10 Hz, but fails to predict the zero and pole at about 3 khz and 12 khz, respectively, in both characteristics. Nevertheless, the proposed method can predict their existences. The simulation time for getting the responses at 1 khz is 20 s on the same computer. C. Example 3 Switched-Capacitor Converter A new type of switching-mode converter [27] that primarily consists of semiconductor switches and capacitors is simulated. The circuit diagram is shown in Fig. 6(a). The converter is operated at khz. The control-to-output and line-to-output

11 CHUNG et al.: FUNCTIONS OF POWER ELECTRONICS CIRCUITS USING ANALYSIS OF CIRCUIT WAVEFORMS 1036 transfer characteristics are shown in Fig. 6(b) (e). The simulation time for getting the responses at 1 khz is 12 s on the same computer. Again, it can be seen that with the averaged model is only possible to obtain responses at a relatively low frequency, such as the cutoff frequency at 1 khz. Starting from one third of, the results of the averaged model show deviation from the actual circuit responses. The existence of the zero at around 30 khz cannot be predicted, whereas the proposed method can find it. Hence, the proposed method can generally give a closer prediction of the actual circuit frequency response than the averaging technique. In practice, design of the switching regulator loop gain usually has the crossover frequency at a low frequency. It seems that the averaging technique is sufficient for guaranteeing regulator stability. However, this is not always true. For instance, the results of the averaging technique deviate from the actual response at one tenth of the switching frequency in Example 2 and one third of the switching frequency in Example 3. Thus, the validity of the averaging technique at low-frequency responses might not be guaranteed. Finally, apart from getting high-frequency responses, the advantages of the proposed method also lie in the generality of analysis and the possibility of getting information in a switching cycle. It is also possible to obtain a regulator s large signal response by injecting larger magnitude of perturbation, which is an adjustable parameter. IV. CONCLUSION A technique for simulating cyclically switching circuits with internally controlled switches was presented. By combining a previously developed time-domain simulation analysis technique, the proposed method features the following characteristics. a) It is general for analysis of dc/dc converters. It requires no previous knowledge of the converter operation since the switching sequence is found automatically by the simulator. No threshold conditions have to be given. It does not require formulating or solving state-space equations and can be applied even for the calculation of line-to-output transfer functions of closed-loop regulators containing minor internal feedback loops, which affect the value of the duty-cycle in steady state (see Example 2). The method is close in spirit to that used in [20], but these characteristics give the superiority of the presented algorithm. The method can also be applied to circuits, in which ac signals are involved. However, the side bands between the ac signal frequency or its multiples and the and frequency components or their multiples would appear in the output spectrum. The algorithm cannot find the magnitude and phase of the transfer functions at those frequencies, because it cannot discern between the contributions of the ac input voltage and the and signals. Therefore, this gives a limitation on the proposed method for analysis of ac-dc or dc-ac converters. b) It is faithful to reality. The simulator validates the correct position of the switches, ensuring that the simulated topology is in accordance with the actual circuit operation. c) It is fast. In order to calculate the describing functions, the simulator stores the steady-state data of the output waveform step by step. These data are simply found by solving a simple algebraic system of modified nodal equations. d) It is accurate. Unlike the averaging and discrete or sampled data approaches, no small-ripple approximations are required. Parasitic resistance of the reactive and switching elements is inherently included in the simulation models. e) It is time saving for the user and memory efficient for the computer. It does not require hand formulation of state-space equations for each topology and solving exact analytical solutions. The algorithm only requires solving systems of algebraic equations. The illustrated examples show the superiority of the proposed method over the classical available algorithms. Further research will be dedicated into the analysis of resonant circuits such as the zero-current-transition PWM converter in [28] and largesignal analysis. REFERENCES [1] D. Czarkowski and M. K. Kazimierczuk, Linear circuit models of PWM flyback and buck/boost converters, IEEE Trans. Circuits Syst. I, vol. 39, pp , Aug [2] H. Sira-RamPrez and M. Delgado de Nieto, A lagrangian approach to averaging modeling of pulsewidth-modulation controlled DC-to-DC power converters, IEEE Trans. Circuits Syst. I, vol. 43, pp , May [3] M. K. Kazimierczuk and R. Craven II, Input impedance of closed-loop PWM buck-boost DC DC converter for CCM, in Proc. Int. Symp. Circuits Systems, 1995, pp [4] R. D. Middlebrook, Modeling current-programmed buck and boost regulators, IEEE Trans. Power Electron., vol. 4, pp , Jan [5] A. Ioinovici, A new computer-aided approach to the analysis of Cuk converter by using the alternor equations, IEEE Trans. Power Electron., vol. 4, pp , Jul [6] Y. S. Lee, A systematic and unified approach to modeling switches in switch-mode power supplies, IEEE Trans. Ind. Electron., vol. 32, pp , Nov [7] K. T. Chau, Y. S. Lee, and A. Ioinovici, Computer-aided modeling of quasiresonant converters in the presence of parasitic losses by using the MISSCO concept, IEEE Trans. Ind. Electron., vol. 38, pp , Dec [8] D. Kimhi and S. Ben-Yaakov, A SPICE model for current mode PWM converters operating under continuous inductor current conditions, IEEE Trans. Power Electron., vol. 6, pp , Apr [9] V. Vorperian, Simplify your PWM converter analysis using the model of the PWM switch, VPEC, vol. 3, pp. 8 13, [10] F. C. Y. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, Generalized computer-aided discrete time-domain modeling and analysis of DC-DC converters, IEEE Trans. Ind. Electron. Contr. Instrumentat., vol. 26, pp , May [11] A. Luchetta, S. Manetti, M. C. Piccirilli, and A. Reatti, Frequency domain analysis of DC DC converters using a symbolic approach, in Proc. Int. Symp. Circuit Systems, 1995, pp [12] M. Zarudi and A. Shenkman, Analysis of common switching converters using Z transform, IEEE Trans. Circuits Syst. I, vol. 40, pp , Sept [13] G. C. Verghese, M. E. Elbuluk, and J. G. Kassakian, A general approach to sampled-data modeling for power electronic circuits, IEEE Trans. Power Electron., vol. 1, pp , Apr [14] P. Maranesi, Small-signal circuit modeling in the frequency-domain by computer-aided time domain simulation, IEEE Trans. Power Electron., vol. 7, pp , Jan [15] A. S. Kislovski, On the role of physical insight in small-signal analysis of switching power converters, in Proc. IEEE Applied Power Electronics Conf., Mar. 1993, pp

12 1037 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 [16] R. D. Middlebrook, Describing function properties of a magnetic pulsewidth modulator, IEEE Trans. Aerosp. Electron. Syst., vol. AES-9, no. 3, pp , May [17], Predicting modulator phase lag in PWM converter feedback loops, in Proc. Eighth Int. Solid-State Power Electronics Conf., Apr [18] E. X. Yang, F. C. Lee, and M. Jovanovic, Small-signal modeling of LCC resonant converter, in Proc. IEEE Power Electronics Speialists Conf., 1992, pp [19], Small-signal modeling of series and parallel resonant converters, in Proc. IEEE Applied Power Electronics Conf., 1992, pp [20] R. Tymerski, Frequency analysis of time-interval-modulated switched networks, IEEE Trans. Power Electron., vol. 6, pp , Apr [21], Application of the time-varying transfer function for exact smallsignal analysis, IEEE Trans. Power Electron., vol. 9, pp , Mar [22] A. K. S. Bhat, A fixed-frequency modified series-resonant converter: analysis, design, and experimental results, IEEE Trans. Power Electron., vol. 10, pp , Nov [23] H. Chung and A. Ioinovici, Fast computer-aided simulation of switching power regulators based on progressive analysis of the switches state, IEEE Trans. Power Electron., vol. 9, pp , Mar [24] A. Massarini and M. K. Kazimierczuk, A new representation of Dirac impulses in time-domain computer analysis of networks with ideal switches, in Proc. IEEE Int. Symp. Circuits Systems, 1996, pp [25] N. Femia and V. Tucci, An optimized method for the time domain analysis of switched RLC networks, in Proc. IEEE Int. Symp. Circuits Systems, 1996, pp [26] D. Bedrosian and J. Vlach, Time-domain analysis of networks with internally controlled switches, IEEE Trans. Circuits Syst. I, vol. 39, pp , Mar [27] S. V. Cheong, H. Chung, and A. Ioinovici, Inductorless DC-to-DC converter with high power density, IEEE Trans. Ind. Electron., vol. 41, pp , Apr [28] G. Hua, E. X. Yang, Y. Jiang, and F. C. Lee, Novel zero-current-transition PWM converters, IEEE Trans. Power Electron., vol. 9, pp , Nov Henry S.-H. Chung (S 92 M 95) received the B.Eng. (First Class Hons.) degree in electrical engineering and the Ph.D. degree from The Hong Kong Polytechnic University in 1991 and 1994, respectively. Since 1995 he has been with the City University of Hong Kong, Kowloon, Hong Kong, where he is currently an Associate Professor in the Department of Electronic Engineering. His research interests include time- and frequency-domain analysis of power electronic circuits, switched-capacitor-based converters, random-switching techniques, digital audio amplifiers, and soft-switching converters. He has authored two research book chapters and over 105 technical papers including 47 refereed journal papers in the current research area. Dr. Chung was the recipient of the China Light and Power Prize and was awarded the Scholarship and Fellowship of the Sir Edward Youde Memorial Fund in 1991 and 1993, respectively. He is currently Chairman of the Council of the Sir Edward Youde Scholar s Association and IEEE Student Branch Counselor. He was Track Chair of the technical committee on power electronics circuits and power systems of IEEE Circuits and Systems Society in He is presently an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. Adrian Ioinovici (M 84 SM 85) received the Electrical Engineering degree in 1974 and the Doctor-Engineer degree in 1981, both in Romania. In 1982, he joined the Holon Academic Institute of Technology, Israel, where he is currently the Head of the Electrical and Electronics Engineering Department. From , he was Reader and then Professor with the Electrical Engineering Department, Hong Kong Polytechnic University. His research interests are in simulation of power electronics circuits, switched-capacitor-based converters and inverters, and soft-switching dc power supplies. He is the author of the book Computer-Aided Analysis of Active Circuits (New York: Marcel Dekker, 1990). He has published more than 80 papers in circuit theory and power electronics. Prof. Ioinovici is Chairman of the Technical Committee on Power Systems and Power Electronics of the IEEE Circuits and Systems Society. He has served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I: FUNDAMENTAL THEORY AND APPLICATIONS and of the Journal of Circuits, Systems and Computers. He is also an Overseas Advisor of the IEICE Transactions, Japan. He was Chairman of the Israeli chapter of the IEEE CAS Society between He served as General Chairman of the Conferences ISCSC 86, ISCSC 88 (Herzlya, Israel), SPEC 94 (Hong Kong), organized and chaired special sessions in Power Electronics at ISCAS 91, ISCAS 92, ISCAS 95, ISCAS 2000, and was a member of the Technical program Committee at the Conferences ISCAS 91, ISCAS 93, ISCAS 94, ISCAS 95. PESC 92, PESC 93, PESC 94, PESC 95, Track Chairman at ISCAS 96, ISCAS 99, ISCAS 2000, and a Cochairman of the Special Session s Committee at ISCAS 97. Jun Zhang was born in Tianjin, China in He received the B.Eng and M.Eng degrees in mechanical engineering from Hebei University of Technology, Tianjin, China, in 1989 and 1995, respectively. From 1989 to 1992, he was with the Tianjin Automobile Industry Company Ltd., Tianjin, China, where he was responsible for new automobile development and technology cooperation. During , he was a Research Student and Teaching Assistant at Zhejiang University, Hangzhou, China. He is currently a Research Student in the Department of Electronic Engineering, City University of Hong Kong, working toward the Ph.D. degree. His research interests are in the area of power electronics, genetic algorithm, fuzzy logic, neural network, and chaotic time series analysis and prediction. He has authored 12 technical papers in his current research area.

Step-Up Switching-Mode Converter With High Voltage Gain Using a Switched-Capacitor Circuit

Step-Up Switching-Mode Converter With High Voltage Gain Using a Switched-Capacitor Circuit 1098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 8, AUGUST 2003 Step-Up Switching-Mode Converter With High Voltage Gain Using a Switched-Capacitor Circuit

More information

Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow

Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 9, SEPTEMBER 2000 383 Development of a Switched-Capacitor DC DC Converter with Bidirectional Power Flow Henry

More information

Realization of Digital Audio Amplifier Using Zero-Voltage-Switched PWM Power Converter

Realization of Digital Audio Amplifier Using Zero-Voltage-Switched PWM Power Converter IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 3, MARCH 2000 303 Realization of Digital Audio Amplifier Using Zero-Voltage-Switched PWM Power Converter Wing-Hong

More information

MUCH research work has been recently focused on the

MUCH research work has been recently focused on the 398 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 7, JULY 2005 Dynamic Hysteresis Band Control of the Buck Converter With Fast Transient Response Kelvin Ka-Sing Leung, Student

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression

Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, NO. 2, MARCH 2000 399 Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression K. K. Tse, Member, IEEE,, Henry

More information

THE MAGNETIC amplifier (magamp) technique is one of

THE MAGNETIC amplifier (magamp) technique is one of 882 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 5, SEPTEMBER 1999 Small-Signal Modeling of Nonideal Magamp PWM Switch Milan M. Jovanović, Senior Member, IEEE, and Laszlo Huber, Member, IEEE Abstract

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

THE TWO TRANSFORMER active reset circuits presented

THE TWO TRANSFORMER active reset circuits presented 698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 8, AUGUST 1997 A Family of ZVS-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis, Design, and

More information

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER 2001 603 A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

More information

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules

Stability and Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules 172 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 2, MARCH 2002 Stability Dynamic Performance of Current-Sharing Control for Paralleled Voltage Regulator Modules Yuri Panov Milan M. Jovanović, Fellow,

More information

IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p

IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p Title A new switched-capacitor boost-multilevel inverter using partial charging Author(s) Chan, MSW; Chau, KT Citation IEEE Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 12, p.

More information

THE classical solution of ac dc rectification using a fullwave

THE classical solution of ac dc rectification using a fullwave 630 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 The Discontinuous Conduction Mode Sepic and Ćuk Power Factor Preregulators: Analysis and Design Domingos Sávio Lyrio Simonetti,

More information

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network

A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network 456 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 2, APRIL 2002 A New Soft Recovery PWM Quasi-Resonant Converter With a Folding Snubber Network Jin-Kuk Chung, Student Member, IEEE, and Gyu-Hyeong

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation

A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation 980 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 6, NOVEMBER 2002 A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation K. K. Tse, Member, IEEE, M. T. Ho, Student

More information

A New Small-Signal Model for Current-Mode Control Raymond B. Ridley

A New Small-Signal Model for Current-Mode Control Raymond B. Ridley A New Small-Signal Model for Current-Mode Control Raymond B. Ridley Copyright 1999 Ridley Engineering, Inc. A New Small-Signal Model for Current-Mode Control By Raymond B. Ridley Before this book was written

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.

A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A. A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.Tejasri M.Tech(Research scholar),assistant Professor,Dept. of

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

THE CONVENTIONAL voltage source inverter (VSI)

THE CONVENTIONAL voltage source inverter (VSI) 134 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 A Boost DC AC Converter: Analysis, Design, and Experimentation Ramón O. Cáceres, Member, IEEE, and Ivo Barbi, Senior Member, IEEE

More information

ACONTROL technique suitable for dc dc converters must

ACONTROL technique suitable for dc dc converters must 96 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 12, NO. 1, JANUARY 1997 Small-Signal Analysis of DC DC Converters with Sliding Mode Control Paolo Mattavelli, Member, IEEE, Leopoldo Rossetto, Member, IEEE,

More information

Design Considerations for VRM Transient Response Based on the Output Impedance

Design Considerations for VRM Transient Response Based on the Output Impedance 1270 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 6, NOVEMBER 2003 Design Considerations for VRM Transient Response Based on the Output Impedance Kaiwei Yao, Student Member, IEEE, Ming Xu, Member,

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

Isaac Zafrany and Sam Ben-Yaakov"

Isaac Zafrany and Sam Ben-Yaakov A CHAOS MODEL OF SUBHARMONIC OSCILLATIONS IN CURRENT MODE PWM BOOST CONVERTERS Isaac Zafrany and Sam BenYaakov" Department of Electrical and Computer Engineering BenGurion University of the Negev P. 0.

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 64 Voltage Regulation of Buck Boost Converter Using Non Linear Current Control 1 D.Pazhanivelrajan, M.E. Power Electronics

More information

DC-DC converters represent a challenging field for sophisticated

DC-DC converters represent a challenging field for sophisticated 222 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 2, MARCH 1999 Design of a Robust Voltage Controller for a Buck-Boost Converter Using -Synthesis Simone Buso, Member, IEEE Abstract This

More information

RECENTLY, the harmonics current in a power grid can

RECENTLY, the harmonics current in a power grid can IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 715 A Novel Three-Phase PFC Rectifier Using a Harmonic Current Injection Method Jun-Ichi Itoh, Member, IEEE, and Itsuki Ashida Abstract

More information

is demonstrated by considering the conduction resistances and their voltage drop in DCM. This paper presents DC and small-signal circuit models of the

is demonstrated by considering the conduction resistances and their voltage drop in DCM. This paper presents DC and small-signal circuit models of the Average Model of Boost Converter, including Parasitics, operating in Discontinuous Conduction Mode (DCM) Haytham Abdelgawad and Vijay Sood Faculty of Engineering and Applied Science, University of Ontario

More information

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System

A Novel High-Performance Utility-Interactive Photovoltaic Inverter System 704 IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 18, NO. 2, MARCH 2003 A Novel High-Performance Utility-Interactive Photovoltaic Inverter System Toshihisa Shimizu, Senior Member, IEEE, Osamu Hashimoto,

More information

WITH THE development of high brightness light emitting

WITH THE development of high brightness light emitting 1410 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 Quasi-Active Power Factor Correction Circuit for HB LED Driver Kening Zhou, Jian Guo Zhang, Subbaraya Yuvarajan, Senior Member, IEEE,

More information

STATE-SPACE averaging (SSA) is a useful method in

STATE-SPACE averaging (SSA) is a useful method in 644 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 6, JUNE 1998 Signal Flow Graph in Loop Gain Analysis of DC DC PWM CCM Switching Converters Wing-Hung Ki,

More information

An Accurate and Practical Small-Signal Model for Current-Mode Control

An Accurate and Practical Small-Signal Model for Current-Mode Control An Accurate and Practical Small-Signal Model for Current-Mode Control ABSTRACT Past models of current-mode control have sufferered from either insufficient accuracy to properly predict the effects of current-mode

More information

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters 680 Journal of Power Electronics, Vol. 0, No. 6, November 200 JPE 0-6-4 Precise Analytical Solution for the Peak Gain of LLC Resonant Converters Sung-Soo Hong, Sang-Ho Cho, Chung-Wook Roh, and Sang-Kyoo

More information

High-Gain Switched-Inductor Switched-Capacitor Step-Up DC-DC Converter

High-Gain Switched-Inductor Switched-Capacitor Step-Up DC-DC Converter , March 13-15, 2013, Hong Kong High-Gain Switched-Inductor Switched-Capacitor Step-Up DC-DC Converter Yuen-Haw Chang and Yu-Jhang Chen Abstract A closed-loop scheme of high-gain switchedinductor switched-capacitor

More information

AS COMPARED to conventional analog controllers, digital

AS COMPARED to conventional analog controllers, digital 814 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 5, SEPTEMBER 1998 Simple Digital Control Improving Dynamic Performance of Power Factor Preregulators Simone Buso, Member, IEEE, Paolo Mattavelli,

More information

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER

DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER DESIGN AND ANALYSIS OF FEEDBACK CONTROLLERS FOR A DC BUCK-BOOST CONVERTER Murdoch University: The Murdoch School of Engineering & Information Technology Author: Jason Chan Supervisors: Martina Calais &

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

3. Discrete and Continuous-Time Analysis of Current-Mode Cell

3. Discrete and Continuous-Time Analysis of Current-Mode Cell 3. Discrete and Continuous-Time Analysis of Current-Mode Cell 3.1 ntroduction Fig. 3.1 shows schematics of the basic two-state PWM converters operating with current-mode control. The sensed current waveform

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

Disturbance Rejection Using Self-Tuning ARMARKOV Adaptive Control with Simultaneous Identification

Disturbance Rejection Using Self-Tuning ARMARKOV Adaptive Control with Simultaneous Identification IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 1, JANUARY 2001 101 Disturbance Rejection Using Self-Tuning ARMARKOV Adaptive Control with Simultaneous Identification Harshad S. Sane, Ravinder

More information

H-BRIDGE system used in high power dc dc conversion

H-BRIDGE system used in high power dc dc conversion IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008 353 Quasi Current Mode Control for the Phase-Shifted Series Resonant Converter Yan Lu, K. W. Eric Cheng, Senior Member, IEEE, and S.

More information

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR Josna Ann Joseph 1, S.Bella Rose 2 PG Scholar, Karpaga Vinayaga College of Engineering and Technology, Chennai 1 Professor, Karpaga Vinayaga

More information

MOST electrical systems in the telecommunications field

MOST electrical systems in the telecommunications field IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 2, APRIL 1999 261 A Single-Stage Zero-Voltage Zero-Current-Switched Full-Bridge DC Power Supply with Extended Load Power Range Praveen K. Jain,

More information

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A Single Switch DC-DC Converter for Photo Voltaic-Battery System A Single Switch DC-DC Converter for Photo Voltaic-Battery System Anooj A S, Lalgy Gopi Dept Of EEE GEC, Thrissur ABSTRACT A photo voltaic-battery powered, single switch DC-DC converter system for precise

More information

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES DESIGNER SERIES Power supplies are one of the last holdouts of true analog feedback in electronics. For various reasons, including cost, noise, protection, and speed, they have remained this way in the

More information

Single-Wire Current-Share Paralleling of Current-Mode-Controlled DC Power Supplies

Single-Wire Current-Share Paralleling of Current-Mode-Controlled DC Power Supplies 780 IEEE TRANSACTION ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 4, AUGUST 2000 Single-Wire Current-Share Paralleling of Current-Mode-Controlled DC Power Supplies Chang-Shiarn Lin and Chern-Lin Chen, Senior

More information

A High Step up Boost Converter Using Coupled Inductor with PI Control

A High Step up Boost Converter Using Coupled Inductor with PI Control A High Step up Boost Converter Using Coupled Inductor with PI Control Saurabh 1, Dr.P.K.Saha 2, Dr.G.K.Panda 3 PG Student [Power Electronics and Drives], Dept. of EE, Jalpaiguri Government Engineering

More information

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters Asian Power Electronics Journal, Vol. 1, No. 1, Aug 7 Reduced PWM Harmonic Distortion for a New Topology of Multi Inverters Tamer H. Abdelhamid Abstract Harmonic elimination problem using iterative methods

More information

IN recent years, the development of high power isolated bidirectional

IN recent years, the development of high power isolated bidirectional IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 813 A ZVS Bidirectional DC DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao and Shaojun Xie, Member, IEEE Abstract The

More information

Controlling a DC-DC Converter by using the power MOSFET as a voltage controlled resistor

Controlling a DC-DC Converter by using the power MOSFET as a voltage controlled resistor Controlling a DC-DC Converter by using the power MOSFET as a voltage controlled resistor Author Smith, T., Dimitrijev, Sima, Harrison, Barry Published 2000 Journal Title IEEE Transactions on Circuits and

More information

Analysis of Class-DE Amplifier With Linear and Nonlinear Shunt Capacitances at 25% Duty Ratio

Analysis of Class-DE Amplifier With Linear and Nonlinear Shunt Capacitances at 25% Duty Ratio 2334 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 9, SEPTEMBER 2010 Analysis of Class-DE Amplifier With Linear and Nonlinear Shunt Capacitances at 25% Duty Ratio Hiroo Sekiya,

More information

Modeling of switched DC-DC converters by mixed s-z description

Modeling of switched DC-DC converters by mixed s-z description Modeling of switched C-C converters by mixed s-z description alibor Biolek, Viera Biolková*) Inst. of Microelectronics (Radioelectronics*) FEEC BU, Brno, Czech Republic fax: 97344987 - e-mail: dalibor.biolek@unob.cz

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

NOWADAYS, there is much interest in connecting various

NOWADAYS, there is much interest in connecting various IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 419 Modified Dynamic Phasor Estimation Algorithm for the Transient Signals of Distributed Generators Dong-Gyu Lee, Sang-Hee Kang, and Soon-Ryul

More information

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

More information

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules

Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules 776 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 Design Considerations for 12-V/1.5-V, 50-A Voltage Regulator Modules Yuri Panov and Milan M. Jovanović, Fellow, IEEE Abstract The

More information

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 K. N. Madakwar, 2 Dr. M. R. Ramteke VNIT-Nagpur Email: 1 kapil.madakwar@gmail.com, 2 mrr_vrce@rediffmail.com Abstract: This paper deals with the analysis of

More information

FOURIER analysis is a well-known method for nonparametric

FOURIER analysis is a well-known method for nonparametric 386 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 1, FEBRUARY 2005 Resonator-Based Nonparametric Identification of Linear Systems László Sujbert, Member, IEEE, Gábor Péceli, Fellow,

More information

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 60 CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 3.1 INTRODUCTION Literature reports voluminous research to improve the PV power system efficiency through material development,

More information

By Hiroo Sekiya, Chiba University, Chiba, Japan and Marian K. Kazimierzuk, Wright State University, Dayton, OH

By Hiroo Sekiya, Chiba University, Chiba, Japan and Marian K. Kazimierzuk, Wright State University, Dayton, OH ISSUE: November 2011 Core Geometry Coefficient For Resonant Inductors* By Hiroo Sekiya, Chiba University, Chiba, Japan and Marian K. Kazimierzuk, Wright State University, Dayton, OH A resonant inductor

More information

IN A CONTINUING effort to decrease power consumption

IN A CONTINUING effort to decrease power consumption 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 Forward-Flyback Converter with Current-Doubler Rectifier: Analysis, Design, and Evaluation Results Laszlo Huber, Member, IEEE, and

More information

Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients K.

Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients K. Digital Combination of Buck and Boost Converters to Control a Positive Buck Boost Converter and Improve the Output Transients K. prasannakumar Student(M.Tech), Electrical Dept, Gokul group of institutions,

More information

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems T.

More information

Theoretical Study of Switching Power Converters with Power Factor Correction and Output Regulation

Theoretical Study of Switching Power Converters with Power Factor Correction and Output Regulation IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 7, JULY 2000 1047 Theoretical Study of Switching Power Converters with Power Factor Correction and Output

More information

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR 1002 VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR NIKITA SINGH 1 ELECTRONICS DESIGN AND TECHNOLOGY, M.TECH NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION TECHNOLOGY

More information

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI ELECTRIC CIRCUITS Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI Includes 364 solved problems --fully explained Complete coverage of the fundamental, core concepts of electric circuits All-new chapters

More information

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP

LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP Carl Sawtell June 2012 LINEAR MODELING OF A SELF-OSCILLATING PWM CONTROL LOOP There are well established methods of creating linearized versions of PWM control loops to analyze stability and to create

More information

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM G.SUNDAR, S.RAMAREDDY Research Scholar, Bharath University Chenna Professor Jerusalam College of Engg. Chennai ABSTRACT This paper deals with simulation

More information

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter olume 2, Issue 2 July 2013 114 RESEARCH ARTICLE ISSN: 2278-5213 The Feedback PI controller for Buck-Boost converter combining KY and Buck converter K. Sreedevi* and E. David Dept. of electrical and electronics

More information

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Yuri Panov, Milan M. Jovanovi, and Brian T. Irving Power Electronics Laboratory Delta Products Corporation 5101 Davis Drive,

More information

A DUAL SERIES DC TO DC RESONANT CONVERTER

A DUAL SERIES DC TO DC RESONANT CONVERTER A DUAL SERIES DC TO DC RESONANT CONVERTER V.ANANDHAN.,BE., ME, POWER SYSTEM SCSVMU UNIVERSITY anandhanvelu@gmail.com Dr.S.SENTAMIL SELVAN.,M.E.,Ph.D., ASSOCIATE PROFESSOR SCSVMU UNIVERSITY Abstract - A

More information

Comparison Between Conventional Buck Converter And Switched Inductor Converter

Comparison Between Conventional Buck Converter And Switched Inductor Converter Comparison Between Conventional Buck Converter And Switched Inductor Converter Vishnu Thampi, Arya Prakash M.Tech Power Electronics, Electrical Department, Sree Narayana Gurukulam College of Engineering,

More information

AS the power distribution networks become more and more

AS the power distribution networks become more and more IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 153 A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations Peng Xiao, Student Member, IEEE, David C. Yu, Member,

More information

THE procedure of averaging switch-mode power supplies

THE procedure of averaging switch-mode power supplies 1596 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 8, AUGUST 2004 Output Ripple Analysis of Switching DC DC Converters Zoran Mihajlovic, Member, IEEE, Brad Lehman, Member, IEEE,

More information

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters 1 Shivaraj Kumar H.C, 2 Noorullah Sherif, 3 Gourishankar C 1,3 Asst. Professor, EEE SECAB.I.E.T Vijayapura 2 Professor,

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads

Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads 596 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 Adaptive Off-Time Control for Variable-Frequency, Soft-Switched Flyback Converter at Light Loads Yuri Panov and Milan M. Jovanović,

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

Fuzzy Logic Controller on DC/DC Boost Converter

Fuzzy Logic Controller on DC/DC Boost Converter 21 IEEE International Conference on Power and Energy (PECon21), Nov 29 - Dec 1, 21, Kuala Lumpur, Malaysia Fuzzy Logic Controller on DC/DC Boost Converter N.F Nik Ismail, Member IEEE,Email: nikfasdi@yahoo.com

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 1, JANUARY

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 1, JANUARY IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 21, NO. 1, JANUARY 2006 73 Maximum Power Tracking of Piezoelectric Transformer H Converters Under Load ariations Shmuel (Sam) Ben-Yaakov, Member, IEEE, and Simon

More information

About the High-Frequency Interferences produced in Systems including PWM and AC Motors

About the High-Frequency Interferences produced in Systems including PWM and AC Motors About the High-Frequency Interferences produced in Systems including PWM and AC Motors ELEONORA DARIE Electrotechnical Department Technical University of Civil Engineering B-dul Pache Protopopescu 66,

More information

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter 466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract

More information

A Quadratic Buck Converter with Lossless Commutation

A Quadratic Buck Converter with Lossless Commutation 264 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 2, APRIL 2000 A Quadratic Buck Converter with Lossless Commutation Vincius Miranda Pacheco, Acrísio José do Nascimento, Jr., Valdeir José Farias,

More information

PARALLELING of converter power stages is a wellknown

PARALLELING of converter power stages is a wellknown 690 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 4, JULY 1998 Analysis and Evaluation of Interleaving Techniques in Forward Converters Michael T. Zhang, Member, IEEE, Milan M. Jovanović, Senior

More information

Transactions Briefs. Low-Frequency Differentiators and Integrators for Biomedical and Seismic Signals. Mohamad Adnan Al-Alaoui

Transactions Briefs. Low-Frequency Differentiators and Integrators for Biomedical and Seismic Signals. Mohamad Adnan Al-Alaoui 006 IEEE TRANSACTIONS ON CIRCUITS ANS SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 8, AUGUST 200 Transactions Briefs Low-Frequency Differentiators and Integrators for Biomedical and Seismic

More information

A Solar Powered Water Pumping System with Efficient Storage and Energy Management

A Solar Powered Water Pumping System with Efficient Storage and Energy Management A Solar Powered Water Pumping System with Efficient Storage and Energy Management Neena Thampi, Nisha R Abstract This paper presents a standalone solar powered water pumping system with efficient storage

More information

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter Fariborz Musavi, Murray Edington Department of Research, Engineering Delta-Q Technologies Corp. Burnaby, BC, Canada

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

Modeling The Effects of Leakage Inductance On Flyback Converters (Part 2): The Average Model

Modeling The Effects of Leakage Inductance On Flyback Converters (Part 2): The Average Model ISSUE: December 2015 Modeling The Effects of Leakage Inductance On Flyback Converters (Part 2): The Average Model by Christophe Basso, ON Semiconductor, Toulouse, France In the first part of this article,

More information

NOWADAYS, it is not enough to increase the power

NOWADAYS, it is not enough to increase the power IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 5, OCTOBER 1997 597 An Integrated Battery Charger/Discharger with Power-Factor Correction Carlos Aguilar, Student Member, IEEE, Francisco Canales,

More information

NOWADAYS, multistage amplifiers are growing in demand

NOWADAYS, multistage amplifiers are growing in demand 1690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 9, SEPTEMBER 2004 Advances in Active-Feedback Frequency Compensation With Power Optimization and Transient Improvement Hoi

More information

Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink

Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink Volume-7, Issue-3, May-June 2017 International Journal of Engineering and Management Research Page Number: 367-371 Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink

More information

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Aleena Paul K PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Babu Paul

More information

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY 2008 1973 Self-Oscillating Control Methods for the LCC Current-Output Resonant Converter Adam J. Gilbert, Christopher M. Bingham, David A. Stone,

More information

SLIDING MODE (SM) controllers are well known for their

SLIDING MODE (SM) controllers are well known for their 182 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 1, JANUARY 2006 Adaptive Feedforward and Feedback Control Schemes for Sliding Mode Controlled Power Converters Siew-Chong Tan, Member, IEEE, Y.

More information