PID Charts for Process Monitoring. Wei Jiang INSIGHT, AT&T. Huaiqing Wu Iowa State University

Size: px
Start display at page:

Download "PID Charts for Process Monitoring. Wei Jiang INSIGHT, AT&T. Huaiqing Wu Iowa State University"

Transcription

1 PID Charts for Process Monitoring Wei Jiang INSIGHT, AT&T Huaiqing Wu Iowa State University Fugee Tsung Hong Kong University of Science & Technology Vijayan N. Nair University of Michigan Kwok-Leung Tsui Georgia Institute of Technology

2 Outline The Shewhart x Chart Monitoring Charts for Correlated Data The PID Chart (Proportional Integral Derivative Chart) An Illustrative Example Design of PID Charts Average Run Length Performance Robustness to Parameter Misspecification Concluding Remarks

3 The Shewhart x Chart Shewhart s partition of process variation (Shewhart 1931): Baseline variation (common causes) Variation that can be eliminated (assignable causes) The Shewhart x chart for iid data based on samples of size m A plot of sample mean measurements, x i, against sample number, i Center line: process target mean (µ) Control limits: µ ± 3 σ m (σ: baseline variation) When a point plotted falls outside the control limits, an out-of-control alarm is triggered.

4 Monitoring Charts for Correlated Data Special cause charts (SCC) of Alwan and Roberts (1988): First whiten the autocorrelated data by subtracting their one-step-ahead minimum mean squared error (MMSE) prediction Then monitor the errors from the prediction using a traditional control chart for iid data Traditional control charts for iid data with modified control limits to account for autocorrelation among data EWMAST charts of Zhang (1998) (exponentially weighted moving average charts for stationary processes) Autoregressive moving average (ARMA) charts of Jiang, Tsui, and Woodall (2000): Monitor the ARMA statistic of the underlying process

5 Special Cause Charts (SCC) SCC methods applied to MMSE prediction errors: For AR(1) models: Harris and Ross (1991), Superville and Adams (1994), Runger and Willemain (1995), and Runger, Willemain, and Prabhu (1995) For ARMA(1,1) and ARMA(p, q) models: Wardell, Moskowitz, and Plante (1992, 1994) For IMA(0,1,1) models: Vander Wiel (1996) The MMSE prediction: not necessarily best for process monitoring Monitoring the original autocorrelated data can outperform the SCC chart (Wardell, Moskowitz, and Plante 1992, 1994; Zhang 1998) Idea: other prediction methods may work better

6 Prediction and Feedback Control Discrete feedback control: D t : process disturbance U t : control action Y t : output from process dynamics Y t+1 = U t : pure-gain dynamic model e t+1 = Y t+1 + D t+1 : control error at time (t + 1) (assuming the target value is 0) Prediction of D t+1 Feedback control (e t+1 = D t+1 D t+1, by setting U t = D t+1 ) MMSE prediction of D t+1 MMSE Feedback Control

7 PID Control and Prediction PID control: U t = k P e t k I 1 1 B e t k D (1 B)e t e t = D t D t B: backward shift operator (Be t = e t 1 ) k P, k I, and k D : constants (the amount of proportional, integral, and derivative control actions) (Box, Jenkins, and Reinsel 1994; Åström and Hägglund 1995) PID predictor: D t+1 = D t +k I e t +k P (1 B)e t +k D (1 B) 2 e t

8 The PID Chart First subtract the PID predictor from the original data to yield the PID-based residuals Then monitor the residuals using a traditional control chart and taking account of the correlation structure of the residuals in computing the control limits Special cases: P, I, D, PI, and PD charts (e.g., the P chart corresponds to k I = k D = 0) The I chart: same as the M-M chart (Montgomery and Mastrangelo 1991) The P chart: equivalent to the EWMAST chart (Zhang 1998)

9 An Illustrative Example Data from a mechanical vibratory system consisting of a mass, a spring, and a dashpot (Pandit and Wu 1983): vertical displacements of the mass An ARMA(2,1) process D t = D t D t 2 +a t a t 1, with σ D = and σ a = 2.212, fitted the first 100 observations well, where a t is white noise. Suppose that a mean shift of = µ/σ D occurred after the first 100 observations. A simulation with 160,000 replications was done to obtain the average run length (ARL) needed to detect the shift for various values of for several PID charts and the SCC chart.

10 ARLs of the SCC, P, PI and PD Charts Shift SCC PI P PD Chart parameters (k P, k I, k D ) P: (.8, 0, 0) PI: (.3, 1.8, 0) PD: (.8, 0,.5) Control limits: ±Lσ e, where L = 3, 2.556, 2.95, and for the SCC, P, PI, and PD charts.

11 Design of PID Charts Capability Indices/Signal-to-Noise Ratios (Jiang, Tsui, and Woodall 2000): Consider monitoring a stationary process D t with mean 0 and variance σd 2. Suppose a mean shift of µ occurs at time t 0. Let µ t be the mean of the PID charting process e t. Let σe 2 be the variance of e t when the monitored process D t is in control. Transient capability: C T = µ/σ e Capability of the chart to detect the shift in the first few runs Steady-state capability: C S = lim t µ t /σ e Important for detecting the shift efficiently in later runs if the chart fails to signal early

12 Choosing PID Chart Parameters 1. Specify the shift level = µ/σ D to be detected. 2. Compute Max C T, the maximum value of C T, for the PID chart by varying its chart parameters (k P, k I, k D ). 3. If Max C T > 5, choose the PID chart with the transient capability equal to Max C T and stop; otherwise, go to the next step. 4. Compute Max C S, the maximum value of C S, for the PD chart by varying its chart parameters (k P, 0, k D ). 5. If Max C S 3.5 or if C T 1 when C S is maximized, choose the PD chart with the steady-state capability equal to Max C S ; otherwise, choose a PD chart with C S [2.5, 3.5] to balance the values of C T and C S.

13 ARL Performance Simulation (with 160,000 replications) done for ARMA(1,1) processes D t = 1 θb 1 φb a t for PID 1, PID 2, P (EWMAST) and SCC charts. φ θ Chart k P k I k D L PID PID P SCC PID PID P SCC PID PID P SCC 3.00

14 ARL Performance (Continued) φ θ Chart ARL 0.5 ARL 1 ARL 2 ARL PID PID P SCC PID PID P SCC PID PID P SCC

15 Robustness to Parameter Misspecification Control limits consist of two components: L and σ e. The robustness of a control chart is mainly affected by the estimation of σ e. For Shewhart chart with iid data or SCC chart with correlated data, moving range estimator σ MR is traditionally recommended. However, σ MR is biased when correlation exists in e t (Cryer and Ryan 1990): E( σ MR ) = σ e 1 ρe. Adams and Tseng (1998) reported the nonrobustness of the SCC chart when using σ MR. Thus the moving range estimator should be avoided in practice.

16 Robustness (Continued) When model parameters are misspecified, L is set as L under the misspecified model. σ e may be estimated correctly (σ e ) from the actual residual or incorrectly (σe) from the misspecified model. Two sets of ARL s (ARL and ARL ) are derived to separate the sources of errors.

17 Robustness: SCC Chart (φ, θ ) Shift SCC (φ, θ) ( ) ARL ARL SCC MR ARL (.475, 0) (.425,.05) (.525,.05) (.95,.9) (.9,.85) (.999,.95)

18 Robustness: SCC Chart (Continued) MR estimator for standard deviation causes the nonrobustness of the SCC chart. σ e has to be estimated from the residual rather than from the specified model. An estimation error of more than 3% can make a control chart nonrobust. SCC chart with correct standard deviation of residuals is very robust in both ARL 0 and ARL 1 in most stationary cases. SCC chart becomes nonrobust when the estimated model approaches nonstationary.

19 Sensitivity vs. Robustness: PID Charts Shift PID 1 PID 2 (φ, θ ) (φ, θ) ( ) ARL ARL ARL ARL (.475, 0) (.425,.05) (.525,.05) (.95,.9) (.9,.85) (.999,.95)

20 Sensitivity vs. Robustness (Continued) P ID 1 chart is not robust since it is too sensitive to small shifts. Nonzero I term helps to make PID charts robust for nearly nonstationary models.

21 Concluding Remarks A new class of control charts is proposed based on the relationship between PID controllers and their corresponding predictors. It includes the EWMA and M-M charts as special cases. PID charts can be tuned to have better performance than existing charts for correlated processes. Initial robustness study shows that an estimation error of more than 3% can make a control chart fail. This is critical and needs further investigation.

Chapter 6 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. Copyright (c) 2009 John Wiley & Sons, Inc.

Chapter 6 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. Copyright (c) 2009 John Wiley & Sons, Inc. 1 2 Learning Objectives Chapter 6 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. 3 4 5 Subgroup Data with Unknown μ and σ Chapter 6 Introduction to Statistical Quality

More information

Chapter 9 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. Copyright (c) 2009 John Wiley & Sons, Inc.

Chapter 9 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. Copyright (c) 2009 John Wiley & Sons, Inc. 1 2 Learning Objectives Chapter 9 Introduction to Statistical Quality Control, 6 th Edition by Douglas C. Montgomery. 3 9.1 The Cumulative Sum Control Chart Chapter 9 4 5 The Cumulative Sum Control Chart

More information

Introduction to Statistical Process Control. Managing Variation over Time

Introduction to Statistical Process Control. Managing Variation over Time EE9H F3 Introduction to Statistical Process Control The assignable cause. The Control Chart. Statistical basis of the control chart. Control limits, false and true alarms and the operating characteristic

More information

Fundamentals of Statistical Monitoring: The Good, Bad, & Ugly in Biosurveillance

Fundamentals of Statistical Monitoring: The Good, Bad, & Ugly in Biosurveillance Fundamentals of Statistical Monitoring: The Good, Bad, & Ugly in Biosurveillance Galit Shmuéli Dept of Decision & Info Technologies Robert H Smith School of Business University of Maryland, College Park

More information

Statistical Process Control and Computer Integrated Manufacturing. The Equipment Controller

Statistical Process Control and Computer Integrated Manufacturing. The Equipment Controller Statistical Process Control and Computer Integrated Manufacturing Run to Run Control, Real-Time SPC, Computer Integrated Manufacturing. 1 The Equipment Controller Today, the operation of individual pieces

More information

Advanced Engineering Statistics. Jay Liu Dept. Chemical Engineering PKNU

Advanced Engineering Statistics. Jay Liu Dept. Chemical Engineering PKNU Advanced Engineering Statistics Jay Liu Dept. Chemical Engineering PKNU Statistical Process Control (A.K.A Process Monitoring) What we will cover Reading: Textbook Ch.? ~? 2012-06-27 Adv. Eng. Stat., Jay

More information

Introduction to PID Control

Introduction to PID Control Introduction to PID Control Introduction This introduction will show you the characteristics of the each of proportional (P), the integral (I), and the derivative (D) controls, and how to use them to obtain

More information

AN AUTOREGRESSIVE BASED LFM REVERBERATION SUPPRESSION FOR RADAR AND SONAR APPLICATIONS

AN AUTOREGRESSIVE BASED LFM REVERBERATION SUPPRESSION FOR RADAR AND SONAR APPLICATIONS AN AUTOREGRESSIVE BASED LFM REVERBERATION SUPPRESSION FOR RADAR AND SONAR APPLICATIONS MrPMohan Krishna 1, AJhansi Lakshmi 2, GAnusha 3, BYamuna 4, ASudha Rani 5 1 Asst Professor, 2,3,4,5 Student, Dept

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

Experiment 9. PID Controller

Experiment 9. PID Controller Experiment 9 PID Controller Objective: - To be familiar with PID controller. - Noting how changing PID controller parameter effect on system response. Theory: The basic function of a controller is to execute

More information

Chapter 4 PID Design Example

Chapter 4 PID Design Example Chapter 4 PID Design Example I illustrate the principles of feedback control with an example. We start with an intrinsic process P(s) = ( )( ) a b ab = s + a s + b (s + a)(s + b). This process cascades

More information

Outline Process Control. Variation: Common and Special Causes. What is quality? Common and Special Causes (cont d)

Outline Process Control. Variation: Common and Special Causes. What is quality? Common and Special Causes (cont d) . Process Control Outline. Optimization. Statistical Process Control 3. In-Process Control What is quality? Variation: Common and Special Causes Pieces vary from each other: But they form a pattern that,

More information

SECTION 6: ROOT LOCUS DESIGN

SECTION 6: ROOT LOCUS DESIGN SECTION 6: ROOT LOCUS DESIGN MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider the following unity feedback system 3 433 Assume A proportional controller Design

More information

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Department of Statistics and Operations Research Undergraduate Programmes

Department of Statistics and Operations Research Undergraduate Programmes Department of Statistics and Operations Research Undergraduate Programmes OPERATIONS RESEARCH YEAR LEVEL 2 INTRODUCTION TO LINEAR PROGRAMMING SSOA021 Linear Programming Model: Formulation of an LP model;

More information

A Novel Adaptive Algorithm for

A Novel Adaptive Algorithm for A Novel Adaptive Algorithm for Sinusoidal Interference Cancellation H. C. So Department of Electronic Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong August 11, 2005 Indexing

More information

On Kalman Filtering. The 1960s: A Decade to Remember

On Kalman Filtering. The 1960s: A Decade to Remember On Kalman Filtering A study of A New Approach to Linear Filtering and Prediction Problems by R. E. Kalman Mehul Motani February, 000 The 960s: A Decade to Remember Rudolf E. Kalman in 960 Research Institute

More information

CUMULATIVE SUM CONTROL CHARTS FOR MONITORING PROCESS MEAN AND/OR VARIANCE

CUMULATIVE SUM CONTROL CHARTS FOR MONITORING PROCESS MEAN AND/OR VARIANCE CUMULATIVE SUM CONTROL CHARTS FOR MONITORING PROCESS MEAN AND/OR VARIANCE YANG MEI 2012 CUMULATIVE SUM CONTROL CHARTS FOR MONITORING PROCESS MEAN AND/OR VARIANCE YANG MEI SCHOOL OF MECHANICAL AND AEROSPACE

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

2. Basic Control Concepts

2. Basic Control Concepts 2. Basic Concepts 2.1 Signals and systems 2.2 Block diagrams 2.3 From flow sheet to block diagram 2.4 strategies 2.4.1 Open-loop control 2.4.2 Feedforward control 2.4.3 Feedback control 2.5 Feedback control

More information

Fuzzy PID Controllers for Industrial Applications

Fuzzy PID Controllers for Industrial Applications Fuzzy PID Controllers for Industrial Applications G. Ron Chen Lecture for EE 6452 City University of Hong Kong Summary Proportional-Integral-Derivative (PID) controllers are the most widely used controllers

More information

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators 374 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 2, MARCH 2003 Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators Jenq-Tay Yuan

More information

Industrial Statistics in the Era of Massive Data

Industrial Statistics in the Era of Massive Data Industrial Statistics in the Era of Massive Data David Steinberg Tel Aviv University With the assistance of Dan Apley Bart De Ketelaere Brad Jones Fugee Tsung Bill Woodall Outline 1. Classical Industrial

More information

IE 361 Module 13. Control Charts for Counts ("Attributes Data") Reading: Section 3.3 of Statistical Quality Assurance Methods for Engineers

IE 361 Module 13. Control Charts for Counts (Attributes Data) Reading: Section 3.3 of Statistical Quality Assurance Methods for Engineers IE 361 Module 13 Control Charts for Counts ("Attributes Data") Reading: Section 3.3 of Statistical Quality Assurance Methods for Engineers Prof. Steve Vardeman and Prof. Max Morris Iowa State University

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

Loop Design. Chapter Introduction

Loop Design. Chapter Introduction Chapter 8 Loop Design 8.1 Introduction This is the first Chapter that deals with design and we will therefore start by some general aspects on design of engineering systems. Design is complicated because

More information

Tikkala, Vesa-Matti; Zakharov, Alexey; Jämsä-Jounela, Sirkka-Liisa A method for detecting non-stationary oscillations in process plants

Tikkala, Vesa-Matti; Zakharov, Alexey; Jämsä-Jounela, Sirkka-Liisa A method for detecting non-stationary oscillations in process plants Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Tikkala, Vesa-Matti; Zakharov, Alexey;

More information

ECE 100: Introduction to Engineering Design. Project No. 1 Description

ECE 100: Introduction to Engineering Design. Project No. 1 Description ECE 100: Introduction to Engineering Design Project No. 1 Description Daniel E. Rivera Department of Chemical and Materials Engineering Arizona State University Some Course Business Items Please submit

More information

An Introduction to Proportional- Integral-Derivative (PID) Controllers

An Introduction to Proportional- Integral-Derivative (PID) Controllers An Introduction to Proportional- Integral-Derivative (PID) Controllers Stan Żak School of Electrical and Computer Engineering ECE 680 Fall 2017 1 Motivation Growing gap between real world control problems

More information

in Process Control System Presented by:

in Process Control System Presented by: Leakage Diagnosis in Process Control System Presented by: Haris M. Khalid Outline Problem Statement Leakage Diagnosis : A critical Issue A proposed Diagnostic Scheme Approaches Employed for Leakage Detection

More information

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using 1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using op-amps a. b. c. d. Solution: b) Explanation: The dotted

More information

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller Class 5 Competency Exam Round 1 Proportional Control Starts Friday, September 17 Ends Friday, October 1 Process Control Preliminaries The final control element, process and sensor/transmitter all have

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

DESIGN AND ANALYSIS OF TUNING TECHNIQUES USING DIFFERENT CONTROLLERS OF A SECOND ORDER PROCESS

DESIGN AND ANALYSIS OF TUNING TECHNIQUES USING DIFFERENT CONTROLLERS OF A SECOND ORDER PROCESS Journal of Electrical Engineering & Technology (JEET) Volume 3, Issue 1, January- December 2018, pp. 1 6, Article ID: JEET_03_01_001 Available online at http://www.iaeme.com/jeet/issues.asp?jtype=jeet&vtype=3&itype=1

More information

Linear Control Systems Lectures #5 - PID Controller. Guillaume Drion Academic year

Linear Control Systems Lectures #5 - PID Controller. Guillaume Drion Academic year Linear Control Systems Lectures #5 - PID Controller Guillaume Drion Academic year 2018-2019 1 Outline PID controller: general form Effects of the proportional, integral and derivative actions PID tuning

More information

Discretised PID Controllers. Part of a set of study notes on Digital Control by M. Tham

Discretised PID Controllers. Part of a set of study notes on Digital Control by M. Tham Discretised PID Controllers Part of a set of study notes on Digital Control by M. Tham CONTENTS Time Domain Design Laplace Domain Design Positional and Velocity Forms Implementation and Performance Choice

More information

MIX S 2 control chart. Linda Lee Ho University of São Paulo- Brazil Department of Production Engineering Polytechnic School Brazil

MIX S 2 control chart. Linda Lee Ho University of São Paulo- Brazil Department of Production Engineering Polytechnic School Brazil MIX S 2 control chart Linda Lee Ho University of São Paulo- Brazil Department of Production Engineering Polytechnic School Brazil University of São Paulo University of São Paulo University of São Paulo

More information

CDS 101/110: Lecture 8.2 PID Control

CDS 101/110: Lecture 8.2 PID Control CDS 11/11: Lecture 8.2 PID Control November 16, 216 Goals: Nyquist Example Introduce and review PID control. Show how to use loop shaping using PID to achieve a performance specification Discuss the use

More information

On the GNSS integer ambiguity success rate

On the GNSS integer ambiguity success rate On the GNSS integer ambiguity success rate P.J.G. Teunissen Mathematical Geodesy and Positioning Faculty of Civil Engineering and Geosciences Introduction Global Navigation Satellite System (GNSS) ambiguity

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Fuzzy auto-tuning for a PID controller

Fuzzy auto-tuning for a PID controller Fuzzy auto-tuning for a PID controller Alain Segundo Potts 1, Basilio Thomé de Freitas Jr 2. and José Carlos Amaro 2 1 Department of Telecommunication and Control. University of São Paulo. Brazil. e-mail:

More information

Key-Words: - Dynamic, Cement, Mill, Grinding, Model, Uncertainty, PID, tuning, robustness, sensitivity

Key-Words: - Dynamic, Cement, Mill, Grinding, Model, Uncertainty, PID, tuning, robustness, sensitivity Dynamic Behavior of Closed Grinding Systems and Effective PID Parameterization TSAMATSOULIS DIMITRIS Halyps Building Materials S.A., Italcementi Group 17 th Klm Nat. Rd. Athens Korinth GREECE d.tsamatsoulis@halyps.gr

More information

L09. PID, PURE PURSUIT

L09. PID, PURE PURSUIT 1 L09. PID, PURE PURSUIT EECS 498-6: Autonomous Robotics Laboratory Today s Plan 2 Simple controllers Bang-bang PID Pure Pursuit 1 Control 3 Suppose we have a plan: Hey robot! Move north one meter, the

More information

PID Controller tuning and implementation aspects for building thermal control

PID Controller tuning and implementation aspects for building thermal control PID Controller tuning and implementation aspects for building thermal control Kafetzis G. (Technical University of Crete) Patelis P. (Technical University of Crete) Tripolitakis E.I. (Technical University

More information

Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection

Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection Dynamic Data-Driven Adaptive Sampling and Monitoring of Big Spatial-Temporal Data Streams for Real-Time Solar Flare Detection Dr. Kaibo Liu Department of Industrial and Systems Engineering University of

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Improving a pipeline hybrid dynamic model using 2DOF PID

Improving a pipeline hybrid dynamic model using 2DOF PID Improving a pipeline hybrid dynamic model using 2DOF PID Yongxiang Wang 1, A. H. El-Sinawi 2, Sami Ainane 3 The Petroleum Institute, Abu Dhabi, United Arab Emirates 2 Corresponding author E-mail: 1 yowang@pi.ac.ae,

More information

1.2 Software tools for analysis and design of control systems Terminology. Formulation of the control problem... 11

1.2 Software tools for analysis and design of control systems Terminology. Formulation of the control problem... 11 Contents 1 Introduction 1 1.1 Theimportanceofcontrol... 1 1.2 Software tools for analysis and design of control systems... 5 1.3 Ashorthistoryofcontrol... 6 2 Introduction to feedback control 11 2.1 Introduction...

More information

Using Root Locus Modeling for Proportional Controller Design for Spray Booth Pressure System

Using Root Locus Modeling for Proportional Controller Design for Spray Booth Pressure System 1 University of Tennessee at Chattanooga Engineering 3280L Using Root Locus Modeling for Proportional Controller Design for Spray Booth Pressure System By: 2 Introduction: The objectives for these experiments

More information

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES CARSTEN JENTSCH AND MARKUS PAULY Abstract. In this supplementary material we provide additional supporting

More information

Model Based Predictive Peak Observer Method in Parameter Tuning of PI Controllers

Model Based Predictive Peak Observer Method in Parameter Tuning of PI Controllers 23 XXIV International Conference on Information, Communication and Automation Technologies (ICAT) October 3 November, 23, Sarajevo, Bosnia and Herzegovina Model Based Predictive in Parameter Tuning of

More information

Stock Market Indices Prediction Using Time Series Analysis

Stock Market Indices Prediction Using Time Series Analysis Stock Market Indices Prediction Using Time Series Analysis ALINA BĂRBULESCU Department of Mathematics and Computer Science Ovidius University of Constanța 124, Mamaia Bd., 900524, Constanța ROMANIA alinadumitriu@yahoo.com

More information

CHAPTER 11: DIGITAL CONTROL

CHAPTER 11: DIGITAL CONTROL When I complete this chapter, I want to be able to do the following. Identify examples of analog and digital computation and signal transmission. Program a digital PID calculation Select a proper execution

More information

A Comparison of Predictive Parameter Estimation using Kalman Filter and Analysis of Variance

A Comparison of Predictive Parameter Estimation using Kalman Filter and Analysis of Variance A Comparison of Predictive Parameter Estimation using Kalman Filter and Analysis of Variance Asim ur Rehman Khan, Haider Mehdi, Syed Muhammad Atif Saleem, Muhammad Junaid Rabbani Multimedia Labs, National

More information

Computer exercise 3: Normalized Least Mean Square

Computer exercise 3: Normalized Least Mean Square 1 Computer exercise 3: Normalized Least Mean Square This exercise is about the normalized least mean square (LMS) algorithm, a variation of the standard LMS algorithm, which has been the topic of the previous

More information

Modified ultimate cycle method relay auto-tuning

Modified ultimate cycle method relay auto-tuning Adaptive Control - Autotuning Structure of presentation: Relay feedback autotuning outline Relay feedback autotuning details How close is the estimate of the ultimate gain and period to the actual ultimate

More information

Designing PID for Disturbance Rejection

Designing PID for Disturbance Rejection Designing PID for Disturbance Rejection Control System Toolbox provides tools for manipulating and tuning PID controllers through the PID Tuner app as well as commandline functions. This example shows

More information

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique

Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive Applications by Using Soft Switching Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331 PP 4-44 www.iosrjournals.org Negative Output Multiple Lift-Push-Pull Switched Capacitor for Automotive

More information

IE 361 Module 28. EFC and SPM: One Thing Control Charting is Not. Reading: Section 3.6 Statistical Methods for Quality Assurance

IE 361 Module 28. EFC and SPM: One Thing Control Charting is Not. Reading: Section 3.6 Statistical Methods for Quality Assurance IE 361 Module 28 EFC and SPM: One Thing Control Charting is Not Reading: Section 3.6 Statistical Methods for Quality Assurance ISU and Analytics Iowa LLC (ISU and Analytics Iowa LLC) IE 361 Module 28 1

More information

Real-Time System Identification Using TMS320C30. Digital Signal Processor ABSTRACT I. INTRODUCTION

Real-Time System Identification Using TMS320C30. Digital Signal Processor ABSTRACT I. INTRODUCTION Real-Time System Identification Using TMS30C30 Digital Signal Processor Robert Weber, Sean Gregerson, and Winfred Anakwa Department of Electrical and Computer Engineering Bradley University Peoria, Illinois

More information

Acceptance Charts. Sample StatFolio: acceptance chart.sgp

Acceptance Charts. Sample StatFolio: acceptance chart.sgp Acceptance Charts Summary The Acceptance Charts procedure creates control charts with modified control limits based on both the standard deviation of the process and on specification limits for the variable

More information

Performance Characterization of IP Network-based Control Methodologies for DC Motor Applications Part II

Performance Characterization of IP Network-based Control Methodologies for DC Motor Applications Part II Performance Characterization of IP Network-based Control Methodologies for DC Motor Applications Part II Tyler Richards, Mo-Yuen Chow Advanced Diagnosis Automation and Control Lab Department of Electrical

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor Journal of Power and Energy Engineering, 2014, 2, 403-410 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24054 Simulation Analysis of Control

More information

Exam 2 Review. Review. Cathy Poliak, Ph.D. (Department of Mathematics ReviewUniversity of Houston ) Exam 2 Review

Exam 2 Review. Review. Cathy Poliak, Ph.D. (Department of Mathematics ReviewUniversity of Houston ) Exam 2 Review Exam 2 Review Review Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Exam 2 Review Exam 2 Review 1 / 20 Outline 1 Material Covered 2 What is on the exam 3 Examples

More information

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1

Chapter 11. Sampling Distributions. BPS - 5th Ed. Chapter 11 1 Chapter 11 Sampling Distributions BPS - 5th Ed. Chapter 11 1 Sampling Terminology Parameter fixed, unknown number that describes the population Example: population mean Statistic known value calculated

More information

ESA400 Electrochemical Signal Analyzer

ESA400 Electrochemical Signal Analyzer ESA4 Electrochemical Signal Analyzer Electrochemical noise, the current and voltage signals arising from freely corroding electrochemical systems, has been studied for over years. Despite this experience,

More information

Stabilizing and Robust FOPI Controller Synthesis for First Order Plus Time Delay Systems

Stabilizing and Robust FOPI Controller Synthesis for First Order Plus Time Delay Systems th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December -, Stabilizing and Robust FOPI Controller Synthesis for First Order Plus Time Delay Systems

More information

Surveillance and Calibration Verification Using Autoassociative Neural Networks

Surveillance and Calibration Verification Using Autoassociative Neural Networks Surveillance and Calibration Verification Using Autoassociative Neural Networks Darryl J. Wrest, J. Wesley Hines, and Robert E. Uhrig* Department of Nuclear Engineering, University of Tennessee, Knoxville,

More information

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

PID control of dead-time processes: robustness, dead-time compensation and constraints handling PID control of dead-time processes: robustness, dead-time compensation and constraints handling Prof. Julio Elias Normey-Rico Automation and Systems Department Federal University of Santa Catarina IFAC

More information

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive Process controls are necessary for designing safe and productive plants. A variety of process controls are used to manipulate processes, however the most simple and often most effective is the PID controller.

More information

Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator

Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator Characterizing the Frequency Response of a Damped, Forced Two-Mass Mechanical Oscillator Shanel Wu Harvey Mudd College 3 November 013 Abstract A two-mass oscillator was constructed using two carts, springs,

More information

Neural Network Predictive Controller for Pressure Control

Neural Network Predictive Controller for Pressure Control Neural Network Predictive Controller for Pressure Control ZAZILAH MAY 1, MUHAMMAD HANIF AMARAN 2 Department of Electrical and Electronics Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar,

More information

This page intentionally left blank

This page intentionally left blank Appendix E Labs This page intentionally left blank Dice Lab (Worksheet) Objectives: 1. Learn how to calculate basic probabilities of dice. 2. Understand how theoretical probabilities explain experimental

More information

PID-CONTROL FUNCTION AND APPLICATION

PID-CONTROL FUNCTION AND APPLICATION PID-CONTROL FUNCTION AND APPLICATION Hitachi Inverters SJ1 and L1 Series Deviation - P : Proportional operation I : Integral operation D : Differential operation Inverter Frequency command Fan, pump, etc.

More information

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process International Journal of Computer Science & Communication Vol. 1, No. 2, July-December 2010, pp. 161-165 Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process Pradeep Kumar

More information

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic Nasser Mohamed Ramli, Mohamad Syafiq Mohamad 1 Abstract Many types of controllers were applied on the continuous

More information

Economic Design of Control Chart Using Differential Evolution

Economic Design of Control Chart Using Differential Evolution Economic Design of Control Chart Using Differential Evolution Rukmini V. Kasarapu 1, Vijaya Babu Vommi 2 1 Assistant Professor, Department of Mechanical Engineering, Anil Neerukonda Institute of Technology

More information

The fundamentals of detection theory

The fundamentals of detection theory Advanced Signal Processing: The fundamentals of detection theory Side 1 of 18 Index of contents: Advanced Signal Processing: The fundamentals of detection theory... 3 1 Problem Statements... 3 2 Detection

More information

Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications

Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications Detection of Non-Random Patterns in Shewhart Control Charts: Methods and Applications A. Rakitzis and S. Bersimis Abstract- The main purpose of this article is the development and the study of runs rules

More information

PYKC 7 March 2019 EA2.3 Electronics 2 Lecture 18-1

PYKC 7 March 2019 EA2.3 Electronics 2 Lecture 18-1 In this lecture, we will examine a very popular feedback controller known as the proportional-integral-derivative (PID) control method. This type of controller is widely used in industry, does not require

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

Operations Management

Operations Management 10-1 Quality Control Operations Management William J. Stevenson 8 th edition 10-2 Quality Control CHAPTER 10 Quality Control McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson

More information

The Periodogram. Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean.

The Periodogram. Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean. The Periodogram Sample covariance between X and sin(2πωt + φ) is 1 T T 1 X t sin(2πωt + φ) X 1 T T 1 sin(2πωt + φ) Use identity sin(θ) = (e iθ e iθ )/(2i) and formulas for geometric sums to compute mean.

More information

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER PUTTA SABARINATH M.Tech (PE&D) K.O.R.M Engineering College, Kadapa Affiliated to JNTUA, Anantapur. ABSTRACT This paper proposes a

More information

IMPROVED AGC CONTROL IN COLD ROLLING USING LEARNING TECHNOLOGY. Gunnar BENGTSSON First Control Systems AB, Ängsgärdg. 4, S Västerås, Sweden

IMPROVED AGC CONTROL IN COLD ROLLING USING LEARNING TECHNOLOGY. Gunnar BENGTSSON First Control Systems AB, Ängsgärdg. 4, S Västerås, Sweden IMPROVED AGC CONTROL IN COLD ROLLING USING LEARNING TECHNOLOGY. Gunnar BENGTSSON First Control Systems AB, Ängsgärdg. 4, S-72130 Västerås, Sweden Summary. In this paper we will describe some substantial

More information

Design of stepper motor position control system based on DSP. Guan Fang Liu a, Hua Wei Li b

Design of stepper motor position control system based on DSP. Guan Fang Liu a, Hua Wei Li b nd International Conference on Machinery, Electronics and Control Simulation (MECS 17) Design of stepper motor position control system based on DSP Guan Fang Liu a, Hua Wei Li b School of Electrical Engineering,

More information

ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1

ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1 PERIODICA POLYTECHNICA SER. TRANSP. ENG. VOL. 27, NO. 1 2, PP. 3 16 (1999) ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1 István SZÁSZI and Péter GÁSPÁR Technical University of Budapest Műegyetem

More information

S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers

S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers S C Strength of Winding Exits and Leads : A critical area for Failure Prevention in Power Transformers by MANAN PANDYA SIEMENS LTD. manan.pandya@siemens.com 1 Introduction Short circuit withstand capability

More information

UAV: Design to Flight Report

UAV: Design to Flight Report UAV: Design to Flight Report Team Members Abhishek Verma, Bin Li, Monique Hladun, Topher Sikorra, and Julio Varesio. Introduction In the start of the course we were to design a situation for our UAV's

More information

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using Conventional Controller 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 Ajay Oraon, 1 Assistant Professor, Electrical Engineering Department, BIT Sindri,

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN-FRBA 2010 Adaptive Filters Stochastic Processes The term stochastic process is broadly used to describe a random process that generates sequential signals such as

More information

Efficiency and detectability of random reactive jamming in wireless networks

Efficiency and detectability of random reactive jamming in wireless networks Efficiency and detectability of random reactive jamming in wireless networks Ni An, Steven Weber Modeling & Analysis of Networks Laboratory Drexel University Department of Electrical and Computer Engineering

More information

Lecture 3. Direct Sequence Spread Spectrum Systems. COMM 907:Spread Spectrum Communications

Lecture 3. Direct Sequence Spread Spectrum Systems. COMM 907:Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 3 Direct Sequence Spread Spectrum Systems Performance of DSSSS with BPSK Modulation in presence of Interference (Jamming) Broadband Interference (Jamming):

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK ~ W I lilteubner L E Y A Partnership between

More information

Relay Feedback based PID Controller for Nonlinear Process

Relay Feedback based PID Controller for Nonlinear Process Relay Feedback based PID Controller for Nonlinear Process I.Thirunavukkarasu, Dr.V.I.George, * and R.Satheeshbabu Abstract This work is about designing a relay feedback based PID controller for a conical

More information

Summary... 1 Sample Data... 2 Data Input... 3 C Chart... 4 C Chart Report... 6 Analysis Summary... 7 Analysis Options... 8 Save Results...

Summary... 1 Sample Data... 2 Data Input... 3 C Chart... 4 C Chart Report... 6 Analysis Summary... 7 Analysis Options... 8 Save Results... C Chart Summary... 1 Sample Data... 2 Data Input... 3 C Chart... 4 C Chart Report... 6 Analysis Summary... 7 Analysis Options... 8 Save Results... 9 Summary The C Chart procedure creates a control chart

More information

Application of Proposed Improved Relay Tuning. for Design of Optimum PID Control of SOPTD Model

Application of Proposed Improved Relay Tuning. for Design of Optimum PID Control of SOPTD Model VOL. 2, NO.9, September 202 ISSN 2222-9833 ARPN Journal of Systems and Software 2009-202 AJSS Journal. All rights reserved http://www.scientific-journals.org Application of Proposed Improved Relay Tuning

More information

Oil metal particles Detection Algorithm Based on Wavelet

Oil metal particles Detection Algorithm Based on Wavelet Oil metal particles Detection Algorithm Based on Wavelet Transform Wei Shang a, Yanshan Wang b, Meiju Zhang c and Defeng Liu d AVIC Beijing Changcheng Aeronautic Measurement and Control Technology Research

More information