Model Based Predictive Peak Observer Method in Parameter Tuning of PI Controllers

Size: px
Start display at page:

Download "Model Based Predictive Peak Observer Method in Parameter Tuning of PI Controllers"

Transcription

1 23 XXIV International Conference on Information, Communication and Automation Technologies (ICAT) October 3 November, 23, Sarajevo, Bosnia and Herzegovina Model Based Predictive in Parameter Tuning of PI Controllers E. Sahin, M. Güzelkaya 2, İ.Eksin 3 Sürmene Abdullah Kanca Meslek Yüksek Okulu Karadeniz Teknik Üniversitesi, Trabzon esahin@ktu.edu.tr 2, 3 Kontrol ve Otomasyon Mühendisliği Bölümü İstanbul Teknik Üniversitesi, 34469, Maslak, İstanbul 2 guzelkaya@itu.edu.tr, 3 eksin@itu.edu.tr Abstract The peak observer method is firstly proposed and used for PID type fuzzy logic controllers. In this study, the peak observer method is adapted and then implemented to the classical PI control structure. The basic principle of the method is to change the controller parameters of the system using the peak values of the system response in order to improve system performance. Firstly, the peak observer method is reconsidered on a simple internal model control based classical PI controller. Later, the peak observer method is further developed and a new structure called model based peak observer is proposed and the parameters of PI controller are further tuned for a much better performance. The performances of the proposed methods are tested and compared on different systems based on simulations.. Introduction It is well known that most of the industrial processes are still using the conventional PID controllers because of their simple control structure, ease of design and effectiveness for linear systems. Furthermore, many studies have been proposed to determine the parameters of these controllers. [,2,3]. In the internal model control method, the parameters of the PID controller have been reduced to selecting a single parameter value [4,5]. Various methods exist to set the parameters of the fuzzy PID controllers as for the conventional PID controllers, [6,7,8,9,]. Self-tuning peak observer method uses the peak values of the system responses in order to adjust the scaling factors of PID type fuzzy logic controller in an online manner [6]. In this method, the system response is allowed to reach its first peak and then proportional, integral and derivative control parameters are changed in such way that the system response will be more damped while the overall gain of the system remains the same or unchanged. The peak observer method that has been developed for fuzzy PID controllers in the literature has been adapted to the classical PI controller structure for the first time within this study. The parameters of the classical PI controller are designed and set via internal model control method and the adjustment of these parameters are then accomplished using peak observer idea. Next, a simple modification on the peak observer method is done. Shortly, a factor called oscillation reduction factor is introduced which is a function of overshoot values. Then, the PI controller parameters are then multiplied by the new oscillation factor adjusted overshoot values. Finally, a new method called model based dictive peak observer is proposed in order to reduce the first peak value of the system response. Simulation studies are accomplished on various systems for the proposed methods in a comparative manner to illustrate their performances. 2. Internal Model Control Method The parameters of PI and PID controllers can be adjusted by internal model control method in which simple analytical rules are used by reducing the order of the model [4]. The system responses are observed to be more robust to noise and reference changes using this method. In this method, firstly, an approximate model of first or second order with dead time is obtained from the known system by applying the model reduction rules. PI controller parameters are then determined by using this approximate model. Formulas for the time constant and dead time value of the first order approximate system are shown below. 2 () 2 h Tj (2) 2 2 i 2 i3 j In the above exssions τ, τ 2 and θ are dominant time constants and dead time of the original system respectively, τ i is the other time constants, T is the zero of the system if it exists and h is the sampling time. As an example, the following second order system without dead time is chosen. G ( s) ( s )(.2s ) (3) /3/$3. 23 IEEE

2 In the above system, τ =, τ 2 =.2, θ and T are equal to zero since system has no zeros and dead time as seen. By using the system reduction formulas () and (2), the approximated model is obtained as given below. g ( s) (.s ).s e (4) The open loop, unit step responses of the approximated and original systems are shown in Figure. As it is seen from the figure, the system responses are very close to each other Figure : The comparison of the original and approximate model of the system. The relations for calculating parameters of the PI controller with internal model control are given below. These parameters are proportional constant k p and integral time constant τ i. k p i.5. 5 ' k (5) k min(,8 ) Original system response Approximated system resposne (6) In the above exssion k is the plant gain. The proportional constant (k p ) is calculated as 5.5 and integral time constant (τ i ) is calculated as.8 or integral constant (k i ) is using the above relations for the sample system. The unit step response of the system with the calculated PI parameters is shown in Figure Figure 2: System response with internal model control. As seen from Figure 2, there exists a 24% overshoot and some weak oscillations in the system response with internal model control. 3. PI Controller with Peak Observer The peak observer method is firstly used to tune the determined parameters of PID-type fuzzy logic controller in order to improve the system performance [6]. In this method, system response of the designed controller is observed until reaching its first peak. After the occurrence of the first peak, the controller parameters are tuned by multiplying them by a factor which depends on the overshoot value (δ). Thus, a correction process is initiated to the system beginning with the first peak and correction processes continues with every peak and reverse peak values.,6,4,2,8,6,4,2. Peak 2. Peak 4. Peak 3. Peak Figure 3: The absolute value of the error calculated at the peak and reverse peak moments.

3 The absolute value of the error calculated at the peak and reverse peak moments may be shown by δ j (j=,2,3, ). It is obvious that the δ j values are less than one and gradually decrease in time. For the PI control case, the δ j values are directly multiplied by the controller parameters to improve the system performance. As a result, the new controller parameters applied to the system after every peak and reverse peak moments are obtained as follows: k k p ( new ) k p ( old ) (7) j i ( new ) ki ( old ) (8) j The block diagram of the control system with peak observer is given in Figure Enhanced with Oscillation Reduction Factor Although a satisfactory performance improvement is obtained by the peak observer method, some sub-oscillations cannot be eliminated. In this section our goal is to obtain less oscillatory system responses by a simple modification on the peak observer method. For this purpose, different systems have been examined and it has been observed that a suitable oscillation reduction factor can be obtained that will multiply by the overshoot values which are used in equations (7) and (8) to improve the controller parameters at the first peak moment. In Table, the oscillation reduction factors for different overshoot values are sented. Table : The oscillation reduction factors and corresponding overshoot values with random control parameters. Overshoot value Oscillation reduction factor,9228,756,92,833,789,288,6372,5,484,2,4723,9,3263,2 Figure 4. The block diagram of the control system with peak observer. The unit step system responses for the system (3) that is obtained using the PI controller parameters calculated by (5) and (6) are shown in Figure 5 with and without being tuned by peak observer..4,73,4 As it is seen from Table, there is an inverse relationship between reducing factor and overshoot values. Using the data given in the table, the oscillation reduction factor can be exssed as a function of overshoot. The obtained fourth order function between oscillation reduction factor and the overshoot value is given in Figure PI Controller Response with PI Controller Response Oscillation reduction factor (ORF) ORF=3.*O *O *O *O Figure 5: Unit step system responses with and without peak observer method As it is seen from Figure 5, peak observer method reduces the oscillations on the system response Overshoot (O) Figure 6: The functional relation between the oscillation reduction factor and the overshoot values. In the cases in which the integral coefficient of the PI controller is very small, multiplication with another small oscillation reduction factor may cause steady state error within the system response due to diminishing integral term in the

4 controller. To avoid this situation, lower and upper limits should be used for the proportional and integral coefficients. The effect of the oscillation reduction factor is shown on Figure 7. In this figure, the system (3) is controlled by the PI controller with coefficients K p =34 and K i = PI controller PI controller with peak observer PI controller with ORF Internal model control system response Model based control system response Figure 7: Unit step responses of system (3) for PI controller, PI controller with peak observer, PI controller with oscillation reduction factored peak observer As it is seen from Figure 6, less oscillated system response is obtained with the proposed method. 5. Model Based In the peak observer method, the improvement on the system performance begins after the system response reaches to its first peak value. In this section, our main goal is to intervene before the first peak is reached. For this purpose, firstly, the overshoot value that would occur if the system had been run by the PI controller parameters set a priori with internal model controller design procedure is determined. Then, when the system response reaches the reference value the controller parameters are multiplied by (/ ). The aim of this multiplication is to increase the controller parameters. After the system response passes to the reference value, the error will have a negative sign. Thus, larger controller parameter values will have an overshoot reducing effect on the system response. After this operation, the peak observer method is still kept in use and the new controller parameters are set using the equations (7) and (8) to reduce the oscillations Figure 8: Unit step system response with internal model control and model based peak observer method. It seen that a system response with a reduced overshoot but still there exists certain oscillations if one does not apply peak observer method. The two related responses aer given in Figure 8. Therefore, as it has been mentioned above, the peak observer method has to be applied in order to settle down the oscillations further. The related system responses can be seen in Figure Model Based Control Model Based Control with Figure 9: The unit step system response with model-based peak observer method. When the controller parameters obtained by the equations (5) and (6) are applied to system (3) an overshoot of.24 has been observed. The system response that is obtained by multiplying the controller parameters (/ = /.24=4.6) is illustrated in Figure 8.

5 Figure : Unit step system responses with the model-based peak observer method and other control methods. In Figure, a comparative illustration of the responses due to various mentioned methods sented in this study is given and it is obvious that the settling time is shortened and oscillations are almost eliminated upon using model based peak observer method Internal Model Control Model Based Control Model Based wtih Peak observer method Internal model control Model based peak observer method Figure : Illustration of the disturbance effect on the system responses for the proposed methods. introduced which is a function of overshoot values and the PI controller parameters are then multiplied by the new oscillation factor adjusted overshoot values. Finally, the peak observer method is further developed and a new structure called model based peak observer is proposed and the parameters of PI controller are further tuned for a much better performance. The performances of the proposed methods are tested and compared on different systems based on simulations. In all of these simulations, it has been seen that the oscillations and overshoots occurring within the system has been decreased or diminished to a very reasonable degree. References [] Äström, K.J. and Hägglund, T., 995: PID Controllers: Theory, Design and Tuning, Instrument Society of America, Research Triangle Park, North Carolina. [2] O Dwyer, A., 2: A Summary of PI and PID Controller Tuning Rules For Processes With Time Delay. Part 2: PID Controller Tuning Rules. IFAC Digital Control: Past, Present and Future od PID Control,Teressa,Spain [3] Mudi, R.K. and Dey, C., 29: An Improved auto-tuning scheme for PID controllers, ISA Tras, [4] Skogestad S.,22: ''Simple analytic rules for model reduction and PID controller tuning'' Journal Process Control 3, [5] Riveria, D.E., Morari, M. & Skogestad, S., ''Internal model control. PID controller design'' Ind.En.Chem.Res., 25 : , 986. [6] Qiao, W.Z., Mizumato M., 996: ''PID type fuzzy controller and parameters adaptive method,'' Fuzzy Sets and Systems 78, [7] Mudi, R. K., & Pal, N. R. 999: A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems, 7(), 2 6. [8] Güzelkaya M., Eksin İ., Yesil E., 23: Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer, Engineering Applications of Artificial Intelligence, [9] Ahn, K. K., Truong, D. Q., 29: Online tuning fuzzy PID controller using robust extended Kalman filter. Journal of Process Control, 9, -23. [] Yesil E., Guzelkaya M., Eksin I., 24: Self-tuning fuzzy PID-type load-frequency controller. Electrical Conversion and Management. 45/3, The responses of the proposed methods due to a disturbance are illustrated in Figure. At the fifth second a unit step load disturbance of duration of. seconds is applied to the system and the proposed methods are observed to be also robust to disturbances. 6. Conclusion In this study, the peak observer method that has been developed for tuning of the fuzzy PID scaling factor has been adapted and then implemented to the classical PI control structure for the first time in literature. The basic principle of the peak observer method is to change the controller parameters of the system using the peak values of the system response in order to improve system performance. Next, a simple modification on the peak observer method is done. Shortly, a factor called oscillation reduction factor is

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Different Controller Terms

Different Controller Terms Loop Tuning Lab Challenges Not all PID controllers are the same. They don t all use the same units for P-I-and D. There are different types of processes. There are different final element types. There

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING 83 PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING B L Chua 1, F.S.Tai 1, N.A.Aziz 1 and T.S.Y Choong 2 1 Department of Process and Food Engineering, 2 Department of Chemical and Environmental

More information

Some Tuning Methods of PID Controller For Different Processes

Some Tuning Methods of PID Controller For Different Processes International Conference on Information Engineering, Management and Security [ICIEMS] 282 International Conference on Information Engineering, Management and Security 2015 [ICIEMS 2015] ISBN 978-81-929742-7-9

More information

New PID Tuning Rule Using ITAE Criteria

New PID Tuning Rule Using ITAE Criteria New PID Tuning Rule Using ITAE Criteria Ala Eldin Abdallah Awouda Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, 83100, Malaysia rosbi@fke.utm.my

More information

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department,

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department, OPTIMAL TUNING PARAMETERS OF PROPORTIONAL INTEGRAL CONTROLLER IN FEEDBACK CONTROL SYSTEMS. Gamze İŞ 1, ChandraMouli Madhuranthakam 2, Erdoğan Alper 1, Ibrahim H. Mustafa 2,3, Ali Elkamel 2 1 Chemical Engineering

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Comparative Study of PID Controller tuning methods using ASPEN HYSYS

Comparative Study of PID Controller tuning methods using ASPEN HYSYS Comparative Study of PID Controller tuning methods using ASPEN HYSYS Bhavatharini S #1, Abirami S #2, Arun Prem Anand N #3 # Department of Chemical Engineering, Sri Venkateswara College of Engineering

More information

PID Controller Optimization By Soft Computing Techniques-A Review

PID Controller Optimization By Soft Computing Techniques-A Review , pp.357-362 http://dx.doi.org/1.14257/ijhit.215.8.7.32 PID Controller Optimization By Soft Computing Techniques-A Review Neha Tandan and Kuldeep Kumar Swarnkar Electrical Engineering Department Madhav

More information

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger J. Appl. Environ. Biol. Sci., 7(4S)28-33, 2017 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Comparison Effectiveness of PID, Self-Tuning

More information

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller Philip A. Adewuyi Mechatronics Engineering Option, Department of Mechanical and Biomedical Engineering, Bells University

More information

Procidia Control Solutions Dead Time Compensation

Procidia Control Solutions Dead Time Compensation APPLICATION DATA Procidia Control Solutions Dead Time Compensation AD353-127 Rev 2 April 2012 This application data sheet describes dead time compensation methods. A configuration can be developed within

More information

Performance Analysis of PSO Optimized Fuzzy PI/PID Controller for a Interconnected Power System

Performance Analysis of PSO Optimized Fuzzy PI/PID Controller for a Interconnected Power System Performance Analysis of PSO Optimized Fuzzy PI/PID Controller for a Interconnected Power System 1 Pogiri Ramu, Anusha M 2, Gayatri B 3 and *Halini Samalla 4 Department of Electrical & Electronics Engineering

More information

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

PID control of dead-time processes: robustness, dead-time compensation and constraints handling PID control of dead-time processes: robustness, dead-time compensation and constraints handling Prof. Julio Elias Normey-Rico Automation and Systems Department Federal University of Santa Catarina IFAC

More information

Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating processes, Part IV: PID Plus First-Order Lag Controller

Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating processes, Part IV: PID Plus First-Order Lag Controller Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating processes, Part IV: PID Plus First-Order Lag Controller Galal Ali Hassaan Emeritus Professor, Department of Mechanical

More information

Review of PI and PID Controllers

Review of PI and PID Controllers Review of PI and PID Controllers Supriya V. Narvekar 1 Vasantkumar K. Upadhye 2 Assistant Professor 1,2 Angadi Institute of Technology and Management, Belagavi. Karnataka, India Abstract: This paper presents

More information

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process International Journal of Computer Science & Communication Vol. 1, No. 2, July-December 2010, pp. 161-165 Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process Pradeep Kumar

More information

THE general rules of the sampling period selection in

THE general rules of the sampling period selection in INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 206, VOL. 62, NO., PP. 43 48 Manuscript received November 5, 205; revised March, 206. DOI: 0.55/eletel-206-0005 Sampling Rate Impact on the Tuning of

More information

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method Engr. Joseph, E. A. 1, Olaiya O. O. 2 1 Electrical Engineering Department, the Federal Polytechnic, Ilaro, Ogun State,

More information

Understanding PID design through interactive tools

Understanding PID design through interactive tools Understanding PID design through interactive tools J.L. Guzmán T. Hägglund K.J. Åström S. Dormido M. Berenguel Y. Piguet University of Almería, Almería, Spain. {joguzman,beren}@ual.es Lund University,

More information

Consider the control loop shown in figure 1 with the PI(D) controller C(s) and the plant described by a stable transfer function P(s).

Consider the control loop shown in figure 1 with the PI(D) controller C(s) and the plant described by a stable transfer function P(s). PID controller design on Internet: www.pidlab.com Čech Martin, Schlegel Miloš Abstract The purpose of this article is to introduce a simple Internet tool (Java applet) for PID controller design. The applet

More information

ISSN Vol.04,Issue.06, June-2016, Pages:

ISSN Vol.04,Issue.06, June-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.06, June-2016, Pages:1117-1121 Design and Development of IMC Tuned PID Controller for Disturbance Rejection of Pure Integrating Process G.MADHU KUMAR 1, V. SUMA

More information

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller

Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Automatic Voltage Control For Power System Stability Using Pid And Fuzzy Logic Controller Mr. Omveer Singh 1, Shiny Agarwal 2, Shivi Singh 3, Zuyyina Khan 4, 1 Assistant Professor-EEE, GCET, 2 B.tech 4th

More information

Configuration Example of Temperature Control

Configuration Example of Temperature Control Controllers Technical Information Configuration Example of Control controllers The following is an example of the configuration of temperature control. Controller Relay Voltage Current SSR Cycle controller

More information

Modified ultimate cycle method relay auto-tuning

Modified ultimate cycle method relay auto-tuning Adaptive Control - Autotuning Structure of presentation: Relay feedback autotuning outline Relay feedback autotuning details How close is the estimate of the ultimate gain and period to the actual ultimate

More information

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found:

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found: 1 Controller uning o implement continuous control we should assemble a control loop which consists of the process/object, controller, sensors and actuators. Information about the control loop Find, read

More information

DC Motor Speed Control Using Machine Learning Algorithm

DC Motor Speed Control Using Machine Learning Algorithm DC Motor Speed Control Using Machine Learning Algorithm Jeen Ann Abraham Department of Electronics and Communication. RKDF College of Engineering Bhopal, India. Sanjeev Shrivastava Department of Electronics

More information

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Sensors & Transducers 2015 by IFSA Publishing, S. L. Sensors & Transducers 2015 by IFSA Publishing, S. L. http://www.sensorsportal.com Real Time Control of Non-Linear Conical Tank Sitanshu SATPATHY, Prabhu RAMANATHAN School of Electrical Engineering, VIT

More information

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using 1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using op-amps a. b. c. d. Solution: b) Explanation: The dotted

More information

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card N. KORONEOS, G. DIKEAKOS, D. PAPACHRISTOS Department of Automation Technological Educational Institution of Halkida Psaxna 34400,

More information

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE

CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 23 CHAPTER 2 PID CONTROLLER BASED CLOSED LOOP CONTROL OF DC DRIVE 2.1 PID CONTROLLER A proportional Integral Derivative controller (PID controller) find its application in industrial control system. It

More information

Automatic Feedforward Tuning for PID Control Loops

Automatic Feedforward Tuning for PID Control Loops 23 European Control Conference (ECC) July 7-9, 23, Zürich, Switzerland. Automatic Feedforward Tuning for PID Control Loops Massimiliano Veronesi and Antonio Visioli Abstract In this paper we propose a

More information

Design and Analysis for Robust PID Controller

Design and Analysis for Robust PID Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 4 Ver. III (Jul Aug. 2014), PP 28-34 Jagriti Pandey 1, Aashish Hiradhar 2 Department

More information

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR)

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR) Ajit Kumar Mittal M.TECH Student, B.I.T SINDRI Dhanbad, India Dr. Pankaj Rai Associate Professor, Department of Electrical

More information

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive Process controls are necessary for designing safe and productive plants. A variety of process controls are used to manipulate processes, however the most simple and often most effective is the PID controller.

More information

BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY

BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY 1 NASSER MOHAMED RAMLI, 2 MOHAMMED ABOBAKR BASAAR 1,2 Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi PETRONAS,

More information

Experiment 9. PID Controller

Experiment 9. PID Controller Experiment 9 PID Controller Objective: - To be familiar with PID controller. - Noting how changing PID controller parameter effect on system response. Theory: The basic function of a controller is to execute

More information

An Expert System Based PID Controller for Higher Order Process

An Expert System Based PID Controller for Higher Order Process An Expert System Based PID Controller for Higher Order Process K.Ghousiya Begum, D.Mercy, H.Kiren Vedi Abstract The proportional integral derivative (PID) controller is the most widely used control strategy

More information

Simulation of process identification and controller tuning for flow control system

Simulation of process identification and controller tuning for flow control system IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simulation of process identification and controller tuning for flow control system To cite this article: I M Chew et al 2017 IOP

More information

Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process

Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process https://doi.org/.399/ijes.v5i.6692 Wael Naji Alharbi Liverpool John Moores University, Liverpool, UK w2a@yahoo.com Barry Gomm

More information

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM J. Arulvadivu, N. Divya and S. Manoharan Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, Tamilnadu,

More information

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2

Load Frequency and Voltage Control of Two Area Interconnected Power System using PID Controller. Kavita Goswami 1 and Lata Mishra 2 e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 722-726(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace

Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace 289 Intelligent Fuzzy-PID Hybrid Control for Temperature of NH3 in Atomization Furnace Assistant Professor, Department of Electrical Engineering B.H.S.B.I.E.T. Lehragaga Punjab technical University Jalandhar

More information

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control 1 Deepa Shivshant Bhandare, 2 Hafiz Shaikh and 3 N. R. Kulkarni 1,2,3 Department of Electrical Engineering,

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

A simple method of tuning PID controller for Integrating First Order Plus time Delay Process

A simple method of tuning PID controller for Integrating First Order Plus time Delay Process International Journal of Electrical Engineering. ISSN 0974-2158 Volume 9, Number 1 (2016), pp. 77-86 International Research Publication House http://www.irphouse.com A simple method of tuning PID controller

More information

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station RESEARCH ARTICLE OPEN ACCESS Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station Shaunak Chakrabartty 1, Dr.I.Thirunavukkarasu 2 And Mukul Kumar Shahi 3 1 Department

More information

Design of Model Based PID Controller Tuning for Pressure Process

Design of Model Based PID Controller Tuning for Pressure Process ISSN (Print) : 3 3765 Design of Model Based PID Controller Tuning for Pressure Process A.Kanchana 1, G.Lavanya, R.Nivethidha 3, S.Subasree 4, P.Aravind 5 UG student, Dept. of ICE, Saranathan College Engineering,

More information

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems Abstract Available online at www.academicpaper.org Academic @ Paper ISSN 2146-9067 International Journal of Automotive Engineering and Technologies Special Issue 1, pp. 26 33, 2017 Original Research Article

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

Online Tuning of Set-point Regulator with a Blending Mechanism Using PI Controller

Online Tuning of Set-point Regulator with a Blending Mechanism Using PI Controller Turk J Elec Engin, VOL.6, NO.2 2008, c TÜBİTAK Online Tuning of Set-point Regulator with a Blending Mechanism Using PI Controller Engin YEŞİL, Müjde GÜZELKAYA, İbrahim EKSİN, Ö. Aydın TEKİN İstanbul Technical

More information

Embedded based Automation System for Industrial Process Parameters

Embedded based Automation System for Industrial Process Parameters Embedded based Automation System for Industrial Process Parameters Godhini Prathyusha 1 Lecturer, Department of Physics (P.G), Govt.Degree College, Anantapur, Andhra Pradesh, India 1 ABSTRACT: Automation

More information

Fuzzy PID Speed Control of Two Phase Ultrasonic Motor

Fuzzy PID Speed Control of Two Phase Ultrasonic Motor TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 12, No. 9, September 2014, pp. 6560 ~ 6565 DOI: 10.11591/telkomnika.v12i9.4635 6560 Fuzzy PID Speed Control of Two Phase Ultrasonic Motor Ma

More information

Active sway control of a gantry crane using hybrid input shaping and PID control schemes

Active sway control of a gantry crane using hybrid input shaping and PID control schemes Home Search Collections Journals About Contact us My IOPscience Active sway control of a gantry crane using hybrid input shaping and PID control schemes This content has been downloaded from IOPscience.

More information

Compensation of Dead Time in PID Controllers

Compensation of Dead Time in PID Controllers 2006-12-06 Page 1 of 25 Compensation of Dead Time in PID Controllers Advanced Application Note 2006-12-06 Page 2 of 25 Table of Contents: 1 OVERVIEW...3 2 RECOMMENDATIONS...6 3 CONFIGURATION...7 4 TEST

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL Experiment No. 1(a) : Modeling of physical systems and study of

More information

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1

Governor with dynamics: Gg(s)= 1 Turbine with dynamics: Gt(s) = 1 Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using Conventional Controller 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 Ajay Oraon, 1 Assistant Professor, Electrical Engineering Department, BIT Sindri,

More information

Designing PID for Disturbance Rejection

Designing PID for Disturbance Rejection Designing PID for Disturbance Rejection Control System Toolbox provides tools for manipulating and tuning PID controllers through the PID Tuner app as well as commandline functions. This example shows

More information

6.4 Adjusting PID Manually

6.4 Adjusting PID Manually Setting Display Parameter Setting Display Operation Display > PARAMETER or PARA key for 3 seconds (to [MODE] Menu Display) > Right arrow key (to [PID] Menu Display ) > SET/ENTER key (The setting parameter

More information

Introduction to PID Control

Introduction to PID Control Introduction to PID Control Introduction This introduction will show you the characteristics of the each of proportional (P), the integral (I), and the derivative (D) controls, and how to use them to obtain

More information

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System Journal of Advanced Computing and Communication Technologies (ISSN: 347-84) Volume No. 5, Issue No., April 7 Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System By S.Janarthanan,

More information

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC

TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC TWO AREA CONTROL OF AGC USING PI & PID CONTROL BY FUZZY LOGIC Puran Lal 1, Mainak Roy 2 1 M-Tech (EL) Student, 2 Assistant Professor, Department of EEE, Lingaya s University, Faridabad, (India) ABSTRACT

More information

Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System

Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 5 Issue 4 April 2016, Page No. 16202-16206 Design of PID Controller with Compensator using Direct Synthesis

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System PAPER ID: IJIFR / V1 / E10 / 031 www.ijifr.com ijifr.journal@gmail.com ISSN (Online): 2347-1697 An Enlightening Online Open Access, Refereed & Indexed Journal of Multidisciplinary Research Simulation and

More information

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor Journal of Power and Energy Engineering, 2014, 2, 403-410 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24054 Simulation Analysis of Control

More information

Neural Network Predictive Controller for Pressure Control

Neural Network Predictive Controller for Pressure Control Neural Network Predictive Controller for Pressure Control ZAZILAH MAY 1, MUHAMMAD HANIF AMARAN 2 Department of Electrical and Electronics Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar,

More information

Comparative Analysis of Controller Tuning Techniques for Dead Time Processes

Comparative Analysis of Controller Tuning Techniques for Dead Time Processes Comparative Analysis of Controller Tuning Techniques for Dead Time Processes Parvesh Saini *, Charu Sharma Department of Electrical Engineering Graphic Era Deemed to be University, Dehradun, Uttarakhand,

More information

A CASE STUDY ON DESIGN AND EVALUATION OF MODIFIED ADAPTIVE FUZZY PID CONTROLLER

A CASE STUDY ON DESIGN AND EVALUATION OF MODIFIED ADAPTIVE FUZZY PID CONTROLLER Volume 2, No. 12, December 2011 Journal of Global Research in Computer Science CASE STUDY & REPORT Available Online at www.jgrcs.info A CASE STUDY ON DESIGN AND EVALUATION OF MODIFIED ADAPTIVE FUZZY PID

More information

Loop Design. Chapter Introduction

Loop Design. Chapter Introduction Chapter 8 Loop Design 8.1 Introduction This is the first Chapter that deals with design and we will therefore start by some general aspects on design of engineering systems. Design is complicated because

More information

A Comparison And Evaluation of common Pid Tuning Methods

A Comparison And Evaluation of common Pid Tuning Methods University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) A Comparison And Evaluation of common Pid Tuning Methods 2007 Justin Youney University of Central Florida

More information

Comparative Analysis Between Fuzzy and PID Control for Load Frequency Controlled Power

Comparative Analysis Between Fuzzy and PID Control for Load Frequency Controlled Power This work by IJARBEST is licensed under a Creative Commons Attribution 4.0 International License. Available at https://www.ij arbest.com Comparative Analysis Between Fuzzy and PID Control for Load Frequency

More information

GUI Based Control System Analysis Using PID Controller for Education

GUI Based Control System Analysis Using PID Controller for Education Indonesian Journal of Electrical Engineering and Computer Science Vol. 3, No. 1, July 2016, pp. 91 ~ 101 DOI: 10.11591/ijeecs.v3.i1.pp91-101 91 GUI Based Control System Analysis Using PID Controller for

More information

A new fuzzy self-tuning PD load frequency controller for micro-hydropower system

A new fuzzy self-tuning PD load frequency controller for micro-hydropower system IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS A new fuzzy self-tuning PD load frequency controller for micro-hydropower system Related content - A micro-hydropower system model

More information

PID Controller tuning and implementation aspects for building thermal control

PID Controller tuning and implementation aspects for building thermal control PID Controller tuning and implementation aspects for building thermal control Kafetzis G. (Technical University of Crete) Patelis P. (Technical University of Crete) Tripolitakis E.I. (Technical University

More information

PID Controller Tuning Optimization with BFO Algorithm in AVR System

PID Controller Tuning Optimization with BFO Algorithm in AVR System PID Controller Tuning Optimization with BFO Algorithm in AVR System G. Madasamy Lecturer, Department of Electrical and Electronics Engineering, P.A.C. Ramasamy Raja Polytechnic College, Rajapalayam Tamilnadu,

More information

Problems of modelling Proportional Integral Derivative controller in automated control systems

Problems of modelling Proportional Integral Derivative controller in automated control systems MATEC Web of Conferences 112, 0501 (2017) DOI: 10.1051/ matecconf/20171120501 Problems of modelling Proportional Integral Derivative controller in automated control systems Anna Doroshenko * Moscow State

More information

ISSN: [Appana* et al., 5(10): October, 2016] Impact Factor: 4.116

ISSN: [Appana* et al., 5(10): October, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FUZZY LOGIC CONTROL BASED PID CONTROLLER FOR STEP DOWN DC-DC POWER CONVERTER Dileep Kumar Appana *, Muhammed Sohaib * Lead Application

More information

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller Class 5 Competency Exam Round 1 Proportional Control Starts Friday, September 17 Ends Friday, October 1 Process Control Preliminaries The final control element, process and sensor/transmitter all have

More information

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS Journal of Engineering Science and Technology EURECA 2013 Special Issue August (2014) 59-67 School of Engineering, Taylor s University CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION 1 K.LAKSHMI SOWJANYA, 2 L.RAVI SRINIVAS M.Tech Student, Department of Electrical & Electronics Engineering, Gudlavalleru Engineering College,

More information

MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS

MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS , pp.-109-113. Available online at http://www.bioinfo.in/contents.php?id=45 MPC AND RTDA CONTROLLER FOR FOPDT & SOPDT PROCESS SRINIVASAN K., SINGH J., ANBARASAN K., PAIK R., MEDHI R. AND CHOUDHURY K.D.

More information

Process controls in food processing

Process controls in food processing Process controls in food processing Module- 9 Lec- 9 Dr. Shishir Sinha Dept. of Chemical Engineering IIT Roorkee A well designed process ought to be easy to control. More importantly, it is best to consider

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control

A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control A PLC-based Self-tuning PI-Fuzzy Controller for Linear and Non-linear Drives Control Muhammad Arrofiq *1, Nordin Saad *2 Universiti Teknologi PETRONAS Tronoh, Perak, Malaysia muhammad_arrofiq@utp.edu.my

More information

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller.

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller. Volume 3, Issue 8, August 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Implementation

More information

AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM

AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM ISSN (Online) : 2454-7190 ISSN 0973-8975 AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM By 1 Debargha Chakraborty, 2 Binanda Kishore Mondal, 3 Souvik

More information

PID versus MPC Performance for SISO Dead-time Dominant Processes

PID versus MPC Performance for SISO Dead-time Dominant Processes Preprints of the th IFAC International Symposium on Dynamics and Control of Process Systems The International Federation of Automatic Control December -, 3. Mumbai, India PID versus MPC Performance for

More information

DC Motor Speed Control for a Plant Based On PID Controller

DC Motor Speed Control for a Plant Based On PID Controller DC Motor Speed Control for a Plant Based On PID Controller 1 Soniya Kocher, 2 Dr. A.K. Kori 1 PG Scholar, Electrical Department (High Voltage Engineering), JEC, Jabalpur, M.P., India 2 Assistant Professor,

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

Load Frequency Control of Multi-Area Power Systems Using PI, PID, and Fuzzy Logic Controlling Techniques

Load Frequency Control of Multi-Area Power Systems Using PI, PID, and Fuzzy Logic Controlling Techniques Load Frequency Control of Multi-Area Power Systems Using PI, PID, and Fuzzy Logic Controlling Techniques J.Syamala, I.E.S. Naidu Department of Electrical and Electronics, GITAM University, Rushikonda,

More information

Design of Fractional Order Proportionalintegrator-derivative. Loop of Permanent Magnet Synchronous Motor

Design of Fractional Order Proportionalintegrator-derivative. Loop of Permanent Magnet Synchronous Motor I J C T A, 9(34) 2016, pp. 811-816 International Science Press Design of Fractional Order Proportionalintegrator-derivative Controller for Current Loop of Permanent Magnet Synchronous Motor Ali Motalebi

More information

Fundamentals of Industrial Control

Fundamentals of Industrial Control Fundamentals of Industrial Control 2nd Edition D. A. Coggan, Editor Practical Guides for Measurement and Control Preface ix Contributors xi Chapter 1 Sensors 1 Applications of Instrumentation 1 Introduction

More information

Design of Joint Controller for Welding Robot and Parameter Optimization

Design of Joint Controller for Welding Robot and Parameter Optimization 97 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 2283-9216 The Italian

More information

The Matching Coefficients PID Controller

The Matching Coefficients PID Controller American Control Conference on O'Farrell Street, San Francisco, CA, USA June 9 - July, The Matching Coefficients PID Controller Anna Soffía Hauksdóttir, Sven Þ. Sigurðsson University of Iceland Abstract

More information

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1

1. Governor with dynamics: Gg(s)= 1 2. Turbine with dynamics: Gt(s) = 1 3. Load and machine with dynamics: Gp(s) = 1 Load Frequency Control of Two Area Power System Using PID and Fuzzy Logic 1 Rajendra Murmu, 2 Sohan Lal Hembram and 3 A.K. Singh 1 Assistant Professor, 2 Reseach Scholar, Associate Professor 1,2,3 Electrical

More information

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN )

IJITKM Special Issue (ICFTEM-2014) May 2014 pp (ISSN ) IJITKM Special Issue (ICFTEM-214) May 214 pp. 148-12 (ISSN 973-4414) Analysis Fuzzy Self Tuning of PID Controller for DC Motor Drive Neeraj kumar 1, Himanshu Gupta 2, Rajesh Choudhary 3 1 M.Tech, 2,3 Astt.Prof.,

More information