Doppler effect (Item No.: P )

Size: px
Start display at page:

Download "Doppler effect (Item No.: P )"

Transcription

1 Teacher's/Lecturer's Sheet Doppler effect (Item No.: P ) Curricular Relevance Area of Expertise: Physik Education Level: Klasse Topic: Akustik Subtopic: Schwingungen und Wellen Experiment: Doppler - Effekt Difficulty Preparation Time Execution Time Recommended Group Size Easy 10 Minutes 10 Minutes 1 Student Additional Requirements: Experiment Variations: Microphone PC Keywords: Task and equipment Information for teachers Additional information In the preliminary experiment, the Doppler effect as it is known from everyday life is recalled to the students mind in a qualitative manner based on an audible frequency, while the main experiment focuses on the case of a harmonically oscillating sound source. First, the frequency of the emitted signal is measured at rest. Then, the frequency shift that is caused by the oscillating Doppler transmitter is proved with the aid of the software. This is followed by the calculation of the velocity of movement of the sound source based on the experimental values. This calculated value is then compared to the theoretical value. This method is particularly elegant since it is a contactless velocity determination procedure that does not require any knowledge concerning the frequency of the emitted signal. In medical applications, for example, the Doppler effect is used to determine the blood stream velocity by way of ultrasound externally through the tissue of the patients. Notes concerning the execution of the experiments Part 1: Frequency shift in the audible range via a quick movement of the Doppler transmitter The effect can be observed better if the experiment is performed by two persons. Part 2: Determination of the frequency shift of the signal with the aid of the software The high frequency of the Doppler transmitter of 19 khz has been selected because - it ensures that the maximum frequency resolution can be achieved, - this pitch is not audible and, therefore, not irritating for humans, and - it can still be processed reliably by standard sound adapters. The frequency of the Doppler source is electronically stabilized to be constant. If you observe a noticeable descent of the frequency (more than 10 Hz in 3 minutes), this is due to a low voltage level (less than 6 V). Please change the battery of the Doppler source. The frequency of the Doppler source lies in a range of 19 khz ±10 % (deviation occurs because of tolerances in the electronic components). The indicated values in the measurement table are therefore to be regarded as examples. Notes concerning the execution of the experiment The experiment should be performed by two students. Derivation of the formula (moving sound source, observer at rest)

2 Teacher's/Lecturer's Sheet distance between the sound source and the observer at the beginning duration of an oscillation Now, the following 4 points of time are taken into consideration: The sound source starts to emit the first wave crest. The observer perceives wave number 1. The sound transmitter starts to emit the second wave crest. In the mean time, the sound transmitter has continued to move and has travelled the distance. As a result, the distance between the transmitter and receiver has been reduced to. The observer perceives wave number 2. This means that the observer perceives a wave with the period. If the time interval between two successive waves is, this corresponds to a frequency observers as well as the formula when both move can be derived.. Correspondingly, the formula for sound sources at rest and moving Derivation of the formula The frequency of the sound of the vehicle is when it approaches the observer, and it is when it recedes from the observer. A division of the two fractions leads to In the right-hand part of the last line, only the interval needs to be known in order to determine the velocity. The frequencies themselves are not required. The two tones of a fifth. for example, have the ratio 4:3, regardless of the frequencies of the emitted (original) signal. This, in turn, leads to the velocity

3 Doppler effect (Item No.: P ) Task and equipment Task When an ambulance passes by, the percei-ed (measured) signal of the siren becomes deeper. This means that the frequencies of the percei-ed sound become lower. This change in the percei-ed frequency of wa-es of all kinds, while the source and obser-er mo-e relati-e to each other, is called the Doppler effect. The Doppler effect is used in numerous technical applications, such as in traffic radar traps or for determining the speed at which the uni-erse is expanding. 1. When the Doppler transmitter emits a sound of 4.6 khz, mo-e it -ery quickly to and fro and describe what you hear. 2. Determine the -elocity of an oscillating spring pendulum with the aid of the Doppler effect: Let the Doppler transmitter with the 19 khz signal oscillate harmonically abo-e a microphone with the aid of a spring. Analyse the signal that was recorded by a microphone with the aid of a computer. Obser-e the Doppler effect and determine the maximum -elocity of the pendulum. Equipment Position No. Material Order No. Quantity 1 Software "Measure Acoustics", single user license Doppler source for TESS Acoustics Helical spring, 3 N/m Measuring tape, l = 2 m Additional material Set-up and procedure Microphone 1

4 Part 1: Frequency shift in the audible range via a quick movement of the Doppler transmitter Select a frequency of 4.6 khz. Mo-e the Doppler transmitter repeatedly and quickly towards and away from your ear or face (or the ear or face of your classmate). Note down how you percei-e the frequency of the signal in the report under "Result - Obser-ations 1". Part 2: Determination of the frequency shift of the 19 khz signal with the aid of the software Connect the microphone correctly to the computer. Open the audio settings of the PC. Set the recording sound -olume of the microphone to maximum. Start the software "measure Acoustics". Open the experiment "3.7a Doppler effect". Help 1: Open the experiment o-er-iew (Menu "File" "Open experiment" or select "Open experiment" on the menu bar. Open the folder "3 Applications in the field of medicine, music and e-eryday life" and select the experiment "3.7a Doppler effect, alternati-e 1". Select a frequency of 19 khz at the Doppler transmitter and switch it on. Note down the approximate -alues of the maximum of the frequency of the transmitted signal in the report under "Result - Obser-ations 2". Help 2: Select the magnifying glass "Zoom" in the corresponding diagram window. Press and hold the mouse button and drag a rectangle from the upper left-hand corner to the lower right-hand corner. Help 3: Use the crosshair "Mark" on the grey bar in the diagram window in order to determine the x--alue (here: frequency in Hz) and the y--alue (here: relati-e amplitude of the sound pressure in %) at the location of the crosshair. Read the two -alues off the status bar at the bottom of the screen (Fig. 3).

5 Fig. 2: Frequency analysis The frequency of the transmitted signal can also be read off the "Frequency analysis" window (freq = Hz) (Fig. 2) Now set the frequency range for the measurement in the "Frequency analysis" window (Fig. 2). The inter-al should co-er a range of about Hz around the maximum of the frequency of the transmitted signal. (Example: The measurement of the maximum of the frequency of the signal resulted in app Hz. Set the minimum frequency -alue to Hz and the maximum frequency -alue to Hz.) Perform the experiment as shown in Fig. 1. Fig. 3: Frequency spectrum of the recei-ed signal Student 1: Hold the spring on one end and attach the Doppler transmitter to the other end. The spring extends to a rest position. Place the microphone on the floor directly below the Doppler transmitter. Align the microphone upwards towards the transmitter. Student 2: Hold the measuring tape so that it approximately forms an extension of the spring. The zero of the scale must be located at the lower end of the Doppler transmitter. The measuring tape and the spring are slightly offset so that the Doppler transmitter can be deflected without touching the measuring tape. Acti-ate the frequency analysis by selecting "start". Student 2: Pull the Doppler transmitter 20 cm down towards the floor or microphone and release it. Describe what the cur-e in the diagram window "Spectrum of the signal at the audio input (microphone)" looks like and how it has changed after se-eral oscillations in the report under "Result - Obser-ations 3". Stop the measurement of the frequency after some oscillations by selecting "stop". Note down the highest (f max ) and the lowest (f min ) frequency -alue towards which the maximum of the cur-e shifts in the report under "Result - Table 1". Obser-e and note down how the maximum and minimum are connected to the deflection of the spring in the report under "Result - Obser-ations 4". Repeat these measurements se-eral times.

6

7 Report: Doppler effect Result - Observations 1 (10 Punkte) Part 1: Frequency shift in the audible range via a quick movement of the Doppler transmitter Describe how you perceive the sound during the movement of the transmitter. Result - Observations 2 (10 Punkte) Part 2: Determination of the frequency shift of the signal with the aid of the software Frequency of the transmitted signal at rest: f 0

8 Result - Observations 3 (10 Punkte) Describe how the greatest (smallest) value of the frequency f max (f min ) towards which the maximum shifts changes after several oscillations. Result - Table 1 (24 Punkte) Note down the greatest/smallest value of the frequency towards which the maximum of the curve shifts after only a few oscillations. f min in Hz f max in Hz f max - f min in Hz f max + f min in Hz Measurement 1 19, , ,528 1 Measurement 2 19, , ,523 1 Measurement 3 19, , ,518 1 Measurement 4 19, , ,518 1 Measurement 5 19, , ,519 1 Mean value 19, , ,521 1

9 Result - Observation 4 (10 Punkte) Describe how f max and f min are connected to the deflection of the spring. What is the deflection at which the frequency f 0 is received? Evaluation - Question 1 (10 Punkte) Explain how the change of the curve over time is connected to the deflection and velocity of the spring pendulum.

10 Evaluation - Question 2 (10 Punkte) Use the formula and the measured values of and in order to calculate the maximum velocity of the spring pendulum (c = 343 m/s). Use the mean values of and. When does the spring pendulum reach this velocity? Evaluation - Question 3 (10 Punkte) Calculate the theoretically greatest values of the velocity. at which the spring pendulum moves (spring constant D = 3 N/m, mass m = 0.11 kg). Compare the result to the value that was determined experimentally in 2.

11 Evaluation - Question 4 (10 Punkte).ased on the formula, explain why the Doppler effect can only be perceived at high frequencies or speed of the sound source.

12 Evaluation - Question 5 (10 Punkte) The Doppler effect can be used to calculate the speed of a passing car in a purely acoustic manner. This method works for the siren of an ambulance as well as for the sound of the engine of a car. The frequency of the rest signal is not required for this purpose. Example: The maximum within the frequency spectrum of a passing race car shifts from approximately f 1 = 960 Hz to approximately f 2 = 640 Hz. Calculate the speed at which the race car passes by the spectators stands. Note: With a bit of training, musical people can determine the intervals solely based on their sense of hearing. The formula that is stated above (rearranged so that only fractions of the type are included) can be used to estimate velocities rather precisely without any technical aids and without knowledge of the frequencies. The following table shows some intervals together with the associated velocities.

Determination of an unknown frequency (beats)

Determination of an unknown frequency (beats) Teacher's/Lecturer's Sheet Determination of an unknown frequency (beats) (Item No.: P6011900) Curricular Relevance Area of Expertise: Physics Education Level: Age 16-19 Topic: Acoustics Subtopic: Wave

More information

Reflection and absorption of sound (Item No.: P )

Reflection and absorption of sound (Item No.: P ) Teacher's/Lecturer's Sheet Reflection and absorption of sound (Item No.: P6012000) Curricular Relevance Area of Expertise: Physics Education Level: Age 14-16 Topic: Acoustics Subtopic: Generation, propagation

More information

Tute W4: DOPPLER EFFECT 1

Tute W4: DOPPLER EFFECT 1 Tute W4: DOPPLER EFFECT 1 A Doppler effect occurs wheneer there is relatie motion between a source and the receier. When the source and receier moe towards each other, the frequency detected by the receier

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Spring 2004 M2.1. Lab M2. Ultrasound: Interference, Wavelength, and Velocity

Spring 2004 M2.1. Lab M2. Ultrasound: Interference, Wavelength, and Velocity Spring 2004 M2.1 Lab M2. Ultrasound: Interference, Wavelength, and Velocity The purpose in this lab exercise is to become familiar with the properties of waves: frequency, wavelength, phase and velocity.

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

CHAPTER 16: Sound. Responses to Questions

CHAPTER 16: Sound. Responses to Questions CHAPTER 6: Sound Responses to Questions 3. Sound waes generated in the irst cup cause the bottom o the cup to ibrate. These ibrations excite ibrations in the stretched string which are transmitted down

More information

3) For vibrational motion, the maximum displacement from the equilibrium point is called the

3) For vibrational motion, the maximum displacement from the equilibrium point is called the WAVES & SOUND Conceptual Questions 1) The time for one cycle of a periodic process is called the 2) For a periodic process, the number of cycles per unit time is called the 3) For vibrational motion, the

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Lab M6: The Doppler Effect

Lab M6: The Doppler Effect M6.1 Lab M6: The Doppler Effect Introduction The purpose in this lab is to teach the basic properties of waves (amplitude, frequency, wavelength, and speed) using the Doppler effect. This effect causes

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

Waves and Sound. Review 10

Waves and Sound. Review 10 Review 10 Waves and Sound 1. A spring stretches by 25 cm when a 0.5 kg mass is suspended from its end. a. Determine the spring constant. b. How much elastic potential energy is stored in the spring when

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: DOPPLER EFFECT AND BEATS QUESTIONS A RADIO-CONTROLLED PLANE (2016;2) Mike is flying his radio-controlled plane. The plane flies towards him at constant speed, and then away from him with constant

More information

Acoustic Doppler Effect

Acoustic Doppler Effect Acoustic Doppler Effect TEP Related Topics Wave propagation, Doppler shift of frequency Principle If an emitter of sound or a detector is set into motion relative to the medium of propagation, the frequency

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

Properties and Applications

Properties and Applications Properties and Applications What is a Wave? How is it Created? Waves are created by vibrations! Atoms vibrate, strings vibrate, water vibrates A wave is the moving oscillation Waves are the propagation

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Acoustic Resonance Lab

Acoustic Resonance Lab Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We ll be measuring audio produced from

More information

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave?

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave? Today: Questions re: HW Examples - Waves Wave Properties > Doppler Effect > Interference & Beats > Resonance Examples: v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has

More information

PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT

PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT M. OPREA 1,2, CRISTINA MIRON 1* 1 University of Bucharest, Faculty of Physics, Bucharest, Romania 2 Mihai Viteazul

More information

PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT

PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT Romanian Reports in Physics, Vol. 68, No. 3, P. 1312 1325, 2016 PHYSICS EXPERIMENTS BASED ON DATA ACQUISITION THE LONGITUDINAL ACOUSTIC DOPPLER EFFECT M. OPREA 1,2, CRISTINA MIRON 1* 1 University of Bucharest,

More information

Physics 17 Part N Dr. Alward

Physics 17 Part N Dr. Alward Physics 17 Part N Dr. Alward String Waves L = length of string m = mass μ = linear mass density = m/l T = tension v = pulse speed = (T/μ) Example: T = 4.9 N μ = 0.10 kg/m v = (4.9/0.10) 1/2 = 7.0 m/s Shake

More information

Bike Generator Project

Bike Generator Project Bike Generator Project Each lab section will build 1 bike generator Each lab group will build 1 energy board Connect and test energy board and bike generator Create curriculum materials and demos to teach

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the frequency of a 2.5 m wave traveling at 1400 m/s? 1) 2)

More information

RLC-circuits with Cobra4 Xpert-Link

RLC-circuits with Cobra4 Xpert-Link Student's Sheet RLC-circuits with Cobra4 Xpert-Link (Item No.: P2440664) Curricular Relevance Area of Expertise: Physics Subtopic: Inductance, Electromagnetic Oscillations, AC Circuits Topic: Electricity

More information

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals 2.1. Announcements Be sure to completely read the syllabus Recording opportunities for small ensembles Due Wednesday, 15 February:

More information

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) PASCO scientific Physics Lab Manual: P20-1 Experiment P20: - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept Time SW Interface Macintosh file Windows file harmonic motion 45 m 700

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Sound Waves and Beats

Sound Waves and Beats Physics Topics Sound Waves and Beats If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Traveling Waves (Serway

More information

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Name Class Date Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P40

More information

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves)

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Vibrations Some Preliminaries Vibration = oscillation = anything that has a back-and-forth to it Eg. Draw a pen back and

More information

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical Sound Waves Dancing Liquids A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical wave. For example, a guitar string forces surrounding air molecules

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S Duration 3 hours NO AIDS ALLOWED Instructions: Please answer all questions in the examination booklet(s) provided. Completely

More information

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Variables introduced or used in chapter: Quantity Symbol Units Vector or Scalar? Spring Force Spring Constant Displacement Period

More information

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

Digital Signal Processing Audio Measurements Custom Designed Tools. Loudness measurement in sone (DIN ISO 532B)

Digital Signal Processing Audio Measurements Custom Designed Tools. Loudness measurement in sone (DIN ISO 532B) Loudness measurement in sone (DIN 45631 ISO 532B) Sound can be described with various physical parameters e.g. intensity, pressure or energy. These parameters are very limited to describe the perception

More information

Colour dispersion with a prism (Item No.: P )

Colour dispersion with a prism (Item No.: P ) Teacher's/Lecturer's Sheet Colour dispersion with a prism (Item No.: P1066100) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Farbenlehre Experiment:

More information

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave.

SOUND. Second, the energy is transferred from the source in the form of a longitudinal sound wave. SOUND - we can distinguish three aspects of any sound. First, there must be a source for a sound. As with any wave, the source of a sound wave is a vibrating object. Second, the energy is transferred from

More information

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to: CHAPTER 14 1. When a sine wave is used to represent a sound wave, the crest corresponds to: a. rarefaction b. condensation c. point where molecules vibrate at a right angle to the direction of wave travel

More information

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these.

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these. Instructor(s): C. Parks PHYSICS DEPARTMENT PHY2053, Summer 2015 EXAM 3 July 31, 2015 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

INTERNATIONAL BACCALAUREATE PHYSICS EXTENDED ESSAY

INTERNATIONAL BACCALAUREATE PHYSICS EXTENDED ESSAY INTERNATIONAL BACCALAUREATE PHYSICS EXTENDED ESSAY Investigation of sounds produced by stringed instruments Word count: 2922 Abstract This extended essay is about sound produced by stringed instruments,

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

Parts of a Wave. Mechanical Wave SPH3UW. Waves and Sound crest. : wavelength. equilibrium A: amplitude x(m) -3 y(m)

Parts of a Wave. Mechanical Wave SPH3UW. Waves and Sound crest. : wavelength. equilibrium A: amplitude x(m) -3 y(m) SPH3UW Waes and Sound Mechanical Wae A mechanical wae is a disturbance which propagates through a medium with little or no net displacement o the particles o the medium. A Pulse is a single disturbance

More information

Pulse Doppler Flow-Dop

Pulse Doppler Flow-Dop EDUCATION Pulse Doppler Flow-Dop GAMPT-50100 User Manual Fon: +49 (0) 3461-278 691-0 Fax: +49 (0) 3461-278 691-101 email: info@gampt.de Gesellschaft für Angewandte Medizinische Physik und Technik mbh (GAMPT

More information

Introduction to Equalization

Introduction to Equalization Introduction to Equalization Tools Needed: Real Time Analyzer, Pink noise audio source The first thing we need to understand is that everything we hear whether it is musical instruments, a person s voice

More information

3A: PROPERTIES OF WAVES

3A: PROPERTIES OF WAVES 3A: PROPERTIES OF WAVES Int roduct ion Your ear is complicated device that is designed to detect variations in the pressure of the air at your eardrum. The reason this is so useful is that disturbances

More information

TEAK Sound and Music

TEAK Sound and Music Sound and Music 2 Instructor Preparation Guide Important Terms Wave A wave is a disturbance or vibration that travels through space. The waves move through the air, or another material, until a sensor

More information

Music 171: Amplitude Modulation

Music 171: Amplitude Modulation Music 7: Amplitude Modulation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) February 7, 9 Adding Sinusoids Recall that adding sinusoids of the same frequency

More information

Lecture Presentation Chapter 16 Superposition and Standing Waves

Lecture Presentation Chapter 16 Superposition and Standing Waves Lecture Presentation Chapter 16 Superposition and Standing Waves Suggested Videos for Chapter 16 Prelecture Videos Constructive and Destructive Interference Standing Waves Physics of Your Vocal System

More information

Sonometer CAUTION. 1 Introduction. 2 Theory

Sonometer CAUTION. 1 Introduction. 2 Theory Sonometer Equipment Capstone, sonometer (with detector coil but not driver coil), voltage sensor, BNC to double banana plug adapter, set of hook masses, and 2 set of wires CAUTION In this experiment a

More information

(3) A traveling wave transfers, but it does not transfer.

(3) A traveling wave transfers, but it does not transfer. AP PHYSICS TEST 9 Waves and Sound (1) Give a good physics definition of a wave. (2) Any wave has as its source. (3) A traveling wave transfers, but it does not transfer. (4) What is a mechanical wave?

More information

ZONESCAN net Version 1.4.0

ZONESCAN net Version 1.4.0 ZONESCAN net.0 REV 1. JW ZONESCAN net 2 / 56 Table of Contents 1 Introduction... 5 1.1 Purpose and field of use of the software... 5 1.2 Software functionality... 5 1.3 Function description... 6 1.3.1

More information

Name: Date: Period: Physics: Study guide concepts for waves and sound

Name: Date: Period: Physics: Study guide concepts for waves and sound Name: Date: Period: Physics: Study guide concepts for waves and sound Waves Sound What is a wave? Identify parts of a wave (amplitude, frequency, period, wavelength) Constructive and destructive interference

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

Doppler Ultrasound. Amanda Watson.

Doppler Ultrasound. Amanda Watson. Doppler Ultrasound Amanda Watson amanda.watson1@nhs.net Before we start Why does blood appear black on a B-mode image? B-mode echoes vs. Doppler echoes In B-Mode we are concerned with the position and

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

SigCal32 User s Guide Version 3.0

SigCal32 User s Guide Version 3.0 SigCal User s Guide . . SigCal32 User s Guide Version 3.0 Copyright 1999 TDT. All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,

More information

Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube

Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube Measuring the Speed of Sound in Air Using a Smartphone and a Cardboard Tube arxiv:1812.06732v1 [physics.ed-ph] 17 Dec 2018 Abstract Simen Hellesund University of Oslo This paper demonstrates a variation

More information

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound Ultrasound Physics History: Ultrasound Ultrasound 1942: Dr. Karl Theodore Dussik transmission ultrasound investigation of the brain 1949-51: Holmes and Howry subject submerged in water tank to achieve

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions 2015 Question 9 (i) What are stationary waves? How are they produced? The amplitude of the wave at any point is constant // There is no net transfer

More information

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork.

Sound. Use a Microphone to analyze the frequency components of a tuning fork. Record overtones produced with a tuning fork. Sound PART ONE - TONES In this experiment, you will analyze various common sounds. You will use a Microphone connected to a computer. Logger Pro will display the waveform of each sound, and will perform

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

Functioning of the human eye (normal vision)

Functioning of the human eye (normal vision) Teacher's/Lecturer's Sheet Functioning of the human eye (normal vision) (Item No.: P1066700) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Das Auge

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

PHYSICS TOPICAL: Sound Test 1

PHYSICS TOPICAL: Sound Test 1 PHYSICS TOPICAL: Sound Test 1 Time: 23 Minutes* Number of Questions: 18 * The timing restrictions for the science topical tests are optional. If you are using this test for the sole purpose of content

More information

Physics B Waves and Sound Name: AP Review. Show your work:

Physics B Waves and Sound Name: AP Review. Show your work: Physics B Waves and Sound Name: AP Review Mechanical Wave A disturbance that propagates through a medium with little or no net displacement of the particles of the medium. Parts of a Wave Crest: high point

More information

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Physics 101 Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound Quiz: Monday Oct. 18; Chaps. 16,17,18(as covered in class),19 CR/NC Deadline Oct.

More information

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions.

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions. Sound Sound DEF: A pressure variation that is transmitted through matter. Link to pic of bell animation Collisions are high pressure / compressions. Pulls are low pressure / rarefacation. Have same properties

More information

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced.

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced. Sound How does the sound produced by a vibrating object in a medium reach your ear? - Vibrations in an object create disturbance in the medium and consequently compressions and rarefactions. Because of

More information

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear? Intext Exercise 1 How does the sound produced by a vibrating object in a medium reach your ear? When an vibrating object vibrates, it forces the neighbouring particles of the medium to vibrate. These vibrating

More information

Chapter 9: Wave Interactions

Chapter 9: Wave Interactions Chapter 9: Wave Interactions Mini Investigation: Media Changes, page 15 A. In each situation, the transmitted wave keeps the orientation of the original wave while the reflected wave has the opposite orientation.

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels A complex sound with particular frequency can be analyzed and quantified by its Fourier spectrum: the relative amplitudes

More information

Properties of Sound. Goals and Introduction

Properties of Sound. Goals and Introduction Properties of Sound Goals and Introduction Traveling waves can be split into two broad categories based on the direction the oscillations occur compared to the direction of the wave s velocity. Waves where

More information

Sound waves. septembre 2014 Audio signals and systems 1

Sound waves. septembre 2014 Audio signals and systems 1 Sound waves Sound is created by elastic vibrations or oscillations of particles in a particular medium. The vibrations are transmitted from particles to (neighbouring) particles: sound wave. Sound waves

More information

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music PHYSICS 102N Spring 2009 Week 6 Oscillations, Waves, Sound and Music Oscillations Any process that repeats itself after fixed time period T Examples: Pendulum, spring and weight, orbits, vibrations (musical

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

Sound of Music. This lab is due at the end of the laboratory period

Sound of Music. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Sound of Music This lab is due at the end of the laboratory period To create and play musical notes using standing waves in a pipe closed at one end.

More information

Recording your Voice Tutorials 2 - Setting the Computer Setting Audacity Wayne B. Dickerson

Recording your Voice Tutorials 2 - Setting the Computer Setting Audacity Wayne B. Dickerson Recording your Voice Tutorials 2 - Setting the Computer Setting Audacity Wayne B. Dickerson In this tutorial we want to insure that your computer and Audacity will do the best recording job they can do

More information

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels 8A. ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Last week we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves from the harmonic

More information

L 23 Vibrations and Waves [3]

L 23 Vibrations and Waves [3] L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

Waves-Wave Behaviors

Waves-Wave Behaviors 1. While playing, two children create a standing wave in a rope, as shown in the diagram below. A third child participates by jumping the rope. What is the wavelength of this standing wave? 1. 2.15 m 2.

More information

General purpose Signal generation and analysis. Well-equipped for field and lab the R&S Spectrum Rider

General purpose Signal generation and analysis. Well-equipped for field and lab the R&S Spectrum Rider General purpose Signal generation and analysis Well-equipped for field and lab the R&S Spectrum Rider 32 The new R&S Spectrum Rider makes spectrum analysis in the field and lab easier, faster and more

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

Math and Music: Understanding Pitch

Math and Music: Understanding Pitch Math and Music: Understanding Pitch Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA Topics in Mathematics: Math and Music MATH 110 Spring 2018 March

More information

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved. Section 1 Sound Waves Sound Waves Section 1 Sound Waves The Production of Sound Waves, continued Sound waves are longitudinal. Section 1 Sound Waves Frequency and Pitch The frequency for sound is known

More information

6. An oscillator makes four vibrations in one second. What is its period and frequency?

6. An oscillator makes four vibrations in one second. What is its period and frequency? Period and Frequency 19.1 The period of a pendulum is the time it takes to move through one cycle. As the ball on the string is pulled to one side and then let go, the ball moves to the side opposite the

More information

RESIT EXAM: WAVES and ELECTROMAGNETISM (AE1240-II) 10 August 2015, 14:00 17:00 9 pages

RESIT EXAM: WAVES and ELECTROMAGNETISM (AE1240-II) 10 August 2015, 14:00 17:00 9 pages Faculty of Aerospace Engineering RESIT EXAM: WAVES and ELECTROMAGNETISM (AE140-II) 10 August 015, 14:00 17:00 9 pages Please read these instructions first: 1) This exam contains 5 four-choice questions.

More information

Long-sightedness and its correction (Item No.: P )

Long-sightedness and its correction (Item No.: P ) Teacher's/Lecturer's Sheet Long-sightedness and its correction (Item No.: P1066900) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Das Auge Experiment:

More information

Chapter 7. Waves and Sound

Chapter 7. Waves and Sound Chapter 7 Waves and Sound What is wave? A wave is a disturbance that propagates from one place to another. Or simply, it carries energy from place to place. The easiest type of wave to visualize is a transverse

More information

CI-22. BASIC ELECTRONIC EXPERIMENTS with computer interface. Experiments PC1-PC8. Sample Controls Display. Instruction Manual

CI-22. BASIC ELECTRONIC EXPERIMENTS with computer interface. Experiments PC1-PC8. Sample Controls Display. Instruction Manual CI-22 BASIC ELECTRONIC EXPERIMENTS with computer interface Experiments PC1-PC8 Sample Controls Display See these Oscilloscope Signals See these Spectrum Analyzer Signals Instruction Manual Elenco Electronics,

More information

UNIT I FUNDAMENTALS OF ANALOG COMMUNICATION Introduction In the Microbroadcasting services, a reliable radio communication system is of vital importance. The swiftly moving operations of modern communities

More information

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY

PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY PHYSICS AND THE GUITAR JORDY NETZEL LAKEHEAD UNIVERSITY 2 PHYSICS & THE GUITAR TYPE THE DOCUMENT TITLE Wave Mechanics Starting with wave mechanics, or more specifically standing waves, it follows then

More information

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

CHAPTER 12 SOUND  ass/sound/soundtoc. html. Characteristics of Sound CHAPTER 12 SOUND http://www.physicsclassroom.com/cl ass/sound/soundtoc. html Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings

More information

Case study for voice amplification in a highly absorptive conference room using negative absorption tuning by the YAMAHA Active Field Control system

Case study for voice amplification in a highly absorptive conference room using negative absorption tuning by the YAMAHA Active Field Control system Case study for voice amplification in a highly absorptive conference room using negative absorption tuning by the YAMAHA Active Field Control system Takayuki Watanabe Yamaha Commercial Audio Systems, Inc.

More information