2.2.2 Summary of Tests Conducted Step Down Circuit. We have completed these four tests successfully.

Size: px
Start display at page:

Download "2.2.2 Summary of Tests Conducted Step Down Circuit. We have completed these four tests successfully."

Transcription

1 2.2.2 Summary of Tests Conducted We have completed these four tests successfully. 1. First, we were able to successfully set up a Raspberry Pi 3 as a server and have other devices go on to the blank html page through IP address. 2. Next, obtaining data from a sensor from a separate Raspberry Pi 3, we were able to send the data up to the server and store it in a blank.csv file we created beforehand. This process was obtained by using PHP and Python coding. 3. From the saved.csv file, we were able to open the file and extract the data to be able to display it onto a chart on the website. 4. Finally, we were able to obtain data from a handheld AeroQual Sensor using an analog to digital converter. Displaying the data in terminal on the RPi allowed us to calculate it to be in a 90% accuracy Figure 5: Temperature and Humidity. Ozone Test Step Down Circuit In order for the system to transmit data in remote locations, we need to make the system fully self-sufficient. We have a 12 V battery that is connected to a voltage regulator and 20-Watt Solar Panel s. We need to step down the voltage from 12 V (Battery), to 9V (Particulate Sensor) and to 5V (Raspberry Pi). We designed and printed a PCB Board, using Autodesk Eagle. Below are the schematics, and the finished PCB Board Design that was sent to Osh Park. Figure 6: is showing the final schematic that was printed by OSH Park. The schematic uses two LM317 as the voltage regulator, each are controlled by two resistors and capacitors of different values to output two voltages one at 5V and the other at 9V. Resistor & Capacitor Values R1: 1500 R2: 240 R3:1500 R4:720 C1 & C3:.1uF Figure 6: The PCB schematic C2 & C4: 1uF 17

2 When we tested the finished, and soldered product, it produced its threshold graph. We connected the voltage regulator to a DC Power Supply and stepped it down 1 Volt at a time, starting at 12 Volts. The voltage regulator maintains it wanted output of 5.11 V till the input voltage drops below 7V, and its wanted voltage of 9.6 volts is drops linearly when the input voltage is below 11 V shown in table 2, and graph 1. In the circuit, we originally wanted the voltage regulator to power the RPI, but since the RPI doesn t have a sleep mode, and runs continuously, it draws 5 watts consistently. In order to combat this issue, we then used the 5V output from the voltage regulator to power the PIC18F20 and relays to controls when the system turns on and off. The voltage regulator isn t used for its intended purpose, which was to power the RPI. Figure 7: The schematic of the Voltage Regulator Voltage (V) 5 Volts (V) 9 Volts (V) Table 2: Voltage Regulator at different Voltages Graph 1: Graph of Voltage Regulator Threshold 18

3 2.2.2 Power Chart of Components The charts below are showing the different sensors that are connected to the system. The columns are representing the input voltage, current, watt/hours and then energy used over a 24- hour period of time. SENSOR POWER CHART Input Voltage (V) Current (Amps) Watt (W) 24 Hour Period (Wh per day) RPI MODEL 3 B 5.1 V.8 A 4 W 96 Wh W/ CO2 & T/H CO2 5 V.2 A 1 W RPI Wh PARTICLE 9 V.003 A.027 W 6.48 Wh SENSOR OZONE 12 V.5 A 6 W 144 Wh TEMPERATURE/ HUMIDITY SERVO (2) COMBINED VOLTAGE REGULATOR 3.5 V.0003 A 1 mw RPI Wh 4.8 V each.0089 A.0178 A.427 W.854 W 10.2 Wh 24.5 Wh 12 V.08 A.96 W W h Total: 1.4 A W Wh RPI (AMPS) GPIO WIFI HDMI LED S KEYBOARDS RPI CONSERVATION Boot:.75 amps, Idle:.35 amps 50 ma across all Pins Individual GPIO Pin draws 16mA ~ 40 ma 50 ma 5 ma Per 100 ma ma dependent on type 19

4 2.2.3 Simulated MATLAB Solar Panel Tests To better understand the system and the power that all the devices consume, we need to know how much power our solar panels will produce in order to see if this system will be selfsufficient. The below to the right show the IV curve, and the Power Curves that were generated with MATLAB, and MATLAB Simulink [6]. Within the simulation, they are the most ideal conditions for a solar panel, the standard test conditions (STC) which temperature reference is approximately 25 C for the working solar panel, 1000 irradiance (W/m 2 ) in order to produce the results on the back of the panel. Within the block diagrams in Simulink, the charge of an electron (1.6e -19 C), Boltzmann s constant (1.38e -23 ), with the atmospheric density (AM) at 1.5, and the energy bandgap of a cell are used (1.12eV) are used alongside the different irradiances the solar panel (1000 W/m 2 ), and the open circuit voltage (22.5 V), and short circuit current (5.75 A). The max output voltage that was produced in MATLAB Simulink is Volts, while the max power of the solar panels is at Watts. Graph 2: Simulated IV Curve Graph 3: Simulated Power Curve 20

5 2.2.4 Solar Panel Tests The solar panels test was conducted perpendicular to the sun. A 100 ohm, and a 50 ohm rheostat was used in the circuit portrayed in the image below to change the resistance within the circuit in order to generate a IV curve of the 100 Watt Solar Panels. The IV curve will specifically will tell us the performance of the solar panels. The temperature during the test was approximately 76 degrees, and there was little haze in the sky. It took approximately 30 minutes to obtain all the voltages and record Figure 8: Solar Panel Test Schematic the resistances of the rheostats and the voltages. Over the duration of obtaining data, the sun angle had shifted, and the haze in the sky had become greater. As a solar panel heats up, they lose their efficiency. Under the most ideal conditions, the performance of the solar panel will produce what the statistics are located on the backside of the panel, which for our case is 100 Watts. Solar panels are most efficient when they are in cold temperatures and perpendicular to the sun. In our case, the panel had been in the sun for about an hour before performing the test. Therefore, when we tested for an open circuit, the solar panel (Voc) should produce about 22.5 Volts, but in our case, the open circuit voltage read 22.5 and the voltage dropped about.01 volts every 5 seconds due to the heating up of the solar panel. Below is the graph that was produced in said conditions. The max voltage is V, and the max power that is produced within this test is approximately watts. Resistance (Ω) Voltage (V) Current (I) Power (W) Open Circuit Short Table 3: Solar Panel IV Curve 21

6 Generated from the table above is the IV Curve, and the power curve of the 100 Watt Solar Panels. The simulated results from Matlab Simulink gave us a reading of Volts, and the measured reading was volts, which is a difference of.71 volts between simulation and tested. The max power that was tested was approximately watts, and the simulated max power was watts, giving a difference of 63 watts. 3 IV CURVE CHARACTERISTICS VOLTAGE (VOLTS) CURRENT (AMPS) Graph 4: Tested IV Curve The chart below is depicting the max power at 35 watts which is lower than the ratings on the back of the panel and from the simulated tests. The simulated test was the most ideal conditions and the rating on the solar panel is the standard test conditions (STC). On the next page, it shows the differences between the simulated and tested POWER CHARACTERISTICS POEWR (WATTS) VOLTAGE (VOLTS) Graph 5: Tested Power Curve

7 The chart below is showing the simulated versus tested results, the simulated results use MATALB Simulink under ideal conditions, while the tested is how we tested in the environment and the different factors that contributed to our data. Table 4: Simulated VS Tested IV Curve 23

8 2.2.5 Photometer Tests In our project there are a lot of obstacles to overcome. One of them is to deal with one of the several sensors that we obtained which is the Global Photometer. The downside of this device is that it requires itself to be pointed at the sun for it to obtain accurate data readings. Brainstorming for several ideas that wouldn t add vast amounts of complexity. An idea that we ve come up with is to use the already existing ten channel analog to digital converter and use it for taking data in from photoresistors placed at each corner of the face of the sensor. Each value would then be added to its corresponding position in terms of left and right as well as up and down. These are then calculated and placed through comparators which move the position of the servos to align the sensor to the point of highest intensity. The sensitivity and threshold values can easily be changed in the software. Upon execution, it was present that the main controller of our project, the Raspberry Pi 3 model B did not easily support high quality drivers for the servos or PWM signals. The movement is limited to increments of approximately 15 degrees in any direction. Another problem that may be faced is the duration of the signal that is sent to the servos. It is noted that servos move from a command that they are given in terms of a signal. The length of the duty cycle refers to the position. In most cases the signal is between 1 and 2 ms. 1 denoting the position of 0 and 2 at 180 as noted in figure B. Therefore, the servo holds the position as long as the signal is present and enters limp once the PWM signal is stopped. In our case we did not want to have it running constantly due to the imperfect PWM present in the Raspberry Pi which will lead to the inevitable jerking. Figure 9: Servo Signals 24

Laboratory 2: PV Module Current-Voltage Measurements

Laboratory 2: PV Module Current-Voltage Measurements Laboratory 2: PV Module Current-Voltage Measurements Introduction and Background The current-voltage (I-V) characteristic is the basic descriptor of photovoltaic device performance. A fundamental understanding

More information

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW Student s name... Course Semester. Year.Reg.No FREDERICK UNIVERSITY 1 EXPERIMENT 3 OHMS LAW Equipment needed Equipment needed Circuits

More information

Solar Mobius Final Report. Team 1821 Members: Advisor. Sponsor

Solar Mobius Final Report. Team 1821 Members: Advisor. Sponsor Senior Design II ECE 4902 Spring 2018 Solar Mobius Final Report Team 1821 Members: James Fisher (CMPE) David Pettibone (EE) George Oppong (EE) Advisor Professor Ali Bazzi Sponsor University of Connecticut

More information

Total Hours Registration through Website or for further details please visit (Refer Upcoming Events Section)

Total Hours Registration through Website or for further details please visit   (Refer Upcoming Events Section) Total Hours 110-150 Registration Q R Code Registration through Website or for further details please visit http://www.rknec.edu/ (Refer Upcoming Events Section) Module 1: Basics of Microprocessor & Microcontroller

More information

Photovoltaic Systems I EE 446/646

Photovoltaic Systems I EE 446/646 Photovoltaic Systems I EE 446/646 PV System Types & Goal Types of PV Systems: Grid-tied systems that feed power directly into the utility grid, Residential Systems (1-10kW) Commercial/industrial systems

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

Maximum Power Point (Student Handout) (The Principles of Optimizing Photovoltaic Cell Power Output)

Maximum Power Point (Student Handout) (The Principles of Optimizing Photovoltaic Cell Power Output) Name(s): Maximum Power Point (Student Handout) (The Principles of Optimizing Photovoltaic Cell Power Output) Part 1: Investigating How a Photovoltaic (PV) System Works Take a look at the animation of a

More information

CHAPTER 5 MPPT OF PV MODULE BY CONVENTIONAL METHODS

CHAPTER 5 MPPT OF PV MODULE BY CONVENTIONAL METHODS 85 CHAPTER 5 MPPT OF PV MODULE BY CONVENTIONAL METHODS 5.1 PERTURB AND OBSERVE METHOD It is well known that the output voltage and current and also the output power of PV panels vary with atmospheric conditions

More information

Make: Sensors. Tero Karvinen, Kimmo Karvinen, and Ville Valtokari. (Hi MAKER MEDIA SEBASTOPOL. CA

Make: Sensors. Tero Karvinen, Kimmo Karvinen, and Ville Valtokari. (Hi MAKER MEDIA SEBASTOPOL. CA Make: Sensors Tero Karvinen, Kimmo Karvinen, and Ville Valtokari (Hi MAKER MEDIA SEBASTOPOL. CA Table of Contents Preface xi 1. Raspberry Pi 1 Raspberry Pi from Zero to First Boot 2 Extract NOOBS*.zip

More information

Project Name: SpyBot

Project Name: SpyBot EEL 4924 Electrical Engineering Design (Senior Design) Final Report April 23, 2013 Project Name: SpyBot Team Members: Name: Josh Kurland Name: Parker Karaus Email: joshkrlnd@gmail.com Email: pbkaraus@ufl.edu

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

Introduction to Electronics and Breadboarding Circuits

Introduction to Electronics and Breadboarding Circuits Introduction to Electronics and Breadboarding Circuits What we're going to learn today: What is an electronic circuit? What kind of power is needed for these projects? What are the fundamental principles

More information

Pololu Dual G2 High-Power Motor Driver for Raspberry Pi

Pololu Dual G2 High-Power Motor Driver for Raspberry Pi Pololu Dual G2 High-Power Motor Driver for Raspberry Pi 24v14 /POLOLU 3752 18v18 /POLOLU 3750 18v22 /POLOLU 3754 This add-on board makes it easy to control two highpower DC motors with a Raspberry Pi.

More information

Adafruit 16-Channel PWM/Servo HAT & Bonnet for Raspberry Pi

Adafruit 16-Channel PWM/Servo HAT & Bonnet for Raspberry Pi Adafruit 16-Channel PWM/Servo HAT & Bonnet for Raspberry Pi Created by lady ada Last updated on 2018-03-21 09:56:10 PM UTC Guide Contents Guide Contents Overview Powering Servos Powering Servos / PWM OR

More information

MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL

MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL Ahmad Saudi Samosir Department of Electrical Engineering, University of Lampung, Bandar Lampung, Indonesia E-Mail: ahmad.saudi@eng.unila.ac.id

More information

Main improvements are increased number of LEDs and therefore better temperature indication with one Celsius degree increments.

Main improvements are increased number of LEDs and therefore better temperature indication with one Celsius degree increments. LED Thermometer V2 (Fahrenheit/Celsius/±1 ) PART NO. 2244754 After completing this great starter kit, users will have a nice interactive LED thermometer. You will learn one principle how temperature can

More information

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm 44 CHAPTER-3 DESIGN ASPECTS OF DC-DC BOOST CONVERTER IN SOLAR PV SYSTEM BY MPPT ALGORITHM 3.1 Introduction In the

More information

Understanding Solar Energy Teacher Page

Understanding Solar Energy Teacher Page Understanding Solar Energy Teacher Page Photovoltaic Power Output & I-V Curves Student Objective The student: will be able to determine the voltage, current and power of a given PV module given the efficiency,

More information

PV Charger System Using A Synchronous Buck Converter

PV Charger System Using A Synchronous Buck Converter PV Charger System Using A Synchronous Buck Converter Adriana FLORESCU Politehnica University of Bucharest,Spl. IndependenŃei 313 Bd., 060042, Bucharest, Romania, adriana.florescu@yahoo.com Sergiu OPREA

More information

Maintenance Manual INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Mobile Communications LBI-30869L

Maintenance Manual INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Mobile Communications LBI-30869L L Mobile Communications INTERNAL BATTERY STANDBY CHARGER OPTION BC01 (9669), 9670 AND 9771 (FOR MASTR II STATIONS) Printed in U.S.A. Maintenance Manual TABLE OF CONTENTS Page DESCRIPTION...................................................

More information

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias

Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias Effects of Incident Optical Power on the Effective Reverse Bias Voltage of Photodiodes This Lab Fact demonstrates how the effective reverse bias voltage on a photodiode can vary as a function of the incident

More information

Design and Implementation of MPPT for a PV System using Variance Inductance Method

Design and Implementation of MPPT for a PV System using Variance Inductance Method International Journal of Engineering Works Kambohwell Publisher Enterprises Vol. 5, Issue 5, PP. 105-110, May 2018 www.kwpublisher.com Design and Implementation of MPPT for a PV System using Variance Inductance

More information

Engineering Thesis Project. By Evgeniya Polyanskaya. Supervisor: Greg Crebbin

Engineering Thesis Project. By Evgeniya Polyanskaya. Supervisor: Greg Crebbin Simulation of the effects of global irradiance, ambient temperature and partial shading on the output of the photovoltaic module using MATLAB/Simulink and ICAP/4 A report submitted to the School of Engineering

More information

[Sathya, 2(11): November, 2013] ISSN: Impact Factor: 1.852

[Sathya, 2(11): November, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Modelling and Simulation of Solar Photovoltaic array for Battery charging Application using Matlab-Simulink P.Sathya *1, G.Aarthi

More information

Experiment A6 Solar Panels I Procedure

Experiment A6 Solar Panels I Procedure Experiment A6 Solar Panels I Procedure Deliverables: Full Lab Report (due the week after break), checked lab notebook Overview In Week I, you will characterize the solar panel circuits (as shown in Figure

More information

Adafruit 16-Channel PWM/Servo HAT for Raspberry Pi

Adafruit 16-Channel PWM/Servo HAT for Raspberry Pi Adafruit 16-Channel PWM/Servo HAT for Raspberry Pi Created by lady ada Last updated on 2017-05-19 08:55:07 PM UTC Guide Contents Guide Contents Overview Powering Servos Powering Servos / PWM OR Current

More information

MSK4310 Demonstration

MSK4310 Demonstration MSK4310 Demonstration The MSK4310 3 Phase DC Brushless Speed Controller hybrid is a complete closed loop velocity mode controller for driving a brushless motor. It requires no external velocity feedback

More information

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK Team Members: Andrew Blanford Matthew Drummond Krishnaveni Das Dheeraj Reddy 1 Abstract: The goal of the project was to build an interactive and mobile

More information

PS2-SMC-06 Servo Motor Controller Interface

PS2-SMC-06 Servo Motor Controller Interface PS2-SMC-06 Servo Motor Controller Interface PS2-SMC-06 Full Board Version PS2 (Playstation 2 Controller/ Dual Shock 2) Servo Motor Controller handles 6 servos. Connect 1 to 6 Servos to Servo Ports and

More information

Onwards and Upwards, Your near space guide

Onwards and Upwards, Your near space guide The NearSys One-Channel LED Photometer is based on Forest Mims 1992 article (Sun Photometer with Light-emitting Diodes as Spectrally selective Filters) about using LEDs as a narrow band photometer. The

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Solar Cell Characterization

Solar Cell Characterization UNIVERSITY OF IDAHO ELECTRICAL AND COMPUTER ENGINEERING Solar Cell Characterization PIV Curves and Analysis for SCPD Device Valerie Barry, Anthony Kanago, Benjamin Sprague 9/1/211 VLSI Sensors Research

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Comparative Study of P&O and InC MPPT Algorithms

Comparative Study of P&O and InC MPPT Algorithms American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-12, pp-402-408 www.ajer.org Research Paper Open Access Comparative Study of P&O and InC MPPT Algorithms

More information

T6+ Analog I/O Section. Installation booklet for part numbers: 5/4-80A-115 5/4-90A-115 5/4-80A /4-90A-1224

T6+ Analog I/O Section. Installation booklet for part numbers: 5/4-80A-115 5/4-90A-115 5/4-80A /4-90A-1224 T and T+ are trade names of Trol Systems Inc. TSI reserves the right to make changes to the information contained in this manual without notice. publication /4A115MAN- rev:1 2001 TSI All rights reserved

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Remote Sensor Manual. User Guide. Revision A.0

Remote Sensor Manual. User Guide. Revision A.0 Remote Sensor Manual User Guide Revision A.0 Contents Remote Sensor User Manual... 3 Connecting Power... 3 Basic Sensor Operation... 4 Basic Sensor Operation with Data Logging... 5 Sensor Calibration Button...

More information

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment.

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment. Physics 222 Name: Exercise 6: Mr. Blinky This exercise is designed to help you wire a simple circuit based on the Arduino microprocessor, which is a particular brand of microprocessor that also includes

More information

ENGR4300 Test 3A Fall 2002

ENGR4300 Test 3A Fall 2002 1. 555 Timer (20 points) Figure 1: 555 Timer Circuit For the 555 timer circuit in Figure 1, find the following values for R1 = 1K, R2 = 2K, C1 = 0.1uF. Show all work. a) (4 points) T1: b) (4 points) T2:

More information

Teacher Page. Understanding Solar Energy. Photovoltaic Power Output & I-V Curves. Student Objective

Teacher Page. Understanding Solar Energy. Photovoltaic Power Output & I-V Curves. Student Objective Understanding Solar Energy Teacher Page Photovoltaic Power Output & I-V Curves Student Objective The student: current and power of a given PV module will be able to determine the size of the array necessary

More information

Experiment 4 Topic: Solar Panels Week A Procedure

Experiment 4 Topic: Solar Panels Week A Procedure Experiment 4 Topic: Solar Panels Week A Procedure Laboratory Assistant: Email: Office/Hours E-4 Website: Shirui Luo Sluo1@nd.edu 12/03 12/06 from 5:00 pm to 6:00 pm in Fitzpatrick B14 http://www.nd.edu/~jott/measurements_lab/e4/

More information

Embedded systems. Exercise session 1. Introduction and project presentation

Embedded systems. Exercise session 1. Introduction and project presentation Embedded systems Exercise session 1 Introduction and project presentation Introduction Contact Mail : michael.fonder@ulg.ac.be Office : 1.82a, Montefiore Website for the exercise sessions and the project

More information

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e. Name: Multiple Choice 1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.) 8 2.) The output of an OR gate with

More information

Chapter-4. Fixed and Variable Step-Size Perturb Voltage MPPT Control for Photovoltaic System

Chapter-4. Fixed and Variable Step-Size Perturb Voltage MPPT Control for Photovoltaic System 58 Chapter-4 Fixed and Variable Step-Size Perturb Voltage MPPT Control for Photovoltaic System 4.1 Introduction Owing to the global development toward the design and analysis development of PV systems

More information

ILD2035. MR16 3 W Control Board with ILD2035. Application Note AN214. Industrial and Multimarket. Revision: 1.0 Date:

ILD2035. MR16 3 W Control Board with ILD2035. Application Note AN214. Industrial and Multimarket. Revision: 1.0 Date: ILD2035 MR16 3 W Control Board with ILD2035 Application Note AN214 Revision: 1.0 Date: Industrial and Multimarket Edition Published by Infineon Technologies AG 81726 Munich, Germany 2011 Infineon Technologies

More information

CodeBug I2C Tether Documentation

CodeBug I2C Tether Documentation CodeBug I2C Tether Documentation Release 0.3.0 Thomas Preston January 21, 2017 Contents 1 Installation 3 1.1 Setting up CodeBug........................................... 3 1.2 Install codebug_i2c_tether

More information

Pacific Antenna Easy TR Switch

Pacific Antenna Easy TR Switch Pacific Antenna Easy TR Switch Kit Description The Easy TR Switch is an RF sensing circuit with a double pole double throw relay that can be used to automatically switch an antenna between a separate receiver

More information

Bohunt School (Wokingham) Internet of Things (IoT) and Node-RED

Bohunt School (Wokingham) Internet of Things (IoT) and Node-RED This practical session should be a bit of fun for you. It involves creating a distance sensor node using the SRF05 ultrasonic device. How the SRF05 works Here s a photo of the SRF05. The silver metal cans

More information

Mars Rover: System Block Diagram. November 19, By: Dan Dunn Colin Shea Eric Spiller. Advisors: Dr. Huggins Dr. Malinowski Mr.

Mars Rover: System Block Diagram. November 19, By: Dan Dunn Colin Shea Eric Spiller. Advisors: Dr. Huggins Dr. Malinowski Mr. Mars Rover: System Block Diagram November 19, 2002 By: Dan Dunn Colin Shea Eric Spiller Advisors: Dr. Huggins Dr. Malinowski Mr. Gutschlag System Block Diagram An overall system block diagram, shown in

More information

ABSTRACT AN IMPROVED MAXIMUM POWER POINT TRACKING ALGORITHM USING FUZZY LOGIC CONTROLLER FOR PHOTOVOLTAIC APPLICATIONS

ABSTRACT AN IMPROVED MAXIMUM POWER POINT TRACKING ALGORITHM USING FUZZY LOGIC CONTROLLER FOR PHOTOVOLTAIC APPLICATIONS ABSTRACT AN IMPROVED MAXIMUM POWER POINT TRACKING ALGORITHM USING FUZZY LOGIC CONTROLLER FOR PHOTOVOLTAIC APPLICATIONS This thesis proposes an advanced maximum power point tracking (MPPT) algorithm using

More information

Carnegie Mellon University. Embedded Systems Design TeleTouch. Cristian Vallejo, Chelsea Kwong, Elizabeth Yan, Rohan Jadvani

Carnegie Mellon University. Embedded Systems Design TeleTouch. Cristian Vallejo, Chelsea Kwong, Elizabeth Yan, Rohan Jadvani Carnegie Mellon University Embedded Systems Design 18-549 TeleTouch Cristian Vallejo, Chelsea Kwong, Elizabeth Yan, Rohan Jadvani May 15, 2017 1 Abstract Haptic technology recreates the sense of touch

More information

Lecture (04) Uncontrolled Rectifier Circuits

Lecture (04) Uncontrolled Rectifier Circuits Lecture (04) Uncontrolled Rectifier Circuits By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 2018, EPC403 Power Electronics introduction Power rectifiers converts AC to DC which uses power diodes

More information

Minty Amp assembly instructions

Minty Amp assembly instructions Minty Amp assembly instructions Parts Required: LM386 OpAmp (included in kit) 2x 100uf (min 16v) Electrolytic Capacitors (included in kit) 0.1uf Ceramic Capacitor (included in kit) 0.047uf Ceramic Capacitor

More information

Critical Design Review: M.A.D. Dog. Nicholas Maddy Timothy Dayley Kevin Liou

Critical Design Review: M.A.D. Dog. Nicholas Maddy Timothy Dayley Kevin Liou Critical Design Review: M.A.D. Dog Nicholas Maddy Timothy Dayley Kevin Liou Project Description M.A.D. Dog is an autonomous robot with the following functionalities: - Map and patrol an office environment.

More information

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch

Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Controlling Obstacle Avoiding And Live Streaming Robot Using Chronos Watch Mr. T. P. Kausalya Nandan, S. N. Anvesh Kumar, M. Bhargava, P. Chandrakanth, M. Sairani Abstract In today s world working on robots

More information

Implementation of P&O MPPT for PV System with using Buck and Buck-Boost Converters

Implementation of P&O MPPT for PV System with using Buck and Buck-Boost Converters ISSN: 2349-2503 Implementation of P&O MPPT for PV System with using Buck and Buck-Boost Converters V R Bharambe 1 Prof K M Mahajan 2 1 (PG Student, Elect Engg Dept, K,C.E.C.O.E.&I.T, Jalgaon, India, vaishalibharambe5@gmail.com)

More information

Maximum Power Point Tracking for Photovoltaic Systems

Maximum Power Point Tracking for Photovoltaic Systems Maximum Power Point Tracking for Photovoltaic Systems Ankita Barange 1, Varsha Sharma 2 1,2Dept. of Electrical and Electronics, RSR-RCET, Bhilai, C.G., India ---------------------------------------------------------------------------***---------------------------------------------------------------------------

More information

Data Sheet APDS Signal Conditioning IC for Optical Proximity Sensors. Description. Features. Applications. Application Support Information

Data Sheet APDS Signal Conditioning IC for Optical Proximity Sensors. Description. Features. Applications. Application Support Information APDS-9700 Signal Conditioning IC for Optical Proximity Sensors Data Sheet Description APDS-9700 is a signal conditioning IC that enhances the performance and robustness of the optical sensors used for

More information

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter EE283 Electrical Measurement Laboratory Laboratory Exercise #7: al Counter Objectives: 1. To familiarize students with sequential digital circuits. 2. To show how digital devices can be used for measurement

More information

SELF-SUSTAINABLE SOLAR STREET LIGHT CHARGING

SELF-SUSTAINABLE SOLAR STREET LIGHT CHARGING SELF-SUSTAINABLE SOLAR STREET LIGHT CHARGING By Anirban Banerjee Priya Mehta Surya Teja Tadigadapa Final Report for ECE 445, Senior Design, Fall 2017 TA: Zipeng Wang December 2017 Project No. 4 Abstract

More information

Voltage Control of Hybrid Photovoltaic/ Battery Power System for Low Voltage DC Micro grid

Voltage Control of Hybrid Photovoltaic/ Battery Power System for Low Voltage DC Micro grid Voltage Control of Hybrid Photovoltaic/ Battery Power System for Low Voltage DC Micro grid Aalborg University Institute of Energy Technology DRAGOS OVIDIU OLTEANU 0 P a g e Master Thesis Voltage Control

More information

Introduction to the Op-Amp

Introduction to the Op-Amp Purpose: ENGR 210/EEAP 240 Lab 5 Introduction to the Op-Amp To become familiar with the operational amplifier (OP AMP), and gain experience using this device in electric circuits. Equipment Required: HP

More information

Aztec Micro-grid Power System

Aztec Micro-grid Power System Aztec Micro-grid Power System Grid Energy Storage and Harmonic Distortion Demonstration Project Proposal Submitted to: John Kennedy Design Co. Ltd, San Diego, CA Hardware: Ammar Ameen Bashar Ameen Aundya

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

Exam Practice Problems (3 Point Questions)

Exam Practice Problems (3 Point Questions) Exam Practice Problems (3 Point Questions) Below are practice problems for the three point questions found on the exam. These questions come from past exams as well additional questions created by faculty.

More information

Data Sheet. APDS-9700 Signal Conditioning IC for Optical Proximity Sensors. Features. Description. Applications. Application Support Information

Data Sheet. APDS-9700 Signal Conditioning IC for Optical Proximity Sensors. Features. Description. Applications. Application Support Information APDS-9700 Signal Conditioning IC for Optical Proximity Sensors Data Sheet Description APDS-9700 is a signal conditioning IC that enhances the performance and robustness of the optical sensors used for

More information

LM386 - Low Voltage Audio Power Amplifier

LM386 - Low Voltage Audio Power Amplifier LM386 - Low Voltage Audio Power Amplifier Features Typical Application Battery operation Minimum external parts Wide supply voltage range: 4V-12V or 5V-18V Low quiescent current drain: 4mA Voltage gains

More information

Street Light Controller

Street Light Controller Street Light Controller Table of Content Introduction:...3 Scope of the problem:...3 What we can do..?...3 The Device Light Controller:...4 Circuit Diagram:...4 Circuit Description:...5 PCB Layout design...5

More information

ScaleRCHelis.com Light Controller Users Manual

ScaleRCHelis.com Light Controller Users Manual This manual is for both the 450 and High Power light controllers. The difference between the two controllers: The 450 controller is only single input allowing the user to directly control the landing and

More information

Using LME49810 to Build a High-Performance Power Amplifier Part I

Using LME49810 to Build a High-Performance Power Amplifier Part I Using LME49810 to Build a High-Performance Power Amplifier Part I Panson Poon Introduction Although switching or Class-D amplifiers are gaining acceptance to audiophile community, linear amplification

More information

High-Efficiency, 40V White LED Driver with Dimming Control

High-Efficiency, 40V White LED Driver with Dimming Control High-Efficiency, 40V White LED Driver with Dimming Control Description The is a step-up DC/DC converter specifically designed for driving WLEDs with a constant current. The can drive up 10 white LEDs in

More information

LED Field Strength Indicator Kit

LED Field Strength Indicator Kit LED Field Strength Indicator Kit Description The Field Strength Indicator kit from Qrpkits.com provides a visual way to monitor RF fields through the brightness of an LED. It will respond to RF fields

More information

STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM

STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM Dumitru POP, Radu TÎRNOVAN, Liviu NEAMŢ, Dorin SABOU Technical University of Cluj Napoca dan.pop@enm.utcluj.ro Key words: photovoltaic system, solar

More information

Pacific Antenna - Easy TR Switch

Pacific Antenna - Easy TR Switch Pacific Antenna - Easy TR Switch Kit Description The Easy TR Switch is an RF sensing switch that can be used to switch an antenna between a receiver and transmitter. It also has a second switched pair

More information

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already!

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already! introduction to Digital Electronics Install the Arduino IDE 1.8.5 on your laptop if you haven t already! Electronics can add interactivity! Any sufficiently advanced technology is indistinguishable from

More information

STARTER / GENERATOR MOTOR CONTROLLER

STARTER / GENERATOR MOTOR CONTROLLER MIL-PRF-38534 AND 38535 CERTIFIED FACILITY M.S.KENNEDY CORP. STARTER / GENERATOR MOTOR CONTROLLER 4413 (315) 701-6751 FEATURES: 28V/160A Brushless DC motor control capability. 28V/90A Synchronous Boost

More information

Preliminary. Four Channel Constant Current LED Driver

Preliminary. Four Channel Constant Current LED Driver Preliminary Four Channel Constant Current LED Driver FEATURES Cost Effective LED driver Constant current output ideal for Driving LED strings Four Channel LED Driver provides matched LED current Current

More information

operation, continuous current in L, very low ripple in Vout, Vin is constant, and = + V out

operation, continuous current in L, very low ripple in Vout, Vin is constant, and = + V out EE462L, Power Electronics, Test 2. Name You must show all work to receive credit. October 15, 2010 Problem 1. Boost Converter. Use the standard assumptions (i.e., lossless, steady-state Vout 1 operation,

More information

Electronic Concepts and Troubleshooting 101. Experiment 1

Electronic Concepts and Troubleshooting 101. Experiment 1 Electronic Concepts and Troubleshooting 101 Experiment 1 o Concept: What is the capacity of a typical alkaline 1.5V D-Cell? o TS: Assume that a battery is connected to a 20Ω load and the voltage across

More information

Figure 1. System Block Diagram with Subsystems

Figure 1. System Block Diagram with Subsystems Blind Me With SciEEnce EJ Hinlo, Caitlin Gruis, Chris Ravasio First Design Review System Block Diagram Figure 1. System Block Diagram with Subsystems Subsystem Communication Diagram Figure 2. Subsystem

More information

LEVEL A: SCOPE AND SEQUENCE

LEVEL A: SCOPE AND SEQUENCE LEVEL A: SCOPE AND SEQUENCE LESSON 1 Introduction to Components: Batteries and Breadboards What is Electricity? o Static Electricity vs. Current Electricity o Voltage, Current, and Resistance What is a

More information

1. Definition A power supply is an electronic device that supplies electric energy to an electrical load.

1. Definition A power supply is an electronic device that supplies electric energy to an electrical load. 1. Definition A power supply is an electronic device that supplies electric energy to an electrical load. Power supply Electric energy Load Figure 1: Power Supply The power supply does not create the energy.

More information

Amplifier, Product Design

Amplifier, Product Design Amplifier, Product Design Choose one component from the amplifier circuit and investigate technical, theory and mathematical information related to your chosen component. This work will be completed over

More information

Lab 06: Ohm s Law and Servo Motor Control

Lab 06: Ohm s Law and Servo Motor Control CS281: Computer Systems Lab 06: Ohm s Law and Servo Motor Control The main purpose of this lab is to build a servo motor control circuit. As with prior labs, there will be some exploratory sections designed

More information

P/N: AX Applications: Typical applications can include: test stands; and industrial automation.

P/N: AX Applications: Typical applications can include: test stands; and industrial automation. Description: The universal motor controller, 100W, drives a brushed DC Motor up to 6A or a 3- phase BLDC motor up to 6A. It features two SAE J1939 ports. Interfacing with 12V or 24Vdc power, the controller

More information

Data Sheet. APDS-9702 Signal Conditioning IC for Optical Proximity Sensors with Digital I 2 C Interface. Features. Description.

Data Sheet. APDS-9702 Signal Conditioning IC for Optical Proximity Sensors with Digital I 2 C Interface. Features. Description. APDS-9702 Signal Conditioning IC for Optical Proximity Sensors with Digital I 2 C Interface Data Sheet Description APDS-9702 is a signal conditioning IC that enhances the performance and robustness of

More information

Modeling of Multi Junction Solar Cell and MPPT Methods

Modeling of Multi Junction Solar Cell and MPPT Methods International Journal of Engineering Works ISSN-p: 2521-2419 ISSN-e: 2409-2770 Vol. 6, Issue 01, PP. 6-11, January 2019 https:/// Modeling of Multi Junction Solar Cell and MPPT Methods Rabia Bibi 1, Asfandyar

More information

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Engineering, Technology & Applied Science Research Vol. 8, No. 4, 2018, 3238-3242 3238 An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Saima Zafar Emerging Sciences,

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

EITN90 Radar and Remote Sensing Lab 2

EITN90 Radar and Remote Sensing Lab 2 EITN90 Radar and Remote Sensing Lab 2 February 8, 2018 1 Learning outcomes This lab demonstrates the basic operation of a frequency modulated continuous wave (FMCW) radar, capable of range and velocity

More information

Traditional PWM vs. Morningstar s TrakStar MPPT Technology

Traditional PWM vs. Morningstar s TrakStar MPPT Technology Traditional PWM vs. Morningstar s TrakStar MPPT Technology Introduction: Morningstar MPPT (Maximum Power Point Tracking) controllers utilize Morningstar s own advanced TrakStar Maximum Power Point Tracking

More information

MABEL, PiTone and Allstar for the Yaesu Fusion DR-1X Repeater

MABEL, PiTone and Allstar for the Yaesu Fusion DR-1X Repeater MABEL, PiTone and Allstar for the Yaesu Fusion DR-1X Repeater MABEL is a program designed to run on a Raspberry Pi 3 (rpi) in conjunction with Allstar/app-rpt controlling a Yaesu Fusion DR-1X repeater.

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

All parts needed to build sensor board obtained. RTD sensor is expected to arrive on October 26.

All parts needed to build sensor board obtained. RTD sensor is expected to arrive on October 26. Progress Report I DATE : October 25, 2012 FROM : ECE480 Capstone Project Team 5 TO : Prof. Strangas SUBJECT : Progress on Wireless Sensing System for Concrete Curing Purpose Statement This progress report

More information

Robot Rangers. Low Level Design Document. Ben Andersen Jennifer Berry Graham Boechler Andrew Setter

Robot Rangers. Low Level Design Document. Ben Andersen Jennifer Berry Graham Boechler Andrew Setter Robot Rangers Low Level Design Document Ben Andersen Jennifer Berry Graham Boechler Andrew Setter 2/17/2011 1 Table of Contents Introduction 3 Problem Statement and Proposed Solution 3 System Description

More information

The equation which links current, potential difference and resistance is:

The equation which links current, potential difference and resistance is: Q1.An electrical circuit is shown in the figure below. (a) The current in the circuit is direct current. What is meant by direct current? Tick one box. Current that continuously changes direction. Current

More information

Irrigation System for Greenland using Soil Moisture Sensor

Irrigation System for Greenland using Soil Moisture Sensor Irrigation System for Greenland using Soil Moisture Sensor Ankit Singh¹, Devendra Kumar Pandey² ¹ ² Dept. of Electrical and Electronics, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India

More information

PV Activity 3 PV Loads

PV Activity 3 PV Loads The purpose of this activity is to investigate the current and voltage output of photovoltaic cells when connected to various loads. This activity includes an optional extra investigation related to power

More information

Team Number ECE-10. Solar Power Forecasting Tool

Team Number ECE-10. Solar Power Forecasting Tool USER MANUAL Team Number ECE-10 Solar Power Forecasting Tool Team Members Name Department Email Kim Nguyen ECE kn383@drexel.edu Kara Ogawa ECE kao73@drexel.edu Stephan Tang ECE st643@drexel.edu Team Advisor

More information

Comparative study of maximum power point tracking methods for photovoltaic system

Comparative study of maximum power point tracking methods for photovoltaic system Comparative study of maximum power point tracking methods for photovoltaic system M.R.Zekry 1, M.M.Sayed and Hosam K.M. Youssef Electric Power and Machines Department, Faculty of Engineering, Cairo University,

More information