IJRREST INTERNATIONAL JOURNAL OF RESEARCH REVIEW IN ENGINEERING SCIENCE & TECHNOLOGY (ISSN ) VOLUME-4, ISSUE-3, November 2015

Size: px
Start display at page:

Download "IJRREST INTERNATIONAL JOURNAL OF RESEARCH REVIEW IN ENGINEERING SCIENCE & TECHNOLOGY (ISSN ) VOLUME-4, ISSUE-3, November 2015"

Transcription

1 PERFORMANCE ANALYSIS OF FACTS (D-STATCOM AND DVR) DEVICES Manoj Garg 1 & Rajeev Kumar 2 1 Research Scholar, GIMT, Kurukshetra, Haryana, India 2 Assistant Professor, GIMT, Kurukshetra, Haryana, India Abstract The Power Quality Analysis aspires to bring out electricity consumers for improved power quality with application of power electronics. The research work involves in-depth analysis of the interaction among loads, power networks and various power quality improvement devices. It ultimately leads to better design of mitigation devices like Dynamic Voltage Restorer (DVR), Distribution Static Synchronous Compensator (DSTATCO M) and Unified Power Quality Conditioner (UPQC) to alleviate various power quality related problems. The main objective of this research work is to develop a model of DVR and DSTATCO M for enhancement of power quality. DVR and DSTATCO M are among the custom power devices that are used as an effective solution for the protection of sensitive loads against voltage disturbances in power distribution system. The efficiency of the FACTS devices depends on the performance of the control technique, which involved in switching the inverters. A comparative analysis of PI controlled DVR and DSTATCO M has been carried out for better power system stability enhancement. The validity of the proposed method and achievement of the desired compensation are confirmed by the results of the simulation in Matlab/ Simulink. 1. INTRO DUCTIO N Power quality is a word that means different things to different inhabitants. Institute of Electrical and Electronic Engineers (IEEE) Standard IEEE1100 defines power quality as, The conception of powering and grounding sensitive electronic equipment in a manner suitable for the equipment. As suitable as this description might seem, the drawback of power quality to sensitive electronic equipment might be subject to deviation. Electrical equipment susceptible to power quality or more appropriately to need of power quality would fall within an apparently boundless domain. All electrical devices are prone to failure or breakdown when exposed to one or more power quality problems. The electrical device might be an electric motor, a transformer, a generator, a computer, a printer, communication equipment or a home appliance. All of these devices and others react undesirably to power quality issues, depending on the severity of problems. However, nearly everybody accepts that it is a very important aspect of power systems and electric machinery with direct impacts on efficiency, security and reliability. Various sources use the term power quality with different meaning. It is used synonymously with supply reliability, service quality, voltage quality, current quality, quality of supply and quality of consumption. Nonlinear loads generate harmonic currents that can promulgate to other locations in the power system and ultimately return back to the source. Therefore, harmonic current promulgation produces harmonic voltages throughout the power systems. Many mitigation techniques have been suggested and employed to maintain the harmonic voltages and currents within proposed levels. 1. Design of High power quality equipment, 2. Cancellation of Harmonics, 3. Dedicated line or transformer, 4. Capacitor banks optimal placement and sizing, 5. Derating of power system devices and 6. Harmonic filters (passive, active and hybrid) and custom power devices such as active power line conditioner (APLC), DVR, DSTATCOM and Unified Power Quality Conditioners. The phenomenon of power quality through application of power electronics is studied in the research work. The aim of the control scheme is to develop Simulink model of DVR and DSATCOM maintain constant voltage magnitude at the point where a sensitive load is connected, under system disturbances. The wide range of power quality disturbances covers sudden, short duration variations, e.g. impulsive and oscillatory transients, voltage sags, short interruptions, as well as steady state deviations, such as harmonics mitigation by using DVR. This research work, specifically examine the use of a power electronic shunt compensator named as DSTATCOM to correct the current drawn from a utility to closely approximate balanced sinusoidal waveforms, without adversely affecting the voltage at the point of common coupling. Thus, adjustment of the feedback gains makes it possible to reduce voltage fluctuation in transient states, when the active filter has the function of combined harmonic damping and voltage regulation. By using UPQC the control scheme of a shunt active power filter must calculate the current reference waveform for each phase of the inverter, maintain the dc voltage constant and generate the inverter gating signals. To correct for the effects of supply voltage distortion, the series compensator is required to inject appropriate harmonic voltages. A novel strategy for the improvement of power quality based on custom power devices the analysis of the results obtained from various techniques, ijrrest.org 5 P a g e

2 like PI Controller and Fuzzy Logic Controller are presented. The main objectives of the research work are to develop model for DVR for the enhancement of power quality in electrical power networks. The objective which has been laid down for this work is the development of DVR and DSTATCOM model simulation model and their performance analysis through simulation. Research has been carried out to achieve the above mentioned objectives. The effectiveness of the DSTATCOM and DVR in solving the power quality problems has been proved through simulations, model development and analysis. Custom power devices transient performance observed. Control techniques developed to overcome the problems related to DC Link voltage deviations. produces fewer harmonic than a single bridge, resulting in smaller filters and improved dynamic response. In this case, the inverter modulation frequency is 28*60=1.68 khz so that the first harmonics will be around 3.36 khz. LC damped filters connected at the inverter output. Resistances connected in series with capacitors provide a quality factor of 40 at 60 Hz. a microfarad capacitor acting as a DC voltage source for the inverter a voltage regulator that controls voltage at bus B3 a PWM pulse generator using a modulation frequency of 1.68 khz Anti-aliasing filters used for voltage and current acquisition. 2. D-STATCO M MO DEL DESCRIPTIO N A Distribution Static Synchronous Compensator (D- STATCOM) is used to regulate voltage on a 25-kV distribution network. Two feeders (21 km and 2 km) transmit power to loads connected at buses B2 and B3. A shunt capacitor is used for power factor correction at bus B2. The 600-V load connected to bus B3 through a 25kV/600V transformer represents a plant absorbing continuously changing currents, similar to an arc furnace, thus producing voltage flicker. The variable load current magnitude is modulated at a frequency of 5 Hz so that its apparent power varies approximately between 1 MVA and 5.2 MVA, while keeping a 0.9 lagging power factor. This load variation will allow you to observe the ability of the D-STATCOM to mitigate voltage flicker. The D-STATCOM regulates bus B3 voltage by absorbing or generating reactive power. This reactive power transfer is done through the leakage reactance of the coupling transformer by generating a secondary voltage in phase with the primary voltage (network side). This voltage is provided by a voltage-sourced PWM inverter. When the secondary voltage is lower than the bus voltage, the D- STATCOM acts like an inductance absorbing reactive power. When the secondary voltage is higher than the bus voltage, the D-STATCOM acts like a capacitor generating reactive power. The D-STATCOM consists of the following components: a 25kV/1.25kV coupling transformer which ensures coupling between the PWM inverter and the network. The D-STATCOM controller consists of several functional blocks: a Phase Locked Loop (PLL). The PLL is synchronized to the fundamental of the transformer primary voltages. two measurement systems. Vmeas and Imeas blocks compute the d-axis and q-axis components of the voltages and currents by executing an abc-dq transformation in the synchronous reference determined by sin(wt) and cos(wt) provided by the PLL. an inner current regulation loop. This loop consists of two proportional-integral (PI) controllers that control the d-axis and q-axis currents. The controllers outputs are the Vd and Vq voltages that the PWM inverter has to generate. The Vd and Vq voltages are converted into phase voltages Va, Vb, Vc which are used to synthesize the PWM voltages. The Iq reference comes from the outer voltage regulation loop (in automatic mode) or from a reference imposed by Qref (in manual mode). The Id reference comes from the DC-link voltage regulator. an outer voltage regulation loop. In automatic mode (regulated voltage), a PI controller maintains the primary voltage equal to the reference value defined in the control system dialog box. a DC voltage controller which keeps the DC link voltage constant to its nominal value (Vdc=2.4 kv). The electrical circuit is discretized using a sample time Ts=5 microseconds. The controller uses a larger sample time (32*Ts= 160 microseconds). a voltage-sourced PWM inverter consisting of two IGBT bridges. This twin inverter configuration, ijrrest.org 6 P a g e

3 Fig. 1 Simulation & Model of DSTATCOM 2.1 D-STATCOM DYNAMIC RESPONSE During this test, the variable load will be kept constant and you will observe the dynamic response of a D-STATCOM to step changes in source voltage. Check that the modulation of the Variable Load is not in service (Modulation Timing [Ton Toff]= [0.15 1]*100 > Simulation Stop time). The Programmable Voltage Source block is used to modulate the internal voltage of the 25-kV equivalent. The voltage is first programmed at pu in order to keep the D-STATCOM initially floating (B3 voltage=1 pu and reference voltage Vref=1 pu). Three steps are programmed at 0.2 s, 0.3 s, and 0.4 s to successively increase the source voltage by 6%, decrease it by 6% and bring it back to its initial value (1.077 pu). Note that when the D-STATCOM changes from inductive to capacitive operation, the modulation index of the PWM inverter is increased from 0.56 to 0.9 (trace 4 of Scope2) which corresponds to a proportional increase in inverter voltage. Reversing of reactive power is very fast, about one cycle, as observed on D-STATCOM current (magenta signal on trace 1 of Scope1). Start the simulation. Observe on Scope1 the phase A voltage and current waveforms of the D-STATCOM as well as controller signals on Scope2. After a transient lasting approximately 0.15 sec., the steady state is reached. Initially, the source voltage is such that the D-STATCOM is inactive. It does not absorb nor provide reactive power to the network. At t = 0.2 s, the source voltage is increased by 6%. The D-STATCOM compensates for this voltage increase by absorbing reactive power from the network (Q=+2.7 Mvar on trace 2 of Scope2). At t = 0.3 s, the source voltage is decreased by 6% from the value corresponding to Q = 0. The D-STATCOM must generate reactive power to maintain a 1 pu voltage (Q changes from +2.7 MVAR to MVAR). Fig. 2 DSTATCOM in dynamic mode (Scope 1), ijrrest.org 7 P a g e

4 2.2 MITIGATION OF VOLTAGE FLICKER During this test, voltage of the Programmable Voltage Source will be kept constant and you will enable modulation of the Variable Load so that you can observe how the D-STATCOM can mitigate voltage flicker. In the Programmable Voltage Source block menu, change the "Time Variation of" parameter to "None". In the Variable Load block menu, set the Modulation Timing parameter to [Ton Toff]= [0.15 1] (remove the 100 multiplication factor). Finally, in the D-STATCOM Controller, change the "Mode of operation" parameter to "Q regulation" and make sure that the reactive power reference value Qref (2nd line of parameters) is set to zero. In this mode, the D- STATCOM is floating and performs no voltage correction. Run the simulation and observe on Scope3 variations of P and Q at bus B3 (1st trace) as well as voltages at buses B1 and B3 (trace 2). Without D-STATCOM, B3 voltage varies between 0.96 pu and 1.04 pu (+/- 4% variation). Now, in the D-STATCOM Controller, change the "Mode of operation" parameter back to "Voltage regulation" and restart simulation. Observe on Scope 3 that voltage fluctuation at bus B3 is now reduced to +/- 0.7 %. Fig. 3 controller of DSTATCOM in dynamic mode (Scope 2) The D-STATCOM compensates voltage by injecting a reactive current modulated at 5 Hz (trace 3 of Scope3) and varying between 0.6 pu capacitive when voltage is low and 0.6 pu inductive when voltage is high. Fig. 4 Bus data of bus 1 & Bus 3 in dynamic mode (Scope 3) Fig. 5 DSTATCOM in Mitigation of voltage flickering mode (Scope 1), ijrrest.org 8 P a g e

5 active power transfer capability. This active power is transferred via the dc link, and is supplied either by a diode bridge connected to the ac network, a shunt connected PWM converter or by an energy storage device. It works as a harmonic isolator to prevent the harmonics in the source voltage reaching the load in addition to balancing the voltages and providing voltage regulation. Fig. 8 Dynamic Voltage Restorer Fig. 6 Controller of DSTATCOM in Mitigation of voltage flickering mode (Scope 2) The Three-Phase Source block implements a balanced three-phase voltage source with an internal R-L impedance. The three voltage sources are connected in Y with a neutral connection that can be internally grounded or made accessible. You can specify the source internal resistance and inductance either directly by entering R and L values or indirectly by specifying the source inductive short-circuit level and X/R ratio The three-phase inductive short-circuit power, in volts-amperes (VA), at specified base voltage, used to compute the internal inductance L. This parameter is available only if Specify impedance using short-circuit level is selected. The internal inductance L (in H) is computed from the inductive threephase short-circuits power Psc (in VA), base voltage Vbase (in Vrms phase-to-phase), and source frequency f (in Hz) as follows: The Three-Phase Fault block uses three Breaker blocks that can be individually switched on and off to program phase-to-phase faults, phase-to-ground faults, or a combination of phase-to-phase and ground faults. Fig. 7 Bus Data of bus 1 & bus 3 in Mitigation of voltage flickering mode (Scope 3) 3. DYNAMIC VO LTAGE RESTO RER (DVR) DVR injects a voltage component in series with the supply voltage as shown in figure-4.21, thus compensating voltage sags and swells on the load side. Control response is on the order of 3msec, ensuring a secure voltage supply under transient network conditions. Voltage injection of arbitrary phase with respect to the load current implies Fig. 9 Three-Phase Fault with breakers The ground resistance Rg is automatically set to 106 ohms when the ground fault option is not programmed. For example, to program a fault between the phases A and B you need to select the Phase A Fault and Phase B Fault block parameters only. To program a fault between the phase A and the ground, you need to select the Phase A, ijrrest.org 9 P a g e

6 Fault and Ground Fault parameters and specify a small value for the ground resistance. If the Three-Phase Fault block is set in external control mode, a control input appears in the block icon. The control signal connected to the fourth input must be either 0 or 1, 0 to open the breakers, 1 to close them. If the Three-Phase Fault block is set in internal control mode, the switching times and status are specified in the dialog box of the block. Series Rp-Cp snubber circuits are included in the model. They can be optionally connected to the fault breakers. If the Three- Phase Fault block is in series with an inductive circuit, an open circuit or a current source, you must use the snubbers. In the proposed simulink model DVR has been modeled using IGBT based voltage converter. The effectiveness of DVR has been checked by introducing a three phase fault at 0.4 sec. the output waveform is compared in two condition, with and without using DVR. The PI-controlled DVR has proven its effectiveness as analysed from the output waveforms. Fig. 10 DVR model simulated with PI controller 4. CO NCLUSION AND FUTURE SCO PE The conclusions drawn from the different aspects of the study in this research work are summarized in this chapter. The scope for further study in this area is also dwelt upon at the end. Fig. 11 output waveform on occurring fault at 0.4seconds of waveform on occurring fault Fig. 12 Expended view of waveform on occurring fault using PI controller After analyzing output waveforms on occurring fault at 0.4seconds we can conclude that using DVR we can maintain power quality using different control strategies. Nonlinear loads produce harmonic currents that can propagate to other locations in the power system and eventually return back to the source. Therefore, harmonic current propagation produces harmonic voltages throughout the power systems. Mitigation techniques have been proposed and implemented to maintain the harmonic voltages and currents within recommended levels are harmonic filters passive, active and hybrid) and custom power devices DSATATCOM and DVR. The different sources and occurrences of voltage Sags, swells and interruptions have been presented. DSTATCOM and DVR with PI Controller has been designed to mitigate the effects of the power quality problems during different faults like three phase fault, single line to ground fault and double line fault. The performance analysis with two different control techniques gives equally effective results. Any one of the proposed control technique will be equally effective in the successful, ijrrest.org 10 P a g e

7 operation of DVR. The investigation of results performance has been successfully demonstrated in MATLAB/Simulink. The study made in the research work mainly concentrates on the power quality improvement through DSTATCOM and DVR (Custom power Device) with optimized technique PI controller for the distribution power system. Furthermore one can evaluate some more analysis can be done for the custom power devices for the improvement of power quality in different angles like advanced PWM methodologies like sinusoidal, hysteresis (bang bang) and space vector (symmetrical or asymmetrical) implementations with programmable digital signal processors for the optimum control of the filtering devices through various advanced Artificial Intelligent Techniques like expert systems, Natural language processing, neuro fuzzy, genetic algorithms, or swarm intelligence. Controllers like multilevel inverters or matrix converters selection for the custom power devices to improve power quality based on the problem. From the various problems, selection of suitability of the equipment among the available devices with optimized cost for the total process and minimum time. REFERENCES [1] Fang Zheng Peng and Jih-Sheng Lai, Generalized Instantaneous Reactive Power Theory for Three-phase Power Systems, IEEE Transactions on instrumentation and measurement, vol. 45, no. 1, february [2] B.H. Li, S.S. C hoi and D.M.Vilathgamuwa Design considerations on the line-side filter used in the dynamic voltage restorer IEE Proc.-Gmer. Trunsm.Distrib., Vol. 148, No. 1. January [3] B.H. Li, S.S. Choi and D.M. Vilathgamuwa, Transformerless dynamic voltage restorer, IEE Proc,-Gener. Trunsm.Dktrib., Vol. 149, No. 3, May [4] Arindam Ghosh and Gerard Ledwich Compensation of Distribution System Voltage Using DVR IEEE Transactions on power delivery, vol. 17, no. 4, october [5] Chris Fitzer, Atputharajah Arulampalam, Mike Barnes and Rainer Zurowski, Mitigation of Saturation in Dynamic Voltage Restorer Connection Transformers,IEEE Transactions on power electronics, vol. 17, no. 6, november [6] Changjiang Zhan, Atputharajah Arulampalam and Nicholas Jenkins, Four-Wire Dynamic Voltage Restorer Based on a Three-Dimensional Voltage Space Vector PWM Algorithm, IEEE Transactions on power electronics, vol. 18, no. 4, july [7] Chi-Jen Huang, Shyh-Jier Huang and Fu-Sheng Pai Design of Dynamic Voltage Restorer With Disturbance-Filtering Enhancement IEEE Transactions on power electronics, vol. 18, no. 5, september [8] C.-J. Zhan, X.G. Wu, S. Kromlidis, V.K. Ramachandara murthy, M. Barnes, N. Jenkins and A.J. Ruddell Two electrical models of the lead-acid battery used in a dynamic voltage restorer, IEE proc, Gener-Transm-Distrib, vol.150, No.2, March [9] Francisco Jurado, Neural Network Control for Dynamic Voltage Restorer, IEEE Transactions on industrial electronics, vol. 51, no. 3, june [10] EngKian Kenneth Sng, S. S. Choi and D. Mahinda Vilathgamuwa, Analysis of Series Compensation and DC-Link Voltage Controls of a Transformer-less Self-Charging Dynamic Voltage Restorer IEEE Transactions on power delivery, vol. 19, no. 3, july [11] Sang-Joon Lee ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., South Korea ; Hyosung Kim ; Seung-Ki Sul; A novel control method for the compensation voltages in dynamic voltage restorers; Applied Power Electronics Conference and Exposition, APEC '04. Nineteenth Annual IEEE (Volume:1 ); 2004 [12] Chris Fitzer, Mike Barnes and Peter Green, Voltage Sag Detection Technique for a Dynamic Voltage Restorer, IEEE Transactions on industry applications, vol. 40, no. 1, january/february [13] Changjiang Zhan, Vigna Kumaran Ramachandaramurthy, Atputharajah Arulampalam, Chris Fitzer, Stylianos Kromlidis, Mike Barnes and Nicholas Jenkins, Dynamic Voltage Restorer Based on Voltage-Space-Vector PWM Control IEEE [14] Arindam Ghosh and Avinash Joshi, The Concept and Operating Principles of a Mini Custom Power Park, IEEE Transactions on power delivery, vol. 19, no. 4, october [15] Arindam Ghosh,Amit Kumar Jindal and Avinash Joshi Design of a Capacitor-Supported Dynamic Voltage Restorer (DVR) for Unbalanced and Distorted Loads IEEE Transactions on power delivery, vol. 19, no. 1, january 2004 [16] Fernandes, D.A. ; Dept. of Electr. Eng., Fed. Univ. of Campina Grande ; Naidu, S.R. ; Costa, F.F.; A Differentiation Matrix for Simulating the Steady-state Response of Power Converters; Power Electronics Specialists Conference, PESC '05. IEEE 36th; June 2005 [17] Yun Wei Li ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Vilathgamuwa, D.M. ; Poh Chiang Loh; A grid-interfacing power quality compensator for threephase three-wire microgrid applications; Power Electronics, IEEE Transactions on (Volume:21, Issue: 4 ); july 2006 [18] Bingsen Wang, GiriVenkataramanan and Mahesh Illindala, Operation and Control of a Dynamic Voltage Restorer Using Transformer Coupled H-Bridge Converters, IEEE Transactions on power electronics, vol. 21, no. 4, july [19] Amruta N. Jog, Narayan G. Apte, An Adaptive Hysteresis Band Current Controlled Shunt Active Power Filter, 2007 IEEE. [20] Yun Wei Li ; Nanyang Technol. Univ., Singapore ; Vilathgamuwa, D.M. ; Poh Chiang Loh ; Blaabjerg, F.; A Dual-Functional Medium Voltage Level DVR to Limit Downstream Fault Currents; Power Electronics, IEEE Transactions on (Volume:22, Issue: 4 ); July 2007 [21] Li, G.J. ; Tsinghua Univ., Beijing ; Zhang, X.P. ; Choi, S.S. ; Lie, T.T. ; Control strategy for dynamic voltage restorers to achieve minimum power injection without introducing sudden phase shift; Generation, Transmission & Distribution, IET (Volume:1, Issue: 5 ); September 2007 [22] Marei, M.I. ; Ain Shams Univ., Cairo ; El-Saadany, E.F. ; Salama, M.M.A.; A New Approach to Control DVR Based on Symmetrical Components Estimation; Power Delivery, IEEE Transactions on (Volume:22, Issue: 4 ); Oct. 2007, ijrrest.org 11 P a g e

Investigation of D-Statcom Operation in Electric Distribution System

Investigation of D-Statcom Operation in Electric Distribution System J. Basic. Appl. Sci. Res., (2)29-297, 2 2, TextRoad Publication ISSN 29-434 Journal of Basic and Applied Scientific Research www.textroad.com Investigation of D-Statcom Operation in Electric Distribution

More information

Power Quality enhancement of a distribution line with DSTATCOM

Power Quality enhancement of a distribution line with DSTATCOM ower Quality enhancement of a distribution line with DSTATCOM Divya arashar 1 Department of Electrical Engineering BSACET Mathura INDIA Aseem Chandel 2 SMIEEE,Deepak arashar 3 Department of Electrical

More information

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side 1 Jaykant Vishwakarma, 2 Dr. Arvind Kumar Sharma 1 PG Student, High voltage and Power system, Jabalpur

More information

A Power Control Scheme for UPQC for Power Quality Improvement

A Power Control Scheme for UPQC for Power Quality Improvement A Power Control Scheme for UPQC for Power Quality Improvement 1 Rimpi Rani, 2 Sanjeev Kumar, 3 Kusum Choudhary 1 Student (M.Tech), 23 Assistant Professor 12 Department of Electrical Engineering, 12 Yamuna

More information

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V3 PP 11-20 www.iosrjen.org A Versatile Control Scheme for UPQC for Power Quality Improvement

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Performance of DVR under various Fault conditions in Electrical Distribution System

Performance of DVR under various Fault conditions in Electrical Distribution System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 1 (Nov. - Dec. 2013), PP 06-12 Performance of DVR under various Fault conditions

More information

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.01-15 Reduction of Voltage Imbalance in a Two Feeder

More information

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter Mahesh Ahuja 1, B.Anjanee Kumar 2 Student (M.E), Power Electronics, RITEE, Raipur, India 1 Assistant

More information

Reduction of Power Quality Issues in Micro-Grid Using Fuzzy Logic Based DVR

Reduction of Power Quality Issues in Micro-Grid Using Fuzzy Logic Based DVR Reduction of Power Quality Issues in Micro-Grid Using Fuzzy Logic Based DVR 1 Thaha.H.S, 2 Dr.T.Ruban Deva Prakash 1 Research Scholar, Department of Electrical and Electronics Engineering, Sathyabama University,

More information

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR Rongali. Shiva Kumar P.G Student Scholar, Department of Electrical & Electronics Engineering, Gokul Group Of Institutions Abstract:

More information

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator Ishwar Lal Yadav Department of Electrical Engineering Rungta College of Engineering and Technology Bhilai, India

More information

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System Rohit Singh 1 and Shavet Sharma 2 1,2 Department of Electrical Engineering, Sri Sai College

More information

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Mitigating Voltage Sag Using Dynamic Voltage Restorer Mitigating Voltage Sag Using Dynamic Voltage Restorer Sumit A. Borakhade 1, R.S. Pote 2 1 (M.E Scholar Electrical Engineering, S.S.G.M.C.E. / S.G.B.A.U. Amravati, India) 2 (Associate Professor, Electrical

More information

Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM)

Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM) 6th NATIONAL POWER SYSTEMS CONFERENCE, 5th-7th DECEMBER, 2 37 Design and Simulation of Dynamic Voltage Restorer (DVR) Using Sinusoidal Pulse Width Modulation (SPWM) Saripalli Rajesh *, Mahesh K. Mishra,

More information

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side Jaykant Vishwakarma 1, Dr. Arvind Kumar Sharma 2 1 PG Student, High voltage and Power system, Jabalpur Engineering College,

More information

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel Tech Multitech Dr. Rangarajan Dr. Sakunthala Engineering

More information

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT Harshkumar Sharma 1, Gajendra Patel 2 1 PG Scholar, Electrical Department, SPCE, Visnagar, Gujarat, India 2 Assistant

More information

ISSN Vol.07,Issue.21, December-2015, Pages:

ISSN Vol.07,Issue.21, December-2015, Pages: ISSN 2348 2370 Vol.07,Issue.21, December-2015, Pages:4128-4132 www.ijatir.org Mitigation of Multi Sag/Swell using DVR with Hysteresis Voltage Control DAKOJU H V V S S N MURTHY 1, V. KAMARAJU 2 1 PG Scholar,

More information

Power Quality Improvement using Hysteresis Voltage Control of DVR

Power Quality Improvement using Hysteresis Voltage Control of DVR Power Quality Improvement using Hysteresis Voltage Control of DVR J Sivasankari 1, U.Shyamala 2, M.Vigneshwaran 3 P.G Scholar, Dept of EEE, M.Kumarasamy college of Engineering, Karur, Tamilnadu, India

More information

Performance of DVR & Distribution STATCOM in Power Systems

Performance of DVR & Distribution STATCOM in Power Systems International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 232-869 Volume: 3 Issue: 2 83 89 Performance of DVR & Distribution STATCOM in Power Systems Akil Ahemad Electrical

More information

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 86 CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES 5.1 INTRODUCTION Distribution systems face severe power quality problems like current unbalance, current harmonics, and voltage unbalance,

More information

Power Quality Improvement by DVR

Power Quality Improvement by DVR Power Quality Improvement by DVR K Rama Lakshmi M.Tech Student Department of EEE Gokul Institute of Technology and Sciences, Piridi, Bobbili Vizianagaram, AP, India. Abstract The dynamic voltage restorer

More information

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control Prof. D.S.Chavan 1, Mukund S.Mahagaonkar 2 Assistant professor, Dept. of ELE, BVCOE, Pune, Maharashtra, India 1

More information

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR)

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) Hadi Suyono 1, Lauhil Mahfudz Hayusman 2 and Moch. Dhofir 1 1 Department of Electrical Engineering, Brawijaya University, Malang,

More information

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating P.Ankineedu Prasad 1, N.Venkateswarlu 2. V.Ramesh 3, L.V.Narasimharao 4 Assistant Professor 12 & Professor 4& Research Scholar

More information

FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION

FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION Aswathy Anna Aprem 1, Fossy Mary Chacko 2 1 Student, Saintgits College, Kottayam 2 Faculty, Saintgits College, Kottayam Abstract In this paper, a suitable

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

2020 P a g e. Figure.2: Line diagram of series active power filter.

2020 P a g e. Figure.2: Line diagram of series active power filter. Power Quality Improvement By UPQC Using ANN Controller Saleha Tabassum 1, B.Mouli Chandra 2 (Department of Electrical & Electronics Engineering KSRM College of Engineering, Kadapa.) (Asst. Professor Dept

More information

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR) Mr. A. S. Patil Mr. S. K. Patil Department of Electrical Engg. Department of Electrical Engg. I. C. R. E. Gargoti I. C. R. E. Gargoti

More information

Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers

Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers Akashdeep Soni 1, Mr. Vikas Kumar 2 1 M.Tech (Control System) Scholar, Department

More information

Power Quality Improvement By Using DSTATCOM Controller

Power Quality Improvement By Using DSTATCOM Controller Power Quality Improvement By Using DSTATCOM Controller R.Srikanth 1 E. Anil Kumar 2 Assistant Professor, Assistant Professor, Dept. of EEE, BITS Vizag Dept. of EEE, BITS Vizag Email id : srikanthreddypalli@gmail.com

More information

Protection from Voltage Sags and Swells by Using FACTS Controller

Protection from Voltage Sags and Swells by Using FACTS Controller Protection from Voltage Sags and Swells by Using FACTS Controller M.R.Mohanraj 1, V.P.Suresh 2, G.Syed Zabiyullah 3 Assistant Professor, Department of Electrical and Electronics Engineering, Excel College

More information

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 6, Nov Dec, 2016, pp.55 63, Article ID: IJEET_07_06_005 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=6

More information

Downloaded from

Downloaded from Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 330 Power Quality Improvement Using UPQC Chandrashekhar Reddy S Assoc.Professor, Dept.of Electrical

More information

Simulation and Implementation of DVR for Voltage Sag Compensation

Simulation and Implementation of DVR for Voltage Sag Compensation Simulation and Implementation of DVR for Voltage Sag Compensation D. Murali Research Scholar in EEE Dept., Government College of Engineering, Salem-636 011, Tamilnadu, India. Dr. M. Rajaram Professor &

More information

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar Electrical Engineering department, Jabalpur Engineering College Jabalpur, India Abstract:

More information

Simulation of Dynamic Voltage Restorer Using Matlab to Enhance Power Quality in Distribution System

Simulation of Dynamic Voltage Restorer Using Matlab to Enhance Power Quality in Distribution System Simulation of Dynamic Voltage Restorer Using Matlab to Enhance Power Quality in Distribution System Priyanka Kumari 1, Vijay Kumar Garg 2 M.tech student U.I.E.T, kurukshetra Asst. prof. in electrical dept.

More information

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) ABHIYANTRIKI Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol.

More information

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER  CSEA2012 ISSN: ; e-issn: POWER FLOW CONTROL BY USING OPTIMAL LOCATION OF STATCOM S.B. ARUNA Assistant Professor, Dept. of EEE, Sree Vidyanikethan Engineering College, Tirupati aruna_ee@hotmail.com 305 ABSTRACT In present scenario,

More information

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stility Subir Datta and Anjan Kumar Roy Abstract The paper presents a new ANFIS-based controller for enhancement of voltage stility

More information

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer Australian Journal of Basic and Applied Sciences, 4(8): 3959-3969, 2010 ISSN 1991-8178 Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 7 (2012), pp. 889-902 International Research Publication House http://www.irphouse.com Voltage Sags in Distribution Systems

More information

Power Quality and the Need for Compensation

Power Quality and the Need for Compensation Power Quality and the Need for Compensation Risha Dastagir 1, Prof. Manish Khemariya 2, Prof. Vivek Rai 3 1 Research Scholar, 2,3 Asst. Professor, Lakshmi Narain College of Technology Bhopal, India Abstract

More information

Power Quality Improvement using Active shunt Power filter using PI Controller

Power Quality Improvement using Active shunt Power filter using PI Controller Power Quality Improvement using Active shunt Power filter using PI Controller Viki S. Patel M.tech Scholar Electrical Engineering, U.V Patel College of Engineering, Kherva, India patel.viki4@gmail.com

More information

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

ICCCES Application of D-STATCOM for load compensation with non-stiff sources Application of D-STATCOM for load compensation with non-stiff sources 1 Shubhangi Dhole, 2 S.S.Gurav, 3 Vinayak Patil, 4 Pushkraj Kharatmal, 5 Magdum Ranjit 1 Dept of Electrical Engg. AMGOI, VATHAR TERF

More information

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD T PRAHLADA 1, P SUJATHA 2, P BHARATH KUMAR 3 1PG Scholar,

More information

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM P. K. Mani 1 and K. Siddappa Naidu 2 1 Department of Electrical and Electronics Engineering, Vel

More information

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

Design Strategy for Optimum Rating Selection of Interline D-STATCOM International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 3 ǁ March. 2013 ǁ PP.12-17 Design Strategy for Optimum Rating Selection of Interline

More information

SIMULATION OF D-STATCOM IN POWER SYSTEM

SIMULATION OF D-STATCOM IN POWER SYSTEM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) SIMULATION OF D-STATCOM IN POWER SYSTEM Akil Ahemad 1, Sayyad Naimuddin 2 1 (Assistant Prof. Electrical Engineering Dept., Anjuman college

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

Voltage Sag and Swell Identification Using FFT Analysis and Mitigation with DVR

Voltage Sag and Swell Identification Using FFT Analysis and Mitigation with DVR IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 2 Ver. I (Mar. Apr. 2017), PP 30-40 www.iosrjournals.org Voltage Sag and Swell Identification

More information

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 Unit.2-Voltage Sag D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203 13/09/2012 Unit.2 Voltage sag 1 Unit-2 -Voltage Sag Mitigation Using

More information

Voltage Sag Mitigation of DVR using Matlab Simulation

Voltage Sag Mitigation of DVR using Matlab Simulation Voltage Sag Mitigation of DVR using Matlab Simulation Ms.T.D.Paunikar, Prof. C.M.Bobde Abstract One of power quality problem is Voltage sag. Voltage sag becomes severe to industrial customers. Voltage

More information

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator Priyanka Sahu Columbia Institute of Engineering and Technology, Raipur,

More information

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System 1 G.Balasundaram, 2 Dr.S.Arumugam, 3 C.Dinakaran 1 Research Scholar - Department of EEE, St.

More information

Power-Quality Improvement with a Voltage-Controlled DSTATCOM

Power-Quality Improvement with a Voltage-Controlled DSTATCOM Power-Quality Improvement with a Voltage-Controlled DSTATCOM R.Pravalika MTech Student Paloncha, Khammam, India V.Shyam Kumar Associate Professor Paloncha, Khammam, India. Mr.Chettumala Ch Mohan Rao Associate

More information

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method Vol.2, Issue.3, May-June 2012 pp-682-686 ISSN: 2249-6645 Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method C. Prakash 1, N. Suparna 2 1 PG Scholar,

More information

Mitigation of voltage disturbances (Sag/Swell) utilizing dynamic voltage restorer (DVR)

Mitigation of voltage disturbances (Sag/Swell) utilizing dynamic voltage restorer (DVR) Research Journal of Engineering Sciences ISSN 2278 9472 Mitigation of voltage disturbances (Sag/Swell) utilizing dynamic voltage restorer (DVR) Abstract Srishti Verma * and Anupama Huddar Electrical Engineering

More information

Enhancement of Power Quality Using Advanced Series Active Power Filters

Enhancement of Power Quality Using Advanced Series Active Power Filters Enhancement of Power Quality Using Advanced Series Active Power Filters Manoj siva kumar 1, P.Rayalakshmi 2 Associate Professor, Dept. of EEE, PBRVITS, Kavali, SPSR Nellore, A.P, India 1 M.Tech Student,

More information

Interline Power Quality Conditioner for Power Quality Improvement

Interline Power Quality Conditioner for Power Quality Improvement Interline Power Quality Conditioner for Power Quality Improvement K.Sandhya 1, Dr.A.Jaya Laxmi 2 and Dr.M.P.Soni 3 1 Research Scholar, Department of Electrical and Electronics Engineering, JNTU College

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System Performance of Indirectly Controlled STATCOM with IEEE 30- System Jagdish Kumar Department of Electrical Engineering, PEC University of Technology, Chandigarh, India E-mail : jk_bishnoi@yahoo.com Abstract

More information

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL Saravanan.R 1, Hariharan.M 2 1 PG Scholar, Department OF ECE, 2 PG Scholar, Department of ECE 1, 2 Sri Krishna College

More information

II. RESEARCH METHODOLOGY

II. RESEARCH METHODOLOGY Comparison of thyristor controlled series capacitor and discrete PWM generator six pulses in the reduction of voltage sag Manisha Chadar Electrical Engineering Department, Jabalpur Engineering College

More information

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS SIMUATION OF D-STATCOM AND DVR IN POWER SYSTEMS S.V Ravi Kumar 1 and S. Siva Nagaraju 1 1 J.N.T.U. College of Engineering, KAKINADA, A.P, India E-mail: ravijntu@gmail.com ABSTRACT A Power quality problem

More information

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEM BY USING STATCOM Mr.Mukund S. Mahagaonkar*, Prof.D.S.Chavan * M.Tech

More information

HARMONIC COMPENSATION USING FUZZY CONTROLLED DSTATCOM

HARMONIC COMPENSATION USING FUZZY CONTROLLED DSTATCOM HARMONIC COMPENSATION USING FUZZY CONTROLLED DSTATCOM Aswathy Anna Aprem, Fossy Mary Chacko Department of Electrical Engineering, Saintgits College, Kerala, India aswathyjy@gmail.com Abstract In this paper,

More information

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices Aarti Rai Electrical & Electronics Engineering, Chhattisgarh Swami Vivekananda Technical University,

More information

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC A.Naveena, M.Venkateswara Rao 2 Department of EEE, GMRIT, Rajam Email id: allumalla.naveena@ gmail.com,

More information

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition ISSN (Online) 232 24 ISSN (Print) 232 5526 Vol. 2, Issue 7, July 24 Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition Brijesh Parmar, Prof. Shivani Johri 2, Chetan

More information

Voltage Improvement Using SHUNT FACTs Devices: STATCOM

Voltage Improvement Using SHUNT FACTs Devices: STATCOM Voltage Improvement Using SHUNT FACTs Devices: STATCOM Chandni B. Shah PG Student Electrical Engineering Department, Sarvajanik College Of Engineering And Technology, Surat, India shahchandni31@yahoo.com

More information

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. Preface p. xv Acknowledgements p. xix Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p. 6 Power Quality Monitoring p. 7 Power

More information

ENHANCEMENT OF POWER QUALITY BY INJECTING SERIES VOLTAGE USING DVR

ENHANCEMENT OF POWER QUALITY BY INJECTING SERIES VOLTAGE USING DVR ENHNEMENT OF POWER QULITY Y INJETING SERIES VOLTGE USING DVR Praksh Patil 1, Prof. Sunil hatt 2 1 PG Scholar, Department of Electrical Engineering, entral India Institute of Technology Indore- 452016,

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Improvement of Power Quality Using a Hybrid Interline UPQC

Improvement of Power Quality Using a Hybrid Interline UPQC Improvement of Power Quality Using a Hybrid Interline UPQC M.K.Elango 1, C.Vengatesh Department of Electrical and Electronics Engineering K.S.Rangasamy College of Technology Tiruchengode, Tamilnadu, India

More information

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER Rajesh Kr. Ahuja 1, Aasha Chauhan 2, Sachin Sharma 3 Rajesh Kr. Ahuja Faculty, Electrical & Electronics Engineering Dept.

More information

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM N.Shakeela Begum M.Tech Student P.V.K.K Institute of Technology. Abstract This paper presents a modified instantaneous

More information

Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation

Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation Anandan.D 1, Karthick.B 2, Soniya.R 3, Vanthiyadevan.T 4, V.Karthivel, M.E., 5 U.G. Student, Department of EEE, Angel College of,

More information

Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer

Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer Mitigation of Voltage Sag and Swell Using Dynamic Voltage Restorer Deepa Francis Dept. of Electrical and Electronics Engineering, St. Joseph s College of Engineering and Technology, Palai Kerala, India-686579

More information

Application of Dynamic Voltage Restorer for Voltage Balancing with ASD Load Using DQO Transformation

Application of Dynamic Voltage Restorer for Voltage Balancing with ASD Load Using DQO Transformation International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 8 (2011), pp. 889-898 International Research Publication House http://www.irphouse.com Application of Dynamic Voltage Restorer

More information

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 86 CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS 5.1 POWER QUALITY IMPROVEMENT This chapter deals with the harmonic elimination in Power System by adopting various methods. Due to the

More information

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Rosli Omar, 1 N.A Rahim 2 1 aculty of Electrical Engineering, Universiti Teknikal Malaysia

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER Sai Lakshmi K Department of Electrical and Electronics engineering, G.Narayanamma Institute of

More information

A Modified Control Method For A Dual Unified Power Quality Conditioner

A Modified Control Method For A Dual Unified Power Quality Conditioner International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 3 (2015), pp. 239-251 International Research Publication House http://www.irphouse.com A Modified Control Method For A Dual

More information

Performance Analysis of UPQC for Non-Linear Load by Using MATLAB

Performance Analysis of UPQC for Non-Linear Load by Using MATLAB 5 IJEDR Volume 3, Issue 4 ISSN: 3-9939 Performance Analysis of UPQC for Non-inear oad by Using MATAB Homendra Kumar, Mrs. Roshni Rahangdale PG Scholar, Assistant Professor Department of Electrical Engg,

More information

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM)

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) Vol.2, Issue.2, Mar-Apr 2012 pp-506-511 ISSN: 2249-6645 Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM) P. RAMESH 1, C. SURYA CHANDRA REDDY 2, D. PRASAD 3,

More information

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM)

Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) Vol. 3, Issue. 4, Jul. - Aug. 2013 pp-2367-2373 ISSN: 2249-6645 Mitigation of Fault in the Distribution System by using Flexible Distributed Static Compensator (FD-STATCOM) B. Giri Prasad Reddy 1, V. Obul

More information

Voltage Quality Enhancement in an Isolated Power System through Series Compensator

Voltage Quality Enhancement in an Isolated Power System through Series Compensator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 6 (June 2016), PP.20-26 Voltage Quality Enhancement in an Isolated Power

More information

Mitigation of Flicker Sources & Power Quality Improvement by Using Cascaded Multi-Level Converter Based DSTATCOM

Mitigation of Flicker Sources & Power Quality Improvement by Using Cascaded Multi-Level Converter Based DSTATCOM Mitigation of Flicker Sources & Power Quality Improvement by Using Cascaded Multi-Level Converter Based DSTATCOM 1 Siddartha A P, 2 B Kantharaj, 3 Poshitha B 1 PG Scholar, 2 Associate Professor, 3 Assistant

More information

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances ISSN: 227881 Vol. 1 Issue 1, December- 212 Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances B.Sasikala 1, Khamruddin Syed 2 Department of Electrical and

More information

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization D.Nagaraju M.Tech-PE, Vidya Bharathi Institute of Technology, T.S, India. L.Ramesh Associate Professor, Vidya

More information

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER ABRARKHAN I. PATHAN 1, PROF. S. S. VANAMANE 2 1,2 Department Electrical Engineering, Walchand college of Engineering,

More information

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System G. Laxminarayana 1, S. Raja Shekhar 2 1, 2 Aurora s Engineering College, Bhongir, India Abstract: In this

More information

Voltage Sag Mitigation Using Distribution Static Compensator System

Voltage Sag Mitigation Using Distribution Static Compensator System International Journal of Engineering and Technology Volume 2 No. 5, May, 2012 Voltage Sag Mitigation Using Distribution Static Compensator System K Hussain 1, J Praveen 2 1 Dept. of EEE, KG Reddy College

More information

B.Tech Academic Projects EEE (Simulation)

B.Tech Academic Projects EEE (Simulation) B.Tech Academic Projects EEE (Simulation) Head office: 2 nd floor, Solitaire plaza, beside Image Hospital, Ameerpet Ameerpet : 040-44433434, email id : info@kresttechnology.com Dilsukhnagar : 9000404181,

More information

Dynamic Modeling and Simulation of Unified Power Quality Conditioner

Dynamic Modeling and Simulation of Unified Power Quality Conditioner International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 1 (2012), pp. 23-36 International Research Publication House http://www.irphouse.com Dynamic Modeling and Simulation of

More information

COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC

COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC COMPARITIVE STUDY ON VOLTAGE SAG COMPENSATION UTILIZING PWM SWITCHED AUTOTRANSFORMER BY HVC T. DEVARAJU 1, DR.M.VIJAYA KUMAR 2, DR.V.C.VEERA REDDY 3 1 Research Scholar, JNTUCEA, 2 Registrar, JNTUCEA, 3

More information