Wireless Tuning Fork Gyroscope for Biomedical Applications

Size: px
Start display at page:

Download "Wireless Tuning Fork Gyroscope for Biomedical Applications"

Transcription

1 Wireless Tuning Fork Gyroscope for Biomedical Applications Jose K. Abraham, Vijay K. Varadan, Pennsylvania State University University Park PA 16802, USA A. Whitchurch and K. Sarukesi Bharathiar University, Coimbatore, Tamil Nadu, India ABSTRACT This paper presents the development of a Bluetooth enabled wireless tuning fork gyroscope for the biomedical applications, including gait phase detection system, human motion analysis and physical therapy. This gyroscope is capable of measuring rotation rates between -90 and 90 and it can read the rotation information using a computer. Currently, the information from a gyroscope can trigger automobile airbag deployment during rollover, improve the accuracy and reliability of GPS navigation systems and stabilize moving platforms such as automobiles, airplanes, robots, antennas, and industrial equipment. Adding wireless capability to the existing gyroscope could help to expand its applications in many areas particularly in biomedical applications, where a continuous patient monitoring is quite difficult. This wireless system provides information on several aspects of activities of patients for realtime monitoring in hospitals. Keywords: Gyroscope, Wireless system, Wireless Gyroscope, Bluetooth, biomedical applications 1. INTRODUCTION Recently, there has been a dramatic increase in the utilization of wireless technologies for sensing systems particularly in biomedical applications. Medical instrumentation, driven by rapidly evolving MEMS and microelectronics technologies, is changing from its bulky and analog components to smaller, smarter, more reliable and more amenable monitoring and control systems. One of the components behind the revolution of the medical instrumentation is the Sensors. Generally sensors are the integral parts of many monitoring and control devices. They help to monitor factors influencing a process or experiment such as temperature, acceleration, rate of rotation, stress/strain etc. Sensors are also widely used in biological diagnosis such as monitoring of electrophysiological signals (EEG, ECG), heartbeat, blood pressure, blood glucose level etc. One of the disadvantages of the current sensors for biomedical applications is the complex nature of the wires to be connected between the sensor and a monitoring system, which makes uncomfortable for many patients. Cables can be cumbersome, hazardous and prone to failure. Micromachining is one of the most important technologies for the development of many physical sensors such as gyroscope and accelerometers because it offers smaller size, mass production and cost effective fabrication. Several designs of micro-gyroscopes are presented in literature: tuning fork gyroscope [1-4], vibratory gyroscopes [5-7] and surface acoustic wave gyroscopes [8-10]. The main restriction in these gyroscopes is the wire connecting to the sensors and the monitoring system [11-12]. This can be overcome by integrating the MEMS devices with wireless technology, which can make possible to design cost-effective, user friendly devices [13-14]. Bluetooth has been one of the fast growing technologies in wireless area. But most of the applications developed using Bluetooth is focused on normal communication in an office environment or cable replacement solutions for connecting 338 Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, Vijay K. Varadan, Laszlo B. Kish, Editors, Proceedings of SPIE Vol (2003) 2003 SPIE X/03/$15.00

2 computers with various peripherals. Bluetooth has not yet been used for any such commercially available wireless remote sensing system. Existing wireless telemetry sensors use their own mode of communication and are not compatible with other devices. Usually, normal monitoring systems use cables to connect the system to the sensor unit. Wireless sensors have applications in a wide range of areas. Adding wireless capability to existing sensors could even help to discover new applications for many sensors. This paper presents the design and development of a wireless gyroscope using Bluetooth technology. The system enables to be connected continuously using any Bluetooth-enabled Notebook computer without any wires. The remote transmission unit is based upon a microcontroller which controls various functions and transmission of the signals obtained from the gyroscope connected to it. The wireless unit has the capability of monitoring five discrete channels simultaneously. The monitoring application can run on a computer and receive signals from transmitting units, this signal could either be manually monitored by a user, or a system could be developed for automatic monitoring and detection of events from the signals. Characteristic of the Bluetooth makes it ideal for the many medical applications. The use of Bluetooth technology for the wireless communication and the elimination of wires ensure system reliability which is particularly important in biomedical or other critical monitoring systems. It also minimizes chances of any errors which may occur due to improper signal acquisition. In this system, the data acquisition process is done on the sensing unit itself, and hence noise level and signal deterioration are found to a minimum. The use of Bluetooth standard for the communication ensures system reliability and compatibility with any Bluetooth capable PC. 2. MEMS GYROSCOPE The working principle of the gyroscope is based on a vibratory tuning fork gyroscope which is micromachined on quartz substrate. One set of tines is electrically driven to large amplitude of oscillation. This drive mode vibration can establish required linear momentum for the Coriolis forces to be developed. When these sensing elements rotates about an axis parallel to the tines, the forces perpendicular to tine velocity and input angular rate results a Coriolis force which can be written as F = 2 mω v where m is the equivalent mass of the driving tines, v is the velocity and Ω is the angular rate. The Coriolis force due to rotation is sensed by piezoresistors. 3. WIRELESS NETWORK In many cases, the main restriction in using sensors is the wire connecting the sensors to the monitoring system. The system consists of a wireless sensing unit and a monitoring system which is a Windows application running on any computer as shown in figure 1. The microcontroller-based sensing unit interfaces to up to 5 different sensors and is capable of acquisition, digitization and wireless transmission of the signals using the Bluetooth standard. The Bluetooth protocol stack has been built for the sensing unit with a microcontroller and Ericsson ROK /21E point-to-point Bluetooth module as well as the monitoring unit using a notebook computer. Proc. of SPIE Vol

3 wireless Sensing Unit with Ericsson Bluetooth Module Bluetooth enabled Notebook PC Gyro Inputs (up to 5 channels) Figure 1. Schematic diagram of th0e wireless gyroscope. Control Layer (App Layer) Host Controller Interface L2CAP Layer HCI-UART Transport Layer Baseband (Physical Layer) Fig. 2: Layers of the Bluetooth protocol stack 3.1 THE BLUETOOTH COMMUNICATION The Bluetooth protocol uses a combination of circuit and packet switching. Slots can be reserved for synchronous packets. Bluetooth can support an asynchronous data channel, up to three simultaneous synchronous voice channels, or a channel which simultaneously supports asynchronous data and synchronous voice. Each voice channel supports a 64 kb/s synchronous (voice) channel in each direction. The asynchronous channel can support maximal kb/s asymmetric (and still up to 57.6 kb/s in the return direction), or kb/s symmetric. Between master and slave(s), different types of links can be established. Two link types have been defined: 340 Proc. of SPIE Vol. 5055

4 Synchronous Connection-Oriented (SCO) link Asynchronous Connection-Less (ACL) link The SCO link is a point-to-point link between a master and a single slave in the piconet. The master maintains the SCO link by using reserved slots at regular intervals. The ACL link is a point-to-multipoint link between the master and all the slaves participating on the piconet. In the slots not reserved for the SCO link(s), the master can establish an ACL link on a per-slot basis to any slave, including the slave(s) already engaged in an SCO link. In this system, ACL links are used to exchange data packets. The HCI driver on the Host exchanges data and commands with the HCI firmware on the Bluetooth hardware. The Host Control Transport Layer (i.e. physical bus) driver provides both HCI layers with the ability to exchange information with each other. The Host will receive asynchronous notifications of HCI events independent of which Host Controller Transport Layer is used. HCI events are used for notifying the Host when something occurs. When the Host discovers that an event has occurred it will then parse the received event packet to determine which event occurred. The HCI Command Packet is used to send commands to the Host Controller from the Host. The format of the HCI Command Packet is shown in Figure 4. When the Host Controller completes most of the commands, a Command Complete event is sent to the Host. Some commands do not receive a Command Complete event when they have been completed. In the protocol stacks developed in both the units for this system, all communication and transfer of packets is performed at the Logical Link Control and Adaptation Protocol (L2CAP) layer. Data from the sensing unit are sent as ACL packets to the receiving monitoring system which processes the data payload within these packets. Executing functions and receiving events are done by sending and receiving appropriate commands to the Host Controller Interface (HCI) layer. The HCI provides a uniform interface method of accessing the Bluetooth hardware capabilities. Here, a master-slave approach is used in communicating between the sensing unit and the monitoring system. A Bluetooth protocol stack has to be developed for each of the units to enable communication between them. 3.2 GYROSCOPE INTERFACE: Most of the sensors to be connected to the Bluetooth system have to be scaled up to +5 V DC using amplifiers. Sensors with output within this range can be directly connected to the system. Figure 3 shows the schematic diagram of the sensor interface. For the present system, a common reference voltage of VREFL (lower reference) of ground and VREFH (higher reference) of +5V was used for the A/D converter to scale the input voltage. This means that the range of 0-5V would be scaled to digital value from to 4096 (since it is a 12-bit A/D converter). So, a change in the digital value of 1 indicates a change of 5/4096 = V. This rule is applied to the data received by the monitoring system to scale the data appropriately for analysis and visualization. The sensors can be connected to any of the analog input pins (AN0 to AN4, AN8, and AN9) of the microcontroller. A common problem which is likely to affect the quality of data acquisition is noise in the input analog voltage. If there is a considerable amount of high frequency noise in the input voltage, aliasing occurs in the digitized signal. So, an anti-aliasing filter should be used to remove unwanted high frequency noise from the input analog signal before it is fed to the analog-digital converter. A simple RC-filter or a high-pass filter built using Sallen-key circuits could be used to act as an anti-aliasing filter. If the voltage produced by the sensor is not in the range of 0-5V, then an external voltage reference should be used to bring the reference level of the A/D converter to the level of voltage produced as output by the sensors. Some sensors provide a built-in voltage reference for this purpose. For visualization of the data obtained, the digital values are plotted on a real-time graph with appropriate scaling to accommodate most of the amplitude of the signals produced by the sensor. These signals are plotted with respect to time on the X-axis. Since the data is already available in a digital format, it is ready for any kind of analysis which needs to be performed on the data. Appropriate processing algorithms could be applied for the acquired data to obtain more Proc. of SPIE Vol

5 information from the signal. All 5 channels are visualized at the same time to allow simultaneous monitoring of signals from different sensors. Figure 4 shows a screenshot of the monitoring program in action. 4. RESULTS The wireless gyroscope is fixed on a rate table (Ideal Aerosmith 1270VS), which is a one axis rotation table with a maximum velocity of deg/min and a resolution of 0.1 deg/sec. The output voltage is recorded for different rotation rates. Figure 3 presents the measured output voltage for radioman rate varies from -90 to Output V Rate, deg/sec Figure 3. Measured output of the gyroscope for different rates of rotation. 5. CONCLUSIONS A Bluetooth enabled wireless gyroscope for biomedical applications is presented in this paper. This micromachined gyroscope is ideal for many sensing applications including gait phase detection system, human motion analysis and physical therapy applications. The use of Bluetooth technology for the wireless communication ensures reliability which is particularly important in biomedical or other critical monitoring applications. 342 Proc. of SPIE Vol. 5055

6 REFERENCES 1. F. Gr etillat, M-A. Gr etillat and N.F. de Rooij, Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation Jour. of Microelectromechanical systems, Vol. 8, No. 3, Sept 1999, M. Yachi, H. Ishikawa, Y. Satoh, Y. Takahashi, K. Kikuchi, Design methodology of single crystal tuning fork gyroscope for automotive applications ; Proc of 1998 IEEE Ultrasonic Symp., pp F. Paoletti, M-A Gr etillat and N. F. de Rooij, A silicon micromachined tuning fork gyroscope, Proc of 1996 IEE Colloquium on Silicon fabricated inertial instruments, Dec 1996, pp 3/1-3/6. 4. J. Sernstein, S Cho, A.T. King, A Kourepenis, P. Miciel and M. Weinberg, A micromachined comb-drive tuning fork gyroscope, Pro of MEMS 93, Feb 1993, pp K. Tanaka, Y. Mochida and S. Sugimoto, A micromachined vibrating gyroscope, Proc of IEEE 1995, F Ayazi, K. Najafi, High aspect ratio dry release poly silicon MEMS technology for inertial-grade microgyroscopes, Proc of IEEE Position, Location and Navigation Symp., 2000, pp J.S. Burdess, A.J. Harris, J. Cruickshank, D. Wood and G. Cooper, A review of vibratory gyroscope, Jour of Engg. Science and Education, Vol. 3, No. 6, Dec 1994, pp M. Kurosawa, Y. Fukuda, M. Takasaki, T. Higuchi, A surface-acoustic wave gyroscope sensor, Sensors and Actuators A, 66 (1998) K.A. Jose, W.D. Suh, P.B. Xavier, V.K. Varadan and V.V. Varadan, Surface acoustic wave MEMS gyroscope, Jour. of Wave Motion, Vol.36, 2002, pp V.K. Varadan, W.D. Suh, P.B. Xavier, K.A. Jose and V.V. Varadan, Design and development of a MEMS- IDT Gyroscope, Jour. of Smart Materials and Structures, vol. 9, Dec 2000, pp V.K. Varadan, P.T. Teo, K.A. Jose and V.V. Varadan, Design and development of a smart wireless system for passive temperature sensors, Jour. of Smart Materials and Structures, Vol. 9, 2000, pp K.A. Jose, A.K. Whitchurch, V. K. Varadan and K. Sarukesi, Wireless Patient Monitoring on Shoe for the assessment of foot dysfunction, To be published in SPIE International Symposium on Microtechnologies for the New Millennium A.K. Whitchurch, B.H. Ashok, R.V. Kumaar, K. Sarukesi and V.K. Varadan, Microsensors and Wireless monitoring system for epilepsy, To be published in proc of SPIE conference on Smart materials, Nano- and Micro Smart Devices Jennifer Bray, Bluetooth 1.1 : Connect without cables, Prentice Hall PTR, John B. Peatman, Design with PIC microcontrollers, Addison Wesley Publishers, Microchip PIC16C77X CMOS Microcontroller Datasheet, Microchip Technology Inc., 1999 Proc. of SPIE Vol

A Doubly Decoupled X-axis Vibrating Wheel Gyroscope

A Doubly Decoupled X-axis Vibrating Wheel Gyroscope 19 Xue-Song Liu and Ya-Pu ZHAO* State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences Beijing 100190, People s Republic of China Abstract: In this paper, a doubly

More information

Design and development of a MEMS-IDT gyroscope

Design and development of a MEMS-IDT gyroscope Smart Mater. Struct. 9 (2000) 898 905. Printed in the UK PII: S0964-1726(00)17106-X Design and development of a MEMS-IDT gyroscope V K Varadan, WDSuh,PBXavier, K A Jose and VVVaradan Center for the Engineering

More information

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015 Issued: Monday, April 27, 2015 PROBLEM SET #7 Due (at 9 a.m.): Friday, May 8, 2015, in the EE C247B HW box near 125 Cory. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Design and Simulation of MEMS Comb Vibratory Gyroscope

Design and Simulation of MEMS Comb Vibratory Gyroscope Design and Simulation of MEMS Comb Vibratory Gyroscope S.Yuvaraj 1, V.S.Krushnasamy 2 PG Student, Dept. of ICE, SRM University, Chennai, Tamil Nadu, India 1 Assistant professor,dept.of ICE, SRM University,Chennai,Tamil

More information

Design and simulation of MEMS piezoelectric gyroscope

Design and simulation of MEMS piezoelectric gyroscope Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research, 2014, 3 (2):8-12 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278 0041 Design

More information

MICRO YAW RATE SENSORS

MICRO YAW RATE SENSORS 1 MICRO YAW RATE SENSORS FIELD OF THE INVENTION This invention relates to micro yaw rate sensors suitable for measuring yaw rate around its sensing axis. More particularly, to micro yaw rate sensors fabricated

More information

Keywords: piezoelectric, micro gyroscope, reference vibration, finite element

Keywords: piezoelectric, micro gyroscope, reference vibration, finite element 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) Reference Vibration analysis of Piezoelectric Micromachined Modal Gyroscope Cong Zhao,

More information

1 Introduction 1.1 HISTORICAL DEVELOPMENT OF MICROELECTRONICS

1 Introduction 1.1 HISTORICAL DEVELOPMENT OF MICROELECTRONICS 1 Introduction 1.1 HISTORICAL DEVELOPMENT OF MICROELECTRONICS The field of microelectronics began in 1948 when the first transistor was invented. This first transistor was a point-contact transistor, which

More information

AN INVISIBLE TRACKNIG SYSTEM DURING NATURAL CALAMITIES

AN INVISIBLE TRACKNIG SYSTEM DURING NATURAL CALAMITIES AN INVISIBLE TRACKNIG SYSTEM DURING NATURAL CALAMITIES L. RAMU NAIK 1, MR.ASHOK 2 1 L. Ramu Naik, M.Tech Student, Aryabhata Institute Of Technology & Science, Maheshwaram X Roads, On Srisailam Highway,

More information

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved.

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved. Sensors Fundamentals Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Agenda Introduction Sensors fundamentals ADI sensors Sensors data acquisition ADI support for sensors applications

More information

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics:

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: Links between Digital and Analogue Serial vs Parallel links Flow control

More information

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING

VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING VOICE CONTROLLED ROBOT WITH REAL TIME BARRIER DETECTION AND AVERTING P.NARENDRA ILAYA PALLAVAN 1, S.HARISH 2, C.DHACHINAMOORTHI 3 1Assistant Professor, EIE Department, Bannari Amman Institute of Technology,

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

Accelerometer Products

Accelerometer Products Accelerometer Products What Is an Accelerometer and When Do You Use One? An accelerometer is a sensor which converts an acceleration from motion or gravity to an electrical signal. MOTION INPUT 5% 5% Tilt

More information

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES

LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES LABORATORY AND FIELD INVESTIGATIONS ON XBEE MODULE AND ITS EFFECTIVENESS FOR TRANSMISSION OF SLOPE MONITORING DATA IN MINES 1 Guntha Karthik, 2 Prof.Singam Jayanthu, 3 Bhushan N Patil, and 4 R.Prashanth

More information

International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) 0976 INTERNATIONAL 6464(Print), ISSN 0976 6472(Online) JOURNAL Volume OF 4, Issue ELECTRONICS 1, January- February (2013), AND IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 6464(Print)

More information

Reference Diagram IDG-300. Coriolis Sense. Low-Pass Sensor. Coriolis Sense. Demodulator Y-RATE OUT YAGC R LPY C LPy ±10% EEPROM TRIM.

Reference Diagram IDG-300. Coriolis Sense. Low-Pass Sensor. Coriolis Sense. Demodulator Y-RATE OUT YAGC R LPY C LPy ±10% EEPROM TRIM. FEATURES Integrated X- and Y-axis gyro on a single chip Factory trimmed full scale range of ±500 /sec Integrated low-pass filters High vibration rejection over a wide frequency range High cross-axis isolation

More information

An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications

An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications CLAUDIA MASSACCI, ANDREA USAI, PAOLO DI GIAMBERARDINO Department of Computer and System Sciences Antonio Ruberti University

More information

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool World Journal of Technology, Engineering and Research, Volume 3, Issue 1 (2018) 297-304 Contents available at WJTER World Journal of Technology, Engineering and Research Journal Homepage: www.wjter.com

More information

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service

An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Engineering, Technology & Applied Science Research Vol. 8, No. 4, 2018, 3238-3242 3238 An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service Saima Zafar Emerging Sciences,

More information

MEASUREMENT of physical conditions in buildings

MEASUREMENT of physical conditions in buildings INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 2, PP. 117 122 Manuscript received August 29, 2011; revised May, 2012. DOI: 10.2478/v10177-012-0016-4 Digital Vibration Sensor Constructed

More information

ENERGY HARVESTING FROM MOTION FOR AUTONOMOUS DEVICES

ENERGY HARVESTING FROM MOTION FOR AUTONOMOUS DEVICES ENERGY HARVESTING FROM MOTION FOR AUTONOMOUS DEVICES ERIC YEATMAN DEPARTMENT OF ELECTRICAL ENGINEERING IMPERIAL COLLEGE LONDON HOW DO WE GENERATE POWER? FROM MOTION HOW IS HARVESTING DIFFERENT? Local generation

More information

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it The main aim of this project is video coverage at required places with the help of digital camera and high power LED.

More information

SMART SENSORS AND MEMS

SMART SENSORS AND MEMS 2 SMART SENSORS AND MEMS Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida (Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee)

More information

Bluetooth in service and production applications. By Kent Lennartsson, KVASER AB Copyright September 2001

Bluetooth in service and production applications. By Kent Lennartsson, KVASER AB  Copyright September 2001 Bluetooth in service and production applications. By Kent Lennartsson, KVASER AB www.kvaser.com Copyright September 2001 This paper will describe the experience we have gained using radio communication,

More information

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them

Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Miniaturising Motion Energy Harvesters: Limits and Ways Around Them Eric M. Yeatman Imperial College London Inertial Harvesters Mass mounted on a spring within a frame Frame attached to moving host (person,

More information

HUMAN BODY MONITORING SYSTEM USING WSN WITH GSM AND GPS

HUMAN BODY MONITORING SYSTEM USING WSN WITH GSM AND GPS HUMAN BODY MONITORING SYSTEM USING WSN WITH GSM AND GPS Mr. Sunil L. Rahane Department of E & TC Amrutvahini College of Engineering Sangmaner, India Prof. Ramesh S. Pawase Department of E & TC Amrutvahini

More information

Wireless Sensor System for Airborne Applications

Wireless Sensor System for Airborne Applications Wireless Sensor System for Airborne Applications Steve Pellarin and Hy Grossman Teletronics Technology Corporation Steven Musteric 46 th Test Systems Squadron Eglin Air Force Base, FL Abstract Adding an

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

HAND GESTURE CONTROLLED ROBOT USING ARDUINO

HAND GESTURE CONTROLLED ROBOT USING ARDUINO HAND GESTURE CONTROLLED ROBOT USING ARDUINO Vrushab Sakpal 1, Omkar Patil 2, Sagar Bhagat 3, Badar Shaikh 4, Prof.Poonam Patil 5 1,2,3,4,5 Department of Instrumentation Bharati Vidyapeeth C.O.E,Kharghar,Navi

More information

OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P. Datasheet Rev OS3D-FG Datasheet rev. 2.

OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P. Datasheet Rev OS3D-FG Datasheet rev. 2. OS3D-FG OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P Datasheet Rev. 2.0 1 The Inertial Labs OS3D-FG is a multi-purpose miniature 3D orientation sensor Attitude

More information

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL Shailesh Kumar, A.K Meena, Monika Chaudhary & Amita Gupta* Solid State Physics Laboratory, Timarpur, Delhi-110054, India *Email: amita_gupta/sspl@ssplnet.org

More information

DTIC. Defense Technical Information Center Part Notice. This paper is a part of the following report:

DTIC. Defense Technical Information Center Part Notice. This paper is a part of the following report: W, Compilation Defense Technical Information Center Part Notice This paper is a part of the following report: i Title: Technology Showcase: Integrated Monitoring,_ Diagnostics.and ai urerevention. Proceedings

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

IMU Platform for Workshops

IMU Platform for Workshops IMU Platform for Workshops Lukáš Palkovič *, Jozef Rodina *, Peter Hubinský *3 * Institute of Control and Industrial Informatics Faculty of Electrical Engineering, Slovak University of Technology Ilkovičova

More information

Integrated Dual-Axis Gyro IDG-1004

Integrated Dual-Axis Gyro IDG-1004 Integrated Dual-Axis Gyro NOT RECOMMENDED FOR NEW DESIGNS. PLEASE REFER TO THE IDG-25 FOR A FUTIONALLY- UPGRADED PRODUCT APPLICATIONS GPS Navigation Devices Robotics Electronic Toys Platform Stabilization

More information

Microcontroller Based Tilt Measurement

Microcontroller Based Tilt Measurement International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 12 ǁ December 2013 ǁ PP.79-83 Microcontroller Based Tilt Measurement Miss.Ashwini

More information

Advanced Soldier Monitoring and Tracking System Using GPS and GSM Introduction

Advanced Soldier Monitoring and Tracking System Using GPS and GSM Introduction Advanced Soldier Monitoring and Tracking System Using GPS and GSM Introduction The infantry soldier of tomorrow promises to be one of the most technologically advanced modern warfare has ever seen. Around

More information

High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units

High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units ITAR-free Small size, low weight, low cost 1 deg/hr Gyro Bias in-run stability Datasheet Rev.2.0 5 μg Accelerometers

More information

Recent Innovations in MEMS Sensors for PNT Applications

Recent Innovations in MEMS Sensors for PNT Applications Recent Innovations in MEMS Sensors for PNT Applications Stanford PNT Symposium 2017 Alissa M. Fitzgerald, Ph.D. Founder & CEO amf@amfitzgerald.com Overview Navigation Developments in MEMS gyroscope technology

More information

SLOPE MONITORING BY TDR A LOW COST SYSTEM

SLOPE MONITORING BY TDR A LOW COST SYSTEM SLOPE MONITORING BY TDR A LOW COST SYSTEM 1 Prof.S.jaynathu, 2 Guntha Karthik, 3 G.Manekar, Professor,Phd.Scholar, Mining Engg Dept.,NIT Rourkela,Odisha 3 Dy.G M (Mines),,MOIL Limited. sjayanthu@yahoo.com,

More information

Introduction to MEMS. I) Course goals Information sources III) Course outline. Course Goals. Introduction to Micro/nano world.

Introduction to MEMS. I) Course goals Information sources III) Course outline. Course Goals. Introduction to Micro/nano world. Introduction to MEMS Instructor: Prof. T.S. Leu ( 呂宗行 ) Department of Aeronautics and Astranautics Course ID: P49170 Email: tsleu@mail.ncku.edu.tw Sep. 2014~Jan. 2015 Lecture hours: Office hours: Friday

More information

III. MATERIAL AND COMPONENTS USED

III. MATERIAL AND COMPONENTS USED Prototype Development of a Smartphone- Controlled Robotic Vehicle with Pick- Place Capability Dheeraj Sharma Electronics and communication department Gian Jyoti Institute Of Engineering And Technology,

More information

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1 16.1 A 4.5mW Closed-Loop Σ Micro-Gravity CMOS-SOI Accelerometer Babak Vakili Amini, Reza Abdolvand, Farrokh Ayazi Georgia Institute of Technology, Atlanta, GA Recently, there has been an increasing demand

More information

ASC IMU 7.X.Y. Inertial Measurement Unit (IMU) Description.

ASC IMU 7.X.Y. Inertial Measurement Unit (IMU) Description. Inertial Measurement Unit (IMU) 6-axis MEMS mini-imu Acceleration & Angular Rotation analog output 12-pin connector with detachable cable Aluminium housing Made in Germany Features Acceleration rate: ±2g

More information

Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement

Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement Journal of Intelligent and Robotic Systems 30: 249 265, 2001. 2001 Kluwer Academic Publishers. Printed in the Netherlands. 249 Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement GRANTHAM

More information

Micro and Smart Systems

Micro and Smart Systems Micro and Smart Systems Lecture - 39 (1)Packaging Pressure sensors (Continued from Lecture 38) (2)Micromachined Silicon Accelerometers Prof K.N.Bhat, ECE Department, IISc Bangalore email: knbhat@gmail.com

More information

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module IJSTE - International Journal of Science Technology & Engineering Volume 4 Issue 11 May 2018 ISSN (online): 2349-784X Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM

More information

Accident Sensor with Google Map Locator

Accident Sensor with Google Map Locator IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Accident Sensor with Google Map Locator Steffie Tom Keval Velip Aparna

More information

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications Proceedings of the 17th World Congress The International Federation of Automatic Control Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

More information

Interfacing Sensors & Modules to Microcontrollers

Interfacing Sensors & Modules to Microcontrollers Interfacing Sensors & Modules to Microcontrollers Presentation Topics I. Microprocessors & Microcontroller II. III. Hardware/software Tools for Interfacing Type of Sensors/Modules IV. Level Inputs (Digital

More information

MEMS Oscillators: Enabling Smaller, Lower Power IoT & Wearables

MEMS Oscillators: Enabling Smaller, Lower Power IoT & Wearables MEMS Oscillators: Enabling Smaller, Lower Power IoT & Wearables The explosive growth in Internet-connected devices, or the Internet of Things (IoT), is driven by the convergence of people, device and data

More information

CMOS SYSTEMS AND CIRCUITS FOR SUB-DEGREE PER HOUR MEMS GYROSCOPES

CMOS SYSTEMS AND CIRCUITS FOR SUB-DEGREE PER HOUR MEMS GYROSCOPES CMOS SYSTEMS AND CIRCUITS FOR SUB-DEGREE PER HOUR MEMS GYROSCOPES A Thesis Presented to The Academic Faculty by Ajit Sharma In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

High-Q and Wide Dynamic Range Inertial MEMS for North-Finding and Tracking Applications

High-Q and Wide Dynamic Range Inertial MEMS for North-Finding and Tracking Applications High-Q and Wide Dynamic Range Inertial MEMS for North-Finding and Tracking Applications Alexander A. Trusov, Igor P. Prikhodko, Sergei A. Zotov, and Andrei M. Shkel Microsystems Laboratory, Department

More information

RF MEMS Simulation High Isolation CPW Shunt Switches

RF MEMS Simulation High Isolation CPW Shunt Switches RF MEMS Simulation High Isolation CPW Shunt Switches Authored by: Desmond Tan James Chow Ansoft Corporation Ansoft 2003 / Global Seminars: Delivering Performance Presentation #4 What s MEMS Micro-Electro-Mechanical

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 21: Gyros

More information

Motion Capture for Runners

Motion Capture for Runners Motion Capture for Runners Design Team 8 - Spring 2013 Members: Blake Frantz, Zhichao Lu, Alex Mazzoni, Nori Wilkins, Chenli Yuan, Dan Zilinskas Sponsor: Air Force Research Laboratory Dr. Eric T. Vinande

More information

Design of Infrared Wavelength-Selective Microbolometers using Planar Multimode Detectors

Design of Infrared Wavelength-Selective Microbolometers using Planar Multimode Detectors Design of Infrared Wavelength-Selective Microbolometers using Planar Multimode Detectors Sang-Wook Han and Dean P. Neikirk Microelectronics Research Center Department of Electrical and Computer Engineering

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10

ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10 ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10 1 Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

42.1: A Class of Micromachined Gyroscopes with

42.1: A Class of Micromachined Gyroscopes with 4.1: A Class of Micromachined Gyroscopes with Increased Parametric Space Cenk Acar Microsystems Laboratory Mechanical and Aerospace Engineering Dept. University of California at Irvine Irvine, CA, USA

More information

Accelerometer Sensors

Accelerometer Sensors Accelerometer Sensors Presented by: Mohammad Zand Seyed Mohammad Javad Moghimi K.N.T. University of Technology Outline: Accelerometer Introduction Background Device market Types Theory Capacitive sensor

More information

PHYSIOLOGICAL SIGNALS AND VEHICLE PARAMETERS MONITORING SYSTEM FOR EMERGENCY PATIENT TRANSPORTATION

PHYSIOLOGICAL SIGNALS AND VEHICLE PARAMETERS MONITORING SYSTEM FOR EMERGENCY PATIENT TRANSPORTATION PHYSIOLOGICAL SIGNALS AND VEHICLE PARAMETERS MONITORING SYSTEM FOR EMERGENCY PATIENT TRANSPORTATION Dhiraj Sunehra 1, Thirupathi Samudrala 2, K. Satyanarayana 3, M. Malini 4 1 JNTUH College of Engineering,

More information

A Unique Home Automation System through MEMS

A Unique Home Automation System through MEMS A Unique Home Automation System through MEMS Neha Surin 1, Dr. R. P. Gupta 2 1 Department of Electrical Engineering, BIT, Sindri, (DHANBAD) 2 Assistant professor, Department of Electrical Engineering,

More information

TAMIL NADU PUBLIC SERVICE COMMISSION. Post of Principal / Assistant Director (Training) Included in the Tamil Nadu Employment and Training Service

TAMIL NADU PUBLIC SERVICE COMMISSION. Post of Principal / Assistant Director (Training) Included in the Tamil Nadu Employment and Training Service Code No.207 TAMIL NADU PUBLIC SERVICE COMMISSION Post of Principal / Assistant Director (Training) Included in the Tamil Nadu Employment and Training Service Electronics and Instrumentation Engineering

More information

Downloaded From: on 04/30/2014 Terms of Use:

Downloaded From:   on 04/30/2014 Terms of Use: Micromachined Gyroscopes: Challenges, Design Solutions, and Opportunities Andrei M. Shkel MicroSystems Laboratory Department of Mechanical and Aerospace Engineering University of California, Irvine, CA,

More information

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology

Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology Volume 118 No. 20 2018, 4337-4342 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hardware Implementation of an Explorer Bot Using XBEE & GSM Technology M. V. Sai Srinivas, K. Yeswanth,

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Introduction to Data Acquisition Basics and Terminology Litkei Márton District Sales Manager National Instruments What Is Data Acquisition (DAQ)? 3 Why Measure? Engineers

More information

INDUCTION MOTOR FAULT DIAGNOSTICS USING FUZZY SYSTEM

INDUCTION MOTOR FAULT DIAGNOSTICS USING FUZZY SYSTEM INDUCTION MOTOR FAULT DIAGNOSTICS USING FUZZY SYSTEM L.Kanimozhi 1, Manimaran.R 2, T.Rajeshwaran 3, Surijith Bharathi.S 4 1,2,3,4 Department of Mechatronics Engineering, SNS College Technology, Coimbatore,

More information

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b 1, 2 Calnetix, Inc 23695 Via Del Rio Yorba Linda, CA 92782, USA a lzhu@calnetix.com, b lhawkins@calnetix.com

More information

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ The 26 th Microelectronics Workshop October, 2013 Maya Kato Electronic Devices and Materials Group Japan Aerospace Exploration

More information

electronics for computer engineering (Sensor) by KrisMT Computer Engineering, ICT, University of Phayao

electronics for computer engineering (Sensor) by KrisMT Computer Engineering, ICT, University of Phayao 305222 electronics for computer engineering (Sensor) by KrisMT Computer Engineering, ICT, University of Phayao ห วข อ Sensor =? Each type of sensor Technology Interpolation Sensor =? is a device that measures

More information

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage

CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage CMOS-Electromechanical Systems Microsensor Resonator with High Q-Factor at Low Voltage S.Thenappan 1, N.Porutchelvam 2 1,2 Department of ECE, Gnanamani College of Technology, India Abstract The paper presents

More information

MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS

MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS Manoj Kumar STMicroelectronics Private Limited, Greater Noida manoj.kumar@st.com Abstract: MEMS is the integration of mechanical elements

More information

Wireless Data Acquisition and Transmission System Design Using Arduino (for Military Jawan alive Detection Network)

Wireless Data Acquisition and Transmission System Design Using Arduino (for Military Jawan alive Detection Network) Wireless Data Acquisition and Transmission System Design Using Arduino (for Military Jawan alive Detection Network) Radhika S. Mundhada (M.tech) Dept. of Electronics & Communication Engg, VIT College of

More information

Embedded Prototype System for Monitoring Heart Rate

Embedded Prototype System for Monitoring Heart Rate Embedded Prototype System for Monitoring Heart Rate N. Vega, V. H. García, W. P. Mendoza, J. L. Martínez Instituto Politécnico Nacional, Escuela Superior de Cómputo, Dpto. de Ing. en Sistemas Computacionales,

More information

Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications

Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications Stevan J. Marinkovic and Emanuel M. Popovici Dept. of Microelectronic Engineering, University College Cork,

More information

Analog front-end electronics in beam instrumentation

Analog front-end electronics in beam instrumentation Analog front-end electronics in beam instrumentation Basic instrumentation structure Silicon state of art Sampling state of art Instrumentation trend Comments and example on BPM Future Beam Position Instrumentation

More information

GSM Based Automatic Wireless Energy Meter Reading System P. Harish M.Tech, S. Sandeep M.Tech,

GSM Based Automatic Wireless Energy Meter Reading System P. Harish M.Tech, S. Sandeep M.Tech, GSM Based Automatic Wireless Energy Meter Reading System P. Harish M.Tech, S. Sandeep M.Tech, Asst.Professor, Dept.of ECE, SVPCET, RVS Nagar, Puttur. Asst. Professor, Dept. of ECE, SVPCET, RVS Nagar, Puttur.

More information

EMG click PID: MIKROE-2621

EMG click PID: MIKROE-2621 EMG click PID: MIKROE-2621 EMG click measures the electrical activity produced by the skeletal muscles. It carries MCP609 operational amplifier and MAX6106 micropower voltage reference. EMG click is designed

More information

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC

More information

Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application

Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application Wireless Sensor Network for Intra-Venous Fluid Level Indicator Application Abstract Wireless sensor networks use small, low-cost embedded devices for a wide range of applications such as industrial data

More information

Simulation Of Radar With Ultrasonic Sensors

Simulation Of Radar With Ultrasonic Sensors Simulation Of Radar With Ultrasonic Sensors Mr.R.S.AGARWAL Associate Professor Dept. Of Electronics & Ms.V.THIRUMALA Btech Final Year Student Dept. Of Electronics & Mr.D.VINOD KUMAR B.Tech Final Year Student

More information

POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS

POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS Baris Cagdaser, Brian S. Leibowitz, Matt Last, Krishna Ramanathan, Bernhard E. Boser, Kristofer S.J. Pister Berkeley Sensor and Actuator Center

More information

Implementation of PIC Based Vehicle s Attitude Estimation System Using MEMS Inertial Sensors and Kalman Filter

Implementation of PIC Based Vehicle s Attitude Estimation System Using MEMS Inertial Sensors and Kalman Filter Implementation of PIC Based Vehicle s Attitude Estimation System Using MEMS Inertial Sensors and Kalman Filter Htoo Maung Maung Department of Electronic Engineering, Mandalay Technological University Mandalay,

More information

The Advantages of Integrated MEMS to Enable the Internet of Moving Things

The Advantages of Integrated MEMS to Enable the Internet of Moving Things The Advantages of Integrated MEMS to Enable the Internet of Moving Things January 2018 The availability of contextual information regarding motion is transforming several consumer device applications.

More information

3-Degrees of Freedom Robotic ARM Controller for Various Applications

3-Degrees of Freedom Robotic ARM Controller for Various Applications 3-Degrees of Freedom Robotic ARM Controller for Various Applications Mohd.Maqsood Ali M.Tech Student Department of Electronics and Instrumentation Engineering, VNR Vignana Jyothi Institute of Engineering

More information

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots CENG 5931 HW 5 Mobile Robotics Due March 5 Sensors for Mobile Robots Dr. T. L. Harman: 281 283-3774 Office D104 For reports: Read HomeworkEssayRequirements on the web site and follow instructions which

More information

TL618D- MEMS Current Type Gyroscope SPECIFICATIONS. Item No.:TL618D. Description:MEMS Current Type Gyroscope. Version:Ver.05

TL618D- MEMS Current Type Gyroscope SPECIFICATIONS. Item No.:TL618D. Description:MEMS Current Type Gyroscope. Version:Ver.05 SPECIFICATIONS Item No.:TL618D Description:MEMS Current Type Gyroscope Version:Ver.05 General Description TL618D is a gyroscope (angle rate sensor) based on the micro mechanical principle, a miniature

More information

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Souvik Kumar Dolui 1, Dr.Soumitra Kumar Mandal 2 M.Tech Student, Dept. of Electrical Engineering, NITTTR, Kolkata, Salt Lake

More information

PRESENTED BY HUMANOID IIT KANPUR

PRESENTED BY HUMANOID IIT KANPUR SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017 WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators.

More information

Corona Current Data Acquisition Card Based on USB Bus in Extra High Voltage Environment

Corona Current Data Acquisition Card Based on USB Bus in Extra High Voltage Environment 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control Corona Current Data Acquisition Card Based on USB Bus in Extra High Voltage Environment Li Qi,

More information

Accident prevention and detection using internet of Things (IOT)

Accident prevention and detection using internet of Things (IOT) ISSN:2348-2079 Volume-6 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Accident prevention and detection using internet of Things (IOT) INSTITUTE OF

More information

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT EE 1000 LABORATORY PROJECT NO. 3 DESIGN OF A MICROMOTOR DRIVER CIRCUIT 1. INTRODUCTION The following quote from the IEEE Spectrum (July, 1990, p. 29)

More information

MICROELECTROMECHANICAL systems (MEMS) A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate

MICROELECTROMECHANICAL systems (MEMS) A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 4, AUGUST 2005 707 A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate Said Emre Alper and Tayfun Akin,

More information

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION Journal of Young Scientist, Volume IV, 2016 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

More information

Keysight Technologies P-Series and EPM-P Power Meters for Bluetooth Testing. Technical Overview and Self-Guided Demonstration

Keysight Technologies P-Series and EPM-P Power Meters for Bluetooth Testing. Technical Overview and Self-Guided Demonstration Keysight Technologies P-Series and EPM-P Power Meters for Bluetooth Testing Technical Overview and Self-Guided Demonstration Introduction Bluetooth is a technology specification designed for low-cost short-range

More information

MEMS Technology Roadmapping

MEMS Technology Roadmapping MEMS Technology Roadmapping Michael Gaitan, NIST Chair, inemi and ITRS MEMS Technology Working Groups Nano-Tec Workshop 3 31 May 2012 MEMS Technology Working Group More than Moore White Paper, http://www.itrs.net

More information

MICROMECHANICAL GYROSCOPES: DEVELOPMENT AND PERSPECTIVES

MICROMECHANICAL GYROSCOPES: DEVELOPMENT AND PERSPECTIVES MICROMECHANICAL GYROSCOPES: DEVELOPMENT AND PERSPECTIVES Tirtichny A. Saint-Petersburg State University of Aerospace Instrumentation, Saint-Petersburg, Russia alekseyguap@mail.ru Abstract There is a short

More information