Triggering at ATLAS. Vortrag von Johannes Haller, Uni HH Am ATLAS-D Meeting, September 2006

Size: px
Start display at page:

Download "Triggering at ATLAS. Vortrag von Johannes Haller, Uni HH Am ATLAS-D Meeting, September 2006"

Transcription

1 Triggering at ATLAS Vortrag von Johannes Haller, Uni HH Am ATLAS-D Meeting, September 2006 Trigger Challenge at the LHC Technical Implementation Trigger Strategy, Trigger Menus, Operational Model, Physics Analyses and all that 1

2 Physics Goals at the LHC EW symmetry breaking? - search for the Higgs Boson p µ+ µ+ HZ γ µ- p H p γ Z µ- e- χ 1~ q ~ g p ~ q q What else? - top, EW, QCD, B-physics What events do we need to take? νe q Extensions of the Standard Model? - search for SUSY or other BSM physics The trigger question: p ~ χ 20 q p µ+ µ ~χ physics events: µ, γ, e, τ, jets, ET,miss -high pt objects (un-pre-scaled) -low pt objects (pre-scaled or in exclusive selection) - monitor events - calibration events s r? e w ns a e l im p 2

3 Event Rates and Multiplicities cross section of p-p collisions σtot(14 TeV) 100 mb σinel(14 TeV) 70 mb R= LHC cm energy (GeV) = event rate σinel N t = luminosity = 1034 cm-2 s-1 = inel. Cross section = 70 mb = interactions / bunch crossing = bunch crossing interval = 25 ns x σinel = 1034 cm-2 s-1 x 70mb = Hz N = R / t = s-1 x s = 17.5 = 17.5 x 3564 / 2808 (not all bunches filled) = 23 interactions / bunch crossing (pileup) With every bunch crossing 23 Minimum Bias events with ~1725 particles produced R nch = charged particles / interaction Nch = charged particles / BC Ntot = all particles / BC nch 50 Nch= nch x 23 = ~ 1150 Nto= Nch x 1.5 = ~

4 Looking for Interesting Events Higgs ZZ 2e+2µ 23 min bias events 4

5 another Constraint: ATLAS Event Size pile-up, adequate precision need small granularity detectors Detector Channels Fragment size [KB] Pixels 1.4* SCT 6.2* TRT 3.7* LAr 1.8* Tile MDT 3.7* CSC 6.7* RPC 3.5* TGC 4.4*105 6 LVL1 28 Atlas event size: 1.5 MB (140 million channels) at 40 MHz: 1 PB/sec affordable mass storage: 300 MB/sec storage rate: < 200 Hz 3 PB/year for offline analysis 5

6 The Trigger Challenge rate total interaction rate IA rate:~ 1 GHz; BC rate: 40 MHz; storage:~ 200 Hz online rejection: % (!) crucial for physics (!) powerful trigger needed: enormous rate reduction retaining the rare events in the very tough LHC environment discoveries storage rate remember: must be shared: ET physics triggers - high pt physics (un-pre-scaled) - low pt physics (pre-scaled, excl.) technical triggers: - monitor triggers - calibration triggers - 6

7 Technical Implementation 7

8 ATLAS Trigger: Overview software hardware 3-Level Trigger System: 1) LVL1 decision based on data from calorimeters and muon trigger chambers; synchronous at 40 MHz; bunch crossing identification 2.5 µs 2) LVL2 uses Regions of ~ 10 ms Interest (identified by LVL1) data (ca. 2%) with full granularity from all detectors ~ sec. 3) Event Filter has access to full event and can perform more refined event reconstruction 8

9 LVL1 Trigger Overview Muon Barrel Trigger (RPC) Pre-Processor (analogue ET) Jet / Energy-sum Processor Cluster Processor (e/γ, τ/h) multiplicities of e/γ, τ/h, jet for 8 pt thresholds each; flags for Σ ET, ΣET j, ETmiss over thresholds Muon End-cap Trigger (TGC) Muon-CTP Interface (MuCTPI) Central Trigger Processor (CTP) multiplicities of µ for 6 pt thresholds L1A signal TTC TTC TTC TTC TTC 9 LVL1 latency: 2.5 µs = 100 BC Muon trigger Calorimeter trigger

10 available thresholds: LVL1 Calorimeter Trigger electronic components (installed in counting room outside the cavern; heavily FPGA based): EM (e/gamma): 8-16 Tau/ hadron: 0-8 Jets: 8 example: e/γ algorithm: fwd. Jets: 8 goal: good discrimination sum sum E, E (jets), ETmiss : 4 (each) T T e/γ jets identify 2x2 RoI with local ET maximum cluster/ isolation cuts on various ET sums PPM crate output: at 40 MHz: multiplicities for e/γ, jets, τ/had and flags for energy sums to Central Trigger (CTP) accepted events: position of objects (RoIs) to LVL2 and additional information to DAQ 7 JEMs 6 CPMs 10

11 LVL1 Muon Trigger algorithm: dedicated muon chambers with good timing resolution for trigger: Resistive Plate Barrel <1.0 : Chambers (RPCs) End-caps 1.0< <2.4 : Thin Gap Chambers (TGCs) local track finding for LVL1 done ondetector (ASICs) looking for coincidences in chamber layers programmable widths of 6 coincidence windows determines pt threshold Available thresholds: Muon: 6 11

12 LVL1 Trigger Decision in CTP CTP: (one 9U VME64x crate, FPGA based) signals from LVL1 systems: 8-16 EM, 0-8 TAU 8 JET, 8 FWDJET 4 XE, 4 JE, 4 TE, 6 Muon other external signals e.g. MB scintillator, calculation of trigger decision for up to 256 trigger items: e.g. XE70+JET70 raw trigger bits internal signals: 2 random rates 2 pre-scaled clocks 8 bunch groups central part of LVL1 trigger system CTP in USA15: note: 2 different dead-time settings: trigger groups with high and low priority will see different luminosities! application of prescale factors actual trigger bits application of veto/ dead time CTP L1A all of these steps need to be taken into account in offline data analysis 12

13 Interface to HLT: RoI Mechanism LVL1 triggers on (high) pt objects L1Calo and L1Muon send Regions of Interest (RoI) to LVL2 for e/γ/τ-jet-µ candidates above thresholds LVL2 uses Regions of Interest as seed for reconstruction (full granularity) only data in RoI are used advantage: total amount of transfered data is small ~2% of the total event data can be dealt with at 75 khz EF runs after event building, full access to event 13

14 ATLAS Trigger & DAQ Architecture HLT HW : DESY, Hu m bol d t LVL2 and EF run in large PC farms on the surface DAQ and HLT closely coupled pre-series (corr. ~10% of HLT) 14

15 Staging of HLT Components L2P LVL2 PC SFI EventBuilder EFP EventFilter PC SFO Storage element deferred due to financial constraints max LVL1 rate per L2P: 150 Hz EventBuilder rate per SFI: 40 Hz max EB rate per EFP: 2 Hz physics storage rate per EFP: 0.1 Hz storage rate per storage element: 60 MB/s 40 Hz for 1.5 MB SFOs non-deferred; allow b/w for calib., debug, etc consequences for physics: e.g. in 2007/2008: LVL1 rate: ~40 KHz (cf. design:75/100 KHz) physics storage: ~80 Hz (cf. design: 200 Hz) 15

16 Trigger Strategy 16

17 HLT Selection Strategy Example: Dielectron Trigger fundamental principles: 1) step-wise processing and decision inexpensive (data, time) algorithms first, complicated algorithms last. 2) seeded reconstruction algorithms use results from previous steps initial seeds for LVL2 are LVL1 RoIs LVL2 confirms & refines LVL1 EF confirms & refines LVL2 note: EF tags accepted events according to physics selection ( streams, offline analysis!) ATLAS trigger terminology: Trigger chain Trigger signature (called item in LVL1) Trigger element 17

18 in parallel: Trigger Chains HLT Steering enables running of Trigger Chains in parallel w/o interference Trigger Chains are independent: easy to calculate trigger efficiencies easy to operate the trigger (finding problems, predictable behavior) scalable system ATLAS follows early reject principle: - Look at signatures one by one i.e. do not try to reconstruct full event upfront in principle: N-Level trigger system but: Only one pre-scale per chain per level. (to be discussed if used in HLT) if no signatures left, reject event - Save resources datahu transfer Martinminimize zur Nedden, Berlinand required CPU power 18

19 Physics Analysis: the Trigger Part Every physics analysis needs dedicated thoughts about the trigger: trigger rejects more or less hard cuts (in the signal region) (each) trigger has an inefficiency that needs to be corrected (turn-on curve) Similar to offline reconstruction efficiency, but important difference: no retrospective optimization: The events are lost forever. trigger optimization (as early as possible) trigger data quality during data-taking is crucial Example: trigger optimisation: typical turn-on curve: L2Calo 19

20 Physics Analysis: the Trigger Part analysis preparation: setup/ optimize a trigger for your physics signal define a trigger strategy (based on the available resources) convert to trigger chain (already existing?) determine rates and efficiencies from MC define a monitoring strategy define trigger chain to be used for monitoring of your physics trigger (efficiency from data) rates of the monitoring trigger (pre-scales?) integrate this in the overall trigger menu (done by Trigger Coordination for online running) threshold? more exclusive? pre-scaling? not OK OK use the trigger online (take data) monitor trigger quality determine trigger eff. (from data) correct your measurement20

21 Trigger Efficiency from Data example: possible monitoring of inclusive lepton triggers: reconstruct good Z0 candidates offline (triggered by at least one electron trigger) Count second electrons fulfilling trigger rec. Z0-peak electron positron trigger effi. time-evolution of accuracy eta note: - selection bias to be carefully checked! - trigger efficiency may depend on physics sample (e.g. electrons in W eν and top) investigate in physics groups studies of this kind are important and are just starting in ATLAS total efficiency for muons other methods: - di-object samples (J/Ψ, Z0, Z0+jets) - minimum bias and pre-scaled low-threshold triggers ( bootstrap ) - orthogonal selections in HLT (ID, muon, calo) - number of events 21

22 LVL1 Menu (as of today, TDR) general trigger problem: cover as much as possible of the kinematic phase space for physics low trigger thresholds keep the trigger rate low high trigger thresholds trigger menu is a compromise LVL1 rate is dominated by electromagnetic clusters: 78% of physics triggers Note: large uncertainties on predicted rates study of the global aspects needed: load balancing (e.g. jet triggers) 22

23 HLT Menu (as of today, TDR) e/γ rate reduced mainly in LVL2 (full granularit y in RoI) Note: large uncertainties on predicted rates (no data!) these menu give an rough impression of what we will select. details of the menu are not yet worked out (pre-scales, monitoring, ) but first examples of realistic trigger menus needed soon 23

24 towards a more complete Menu aim: get concrete examples of more complete and realistic trigger menus for discussion at the next trigger and physics weeks. ad-hoc-group: started rethinking about the trigger menus invites input from physics, combined performance and detector groups study slice-wise: - optimization of cuts need distributions of rates, rate vs. eff more realism to algorithms detailed studies of threshold behaviour, noise consequences on physics reach study of the global aspects: - load balancing (e.g. jet triggers balancing) overlap between selections, optimization the important details of the menu - priorities: consolidate work on menu for 14 TeV and in parallel: limited study for 0.9 TeV and 1029 later look at 1032 and above - monitoring strategy pre-scaling strategy (dynamic, static) triggers concurrent data-taking (pre-scales) or sequentially (i.e. dedicated runs)? time evolution (luminosity, background, etc.) pre-scale changes ala H1/CDF? technical triggers (bunch-groups, etc.) - 24

25 Ideas for early Data Taking conditions of early data-taking: initial luminosity: 1031(1029), bunch spacing 75ns (~500ns) BCID not critical, can relax the trigger timing windows trigger commissioning understanding of LVL1 is crucial at startup first phase: rates are low DAQ can stand 400 MB/s LVL1 only, HLT transparent some pre-scaling needed only for very low thresholds. HLT selections studied offline second phase: insert HLT start with very simple and basic algorithms minimum bias events: important esp. at the beginning: - crucial for timing-in of the experiment - for commissioning of detectors/ trigger/ offline selection - physics: as bkg. (important for 14 TeV), per se possible implementation: BC LVL1 trigger + selection on LVL2/EF bias free at LVL1 MBTS trigger at LVL1 + selection in HLT some bias at LVL1 ( range; efficiency for MIPS; multiplicity requirements; etc.) needed where interactions per BC << 1 25

26 The technical Side: Trigger Configuration Unique key TrigConf system under development real data-taking: trigger menu can change between runs optimization, falling luminosity during a fill (pre-scales, cuts) book-keeping of all settings crucial TriggerDB is central part: stores all information for the online selection stores all versions of trigger settings. identified with a unique key to be stored in CondDB. LVL1 HLT Offline data analyzer users will have to look up the TriggerDB to interpret the trigger result in the events, e.g. to find the settings for their triggers and the corresponding run ranges. 26

27 The technical side: Trigger Configuration Java front-end for the TriggerDB under development: TriggerTool three modes are foreseen: experts: construct consistent menus in TriggerDB shift-crew: choice of predefined options (menus, pre-scale sets) offline user: extract menus in text file for development, or simulation etc, browse DB to find settings of triggers and run ranges 27

28 German Contributions Contributions: Hardware: Institutes: Heidelberg Mainz DESY/Humboldt/HH (Siegen) (Wuppertal) (MPI) Heidelberg L1Calo Preprocessor L1Calo Jet-Energy Module Mainz DESY, Humboldt HLT computing racks Technical software around trigger: Trigger Configuration Trigger Monitoring DESY/HH DESY/Humboldt Simulation, algorithms, performance: CTP Simulation MB Trigger Jets, ETmiss B-physics B-tagging on LVL2 Muons DESY/HH DESY/Humboldt Mainz Siegen (planned), Wuppertal (finished) MPI (planned for SLHC) Trigger strategy: Operation, HLT Steering Combined Trigger Menu Pre-scaling DESY/HH Mainz, DESY/HH DESY/HH Heidelberg, Mainz, 28

29 Summary triggering at the LHC is crucial for physics only of the events selected cuts and efficiencies affect the results each data analyzer must understand the trigger choice of trigger, trigger optimization trigger (in-)efficiency - how to measure it (from data)? how to correct for it? need to develop more complete and realistic trigger menus for (early) data taking German contributions in many areas (HW+SW) very good collaboration! 29

The Run-2 ATLAS. ATLAS Trigger System: Design, Performance and Plans

The Run-2 ATLAS. ATLAS Trigger System: Design, Performance and Plans The Run-2 ATLAS Trigger System: Design, Performance and Plans 14th Topical Seminar on Innovative Particle and Radiation Detectors October 3rd October 6st 2016, Siena Martin zur Nedden Humboldt-Universität

More information

Data acquisition and Trigger (with emphasis on LHC)

Data acquisition and Trigger (with emphasis on LHC) Lecture 2 Data acquisition and Trigger (with emphasis on LHC) Introduction Data handling requirements for LHC Design issues: Architectures Front-end, event selection levels Trigger Future evolutions Conclusion

More information

Data acquisition and Trigger (with emphasis on LHC)

Data acquisition and Trigger (with emphasis on LHC) Lecture 2! Introduction! Data handling requirements for LHC! Design issues: Architectures! Front-end, event selection levels! Trigger! Upgrades! Conclusion Data acquisition and Trigger (with emphasis on

More information

Overview of the ATLAS Trigger/DAQ System

Overview of the ATLAS Trigger/DAQ System Overview of the ATLAS Trigger/DAQ System A. J. Lankford UC Irvine May 4, 2007 This presentation is based very heavily upon a presentation made by Nick Ellis (CERN) at DESY in Dec 06. Nick Ellis, Seminar,

More information

Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC

Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC Operation and Performance of the ATLAS Level-1 Calorimeter and Level-1 Topological Triggers in Run 2 at the LHC Kirchhoff-Institute for Physics (DE) E-mail: sebastian.mario.weber@cern.ch ATL-DAQ-PROC-2017-026

More information

ATLAS Phase-II trigger upgrade

ATLAS Phase-II trigger upgrade Particle Physics ATLAS Phase-II trigger upgrade David Sankey on behalf of the ATLAS Collaboration Thursday, 10 March 16 Overview Setting the scene Goals for Phase-II upgrades installed in LS3 HL-LHC Run

More information

Trigger and Data Acquisition Systems. Monika Wielers RAL. Lecture 3. Trigger. Trigger, Nov 2,

Trigger and Data Acquisition Systems. Monika Wielers RAL. Lecture 3. Trigger. Trigger, Nov 2, Trigger and Data Acquisition Systems Monika Wielers RAL Lecture 3 Trigger Trigger, Nov 2, 2016 1 Reminder from last time Last time we learned how to build a data acquisition system Studied several examples

More information

First-level trigger systems at LHC. Nick Ellis EP Division, CERN, Geneva

First-level trigger systems at LHC. Nick Ellis EP Division, CERN, Geneva First-level trigger systems at LHC Nick Ellis EP Division, CERN, Geneva 1 Outline Requirements from physics and other perspectives General discussion of first-level trigger implementations Techniques and

More information

LHC Experiments - Trigger, Data-taking and Computing

LHC Experiments - Trigger, Data-taking and Computing Physik an höchstenergetischen Beschleunigern WS17/18 TUM S.Bethke, F. Simon V6: Trigger, data taking, computing 1 LHC Experiments - Trigger, Data-taking and Computing data rates physics signals ATLAS trigger

More information

Monika Wielers Rutherford Appleton Laboratory

Monika Wielers Rutherford Appleton Laboratory Lecture 2 Monika Wielers Rutherford Appleton Laboratory Trigger and Data Acquisition requirements for LHC Example: Data flow in ATLAS (transport of event information from collision to mass storage) 1 What

More information

Trigger and DAQ at the LHC. (Part II)

Trigger and DAQ at the LHC. (Part II) Trigger and DAQ at the LHC (Part II) Tulika Bose Brown University NEPPSR 2007 August 16, 2007 1 The LHC Trigger Challenge σ mb μb nb pb fb σ inelastic bb W Z t t OBSERVED gg H SM qq qqh SM H SM γγ h γγ

More information

The ATLAS Trigger in Run 2: Design, Menu, and Performance

The ATLAS Trigger in Run 2: Design, Menu, and Performance he ALAS rigger in Run 2: Design, Menu, and Performance amara Vazquez Schroeder, on behalf of the ALAS Collaboration McGill University E-mail: tamara.vazquez.schroeder@cern.ch he ALAS trigger system is

More information

EPJ C direct. The ATLAS trigger system. 1 Introduction. 2 The ATLAS experiment. electronic only. R. Hauser, on behalf of the ATLAS collaboration

EPJ C direct. The ATLAS trigger system. 1 Introduction. 2 The ATLAS experiment. electronic only. R. Hauser, on behalf of the ATLAS collaboration Eur Phys J C 34, s01, s173 s183 (2004) Digital Object Identifier (DOI) 10.1140/epjcd/s2004-04-018-6 EPJ C direct electronic only The ATLAS trigger system R. Hauser, on behalf of the ATLAS collaboration

More information

Real-time flavour tagging selection in ATLAS. Lidija Živković, Insttut of Physics, Belgrade

Real-time flavour tagging selection in ATLAS. Lidija Živković, Insttut of Physics, Belgrade Real-time flavour tagging selection in ATLAS Lidija Živković, Insttut of Physics, Belgrade On behalf of the collaboration Outline Motivation Overview of the trigger b-jet trigger in Run 2 Future Fast TracKer

More information

The Status of ATLAS. Xin Wu, University of Geneva On behalf of the ATLAS collaboration. X. Wu, HCP2009, Evian, 17/11/09 ATL-GEN-SLIDE

The Status of ATLAS. Xin Wu, University of Geneva On behalf of the ATLAS collaboration. X. Wu, HCP2009, Evian, 17/11/09 ATL-GEN-SLIDE ATL-GEN-SLIDE-2009-356 18 November 2009 The Status of ATLAS Xin Wu, University of Geneva On behalf of the ATLAS collaboration 1 ATLAS and the people who built it 25m high, 44m long Total weight 7000 tons

More information

Data acquisi*on and Trigger - Trigger -

Data acquisi*on and Trigger - Trigger - Experimental Methods in Par3cle Physics (HS 2014) Data acquisi*on and Trigger - Trigger - Lea Caminada lea.caminada@physik.uzh.ch 1 Interlude: LHC opera3on Data rates at LHC Trigger overview Coincidence

More information

Trigger and Data Acquisition at the Large Hadron Collider

Trigger and Data Acquisition at the Large Hadron Collider Trigger and Data Acquisition at the Large Hadron Collider Acknowledgments This overview talk would not exist without the help of many colleagues and all the material available online I wish to thank the

More information

Level-1 Calorimeter Trigger Calibration

Level-1 Calorimeter Trigger Calibration December 2004 Level-1 Calorimeter Trigger Calibration Birmingham, Heidelberg, Mainz, Queen Mary, RAL, Stockholm Alan Watson, University of Birmingham Norman Gee, Rutherford Appleton Lab Outline Reminder

More information

Track Triggers for ATLAS

Track Triggers for ATLAS Track Triggers for ATLAS André Schöning University Heidelberg 10. Terascale Detector Workshop DESY 10.-13. April 2017 from https://www.enterprisedb.com/blog/3-ways-reduce-it-complexitydigital-transformation

More information

TRIGGER & DATA ACQUISITION. Nick Ellis PH Department, CERN, Geneva

TRIGGER & DATA ACQUISITION. Nick Ellis PH Department, CERN, Geneva TRIGGER & DATA ACQUISITION Nick Ellis PH Department, CERN, Geneva 1 Lecture 1 2 LEVEL OF LECTURES Students at this School come from various backgrounds Phenomenology Analysis of physics data from experiments

More information

Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II Journal of Physics: Conference Series PAPER OPEN ACCESS Performance of the ALAS Muon rigger in Run I and Upgrades for Run II o cite this article: Dai Kobayashi and 25 J. Phys.: Conf. Ser. 664 926 Related

More information

CTEQ Summer School. Wesley H. Smith U. Wisconsin - Madison July 19, 2011

CTEQ Summer School. Wesley H. Smith U. Wisconsin - Madison July 19, 2011 CTEQ Summer School Wesley H. Smith U. Wisconsin - Madison July 19, 2011 Outline: Introduction to LHC Trigger & DAQ Challenges & Architecture Examples: ATLAS & CMS Trigger & DAQ The Future: LHC Upgrade

More information

ATLAS Muon Trigger and Readout Considerations. Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration

ATLAS Muon Trigger and Readout Considerations. Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration ATLAS Muon Trigger and Readout Considerations Yasuyuki Horii Nagoya University on Behalf of the ATLAS Muon Collaboration ECFA High Luminosity LHC Experiments Workshop - 2016 ATLAS Muon System Overview

More information

The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern

The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern Takuya SUGIMOTO (Nagoya University) On behalf of TGC Group ~ Contents ~ 1. ATLAS Level1 Trigger 2. Endcap

More information

First-level trigger systems at LHC

First-level trigger systems at LHC First-level trigger systems at LHC N. Ellis CERN, 1211 Geneva 23, Switzerland Nick.Ellis@cern.ch Abstract Some of the challenges of first-level trigger systems in the LHC experiments are discussed. The

More information

Triggers For LHC Physics

Triggers For LHC Physics Triggers For LHC Physics Bryan Dahmes University of Minnesota bryan.michael.dahmes@cern.ch 1 Introduction Some terminology Motivation: Why do we need a trigger? Explanation of the Trigger components Level

More information

LHCb Trigger & DAQ Design technology and performance. Mika Vesterinen ECFA High Luminosity LHC Experiments Workshop 8/10/2016

LHCb Trigger & DAQ Design technology and performance. Mika Vesterinen ECFA High Luminosity LHC Experiments Workshop 8/10/2016 LHCb Trigger & DAQ Design technology and performance Mika Vesterinen ECFA High Luminosity LHC Experiments Workshop 8/10/2016 2 Introduction The LHCb upgrade will allow 5x higher luminosity and with greatly

More information

Triggers: What, where, why, when and how

Triggers: What, where, why, when and how Triggers: What, where, why, when and how ATLAS as an example (Other detectors do exist...) Alex Martyniuk (UCL) November 21, 2017 1 / 23 Alex Martyniuk Triggering: What is it even? Triggering: A system/process

More information

The LHCb trigger system

The LHCb trigger system IL NUOVO CIMENTO Vol. 123 B, N. 3-4 Marzo-Aprile 2008 DOI 10.1393/ncb/i2008-10523-9 The LHCb trigger system D. Pinci( ) INFN, Sezione di Roma - Rome, Italy (ricevuto il 3 Giugno 2008; pubblicato online

More information

Trigger Overview. Wesley Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review April 12, 2000

Trigger Overview. Wesley Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review April 12, 2000 Overview Wesley Smith, U. Wisconsin CMS Project Manager DOE/NSF Review April 12, 2000 1 TriDAS Main Parameters Level 1 Detector Frontend Readout Systems Event Manager Builder Networks Run Control System

More information

DAQ & Electronics for the CW Beam at Jefferson Lab

DAQ & Electronics for the CW Beam at Jefferson Lab DAQ & Electronics for the CW Beam at Jefferson Lab Benjamin Raydo EIC Detector Workshop @ Jefferson Lab June 4-5, 2010 High Event and Data Rates Goals for EIC Trigger Trigger must be able to handle high

More information

The Run-2 ATLAS Trigger System

The Run-2 ATLAS Trigger System he Run-2 ALAS rigger System Arantxa Ruiz Martínez on behalf of the ALAS Collaboration Department of Physics, Carleton University, Ottawa, ON, Canada E-mail: aranzazu.ruiz.martinez@cern.ch Abstract. he

More information

Current Status of ATLAS Endcap Muon Trigger System

Current Status of ATLAS Endcap Muon Trigger System Current Status of ATLAS Endcap Muon Trigger System Takuya SUGIMOTO Nagoya University On behalf of ATLAS Japan TGC Group Contents 1. Introduction 2. Assembly and installation of TGC 3. Readout test at assembly

More information

Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC

Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC Development and Test of a Demonstrator for a First-Level Muon Trigger based on the Precision Drift Tube Chambers for ATLAS at HL-LHC K. Schmidt-Sommerfeld Max-Planck-Institut für Physik, München K. Schmidt-Sommerfeld,

More information

Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System. Yasuyuki Okumura. Nagoya TWEPP 2008

Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System. Yasuyuki Okumura. Nagoya TWEPP 2008 Commissioning Status and Results of ATLAS Level1 Endcap Muon Trigger System Yasuyuki Okumura Nagoya University @ TWEPP 2008 ATLAS Trigger DAQ System Trigger in LHC-ATLAS Experiment 3-Level Trigger System

More information

Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC. Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration

Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC. Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration Upgrade of the ATLAS Thin Gap Chamber Electronics for HL-LHC Yasuyuki Horii, Nagoya University, on Behalf of the ATLAS Muon Collaboration TWEPP 2017, UC Santa Cruz, 12 Sep. 2017 ATLAS Muon System Overview

More information

Trigger and data acquisition

Trigger and data acquisition Trigger and data acquisition N. Ellis CERN, Geneva, Switzerland 1 Introduction These lectures concentrate on experiments at high-energy particle colliders, especially the generalpurpose experiments at

More information

The design and performance of the ATLAS jet trigger

The design and performance of the ATLAS jet trigger th International Conference on Computing in High Energy and Nuclear Physics (CHEP) IOP Publishing Journal of Physics: Conference Series () doi:.88/7-696/// he design and performance of the ALAS jet trigger

More information

The CMS Muon Trigger

The CMS Muon Trigger The CMS Muon Trigger Outline: o CMS trigger system o Muon Lv-1 trigger o Drift-Tubes local trigger o peformance tests CMS Collaboration 1 CERN Large Hadron Collider start-up 2007 target luminosity 10^34

More information

What do the experiments want?

What do the experiments want? What do the experiments want? prepared by N. Hessey, J. Nash, M.Nessi, W.Rieger, W. Witzeling LHC Performance Workshop, Session 9 -Chamonix 2010 slhcas a luminosity upgrade The physics potential will be

More information

arxiv: v2 [physics.ins-det] 13 Oct 2015

arxiv: v2 [physics.ins-det] 13 Oct 2015 Preprint typeset in JINST style - HYPER VERSION Level-1 pixel based tracking trigger algorithm for LHC upgrade arxiv:1506.08877v2 [physics.ins-det] 13 Oct 2015 Chang-Seong Moon and Aurore Savoy-Navarro

More information

Hardware Trigger Processor for the MDT System

Hardware Trigger Processor for the MDT System University of Massachusetts Amherst E-mail: tcpaiva@cern.ch We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit

More information

Hardware Trigger Processor for the MDT System

Hardware Trigger Processor for the MDT System University of Massachusetts Amherst E-mail: tcpaiva@cern.ch We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system for the Muon Spectrometer of the ATLAS Experiment.

More information

CMS electron and _ photon performance at s = 13 TeV. Francesco Micheli on behalf of CMS Collaboration

CMS electron and _ photon performance at s = 13 TeV. Francesco Micheli on behalf of CMS Collaboration CMS electron and _ photon performance at s = 13 TeV on behalf of CMS Collaboration 2 Electrons and Photons @ CMS Electrons and photons are crucial for CMS physics program: SM precision physics, Higgs coupling

More information

ATLAS and CMS Upgrades and the future physics program at the LHC D. Contardo, IPN Lyon

ATLAS and CMS Upgrades and the future physics program at the LHC D. Contardo, IPN Lyon ATLAS and CMS Upgrades and the future physics program at the LHC D. Contardo, IPN Lyon CMS LHCb ALICE p-p LHC ring: 27 km circumference ATLAS 1 Outline 2 o First run at the LHC 2010-2012 Beam conditions

More information

LHCb Trigger System and selection for Bs->J/Ψ(ee)φ(KK)

LHCb Trigger System and selection for Bs->J/Ψ(ee)φ(KK) Krakow-Warsaw LHC Workshop November, 6, 2009 LHCb Trigger System and selection for Bs->J/Ψ(ee)φ(KK) Artur Ukleja on behalf of LHCb Warsaw Group Outline 1. Motivation 2. General scheme of LHCb trigger Two

More information

The trigger system of the muon spectrometer of the ALICE experiment at the LHC

The trigger system of the muon spectrometer of the ALICE experiment at the LHC The trigger system of the muon spectrometer of the ALICE experiment at the LHC Francesco Bossù for the ALICE collaboration University and INFN of Turin Siena, 09 June 2010 Outline 1 Introduction 2 Muon

More information

Spectrometer cavern background

Spectrometer cavern background ATLAS ATLAS Muon Muon Spectrometer Spectrometer cavern cavern background background LPCC Simulation Workshop 19 March 2014 Jochen Meyer (CERN) for the ATLAS Collaboration Outline ATLAS Muon Spectrometer

More information

Opera&on of the Upgraded ATLAS Level- 1 Central Trigger System

Opera&on of the Upgraded ATLAS Level- 1 Central Trigger System Opera&on of the Upgraded ATLAS Level- 1 Central Trigger System Julian Glatzer on behalf of the ATLAS Collabora&on 21 st Interna&onal Conference on Compu&ng in High Energy and Nuclear Physics 13/04/15 Julian

More information

The Commissioning of the ATLAS Pixel Detector

The Commissioning of the ATLAS Pixel Detector The Commissioning of the ATLAS Pixel Detector XCIV National Congress Italian Physical Society Genova, 22-27 Settembre 2008 Nicoletta Garelli Large Hadronic Collider MOTIVATION: Find Higgs Boson and New

More information

Totem Experiment Status Report

Totem Experiment Status Report Totem Experiment Status Report Edoardo Bossini (on behalf of the TOTEM collaboration) 131 st LHCC meeting 1 Outline CT-PPS layout and acceptance Running operation Detector commissioning CT-PPS analysis

More information

Development of a Highly Selective First-Level Muon Trigger for ATLAS at HL-LHC Exploiting Precision Muon Drift-Tube Data

Development of a Highly Selective First-Level Muon Trigger for ATLAS at HL-LHC Exploiting Precision Muon Drift-Tube Data Development of a Highly Selective First-Level Muon Trigger for ATLAS at HL-LHC Exploiting Precision Muon Drift-Tube Data S. Abovyan, V. Danielyan, M. Fras, P. Gadow, O. Kortner, S. Kortner, H. Kroha, F.

More information

The LHC Situation. Contents. Chris Bee. First collisions: July 2005! Centre de Physique des Particules de Marseille, France,

The LHC Situation. Contents. Chris Bee. First collisions: July 2005! Centre de Physique des Particules de Marseille, France, The LHC Situation Chris Bee Centre de Physique des Particules de Marseille, France, Contents First collisions: July 2005! Event Filter Farms in the LHC Experiments Chris Bee Centre de Physique des Particules

More information

Calorimeter Monitoring at DØ

Calorimeter Monitoring at DØ Calorimeter Monitoring at DØ Calorimeter Monitoring at DØ Robert Kehoe ATLAS Calibration Mtg. December 1, 2004 Southern Methodist University Department of Physics Detector and Electronics Monitoring Levels

More information

SLHC Trigger & DAQ. Wesley H. Smith. U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006

SLHC Trigger & DAQ. Wesley H. Smith. U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006 SLHC Trigger & DAQ Wesley H. Smith U. Wisconsin - Madison FNAL Forward Pixel SLHC Workshop October 9, 2006 Outline: SLHC Machine, Physics, Trigger & DAQ Impact of Luminosity up to 10 35 Calorimeter, Muon

More information

Mitigating high energy anomalous signals in the CMS barrel Electromagnetic Calorimeter

Mitigating high energy anomalous signals in the CMS barrel Electromagnetic Calorimeter Mitigating high energy anomalous signals in the CMS barrel Electromagnetic Calorimeter Summary report Ali Farzanehfar University of Southampton University of Southampton Spike mitigation May 28, 2015 1

More information

CALICE AHCAL overview

CALICE AHCAL overview International Workshop on the High Energy Circular Electron-Positron Collider in 2018 CALICE AHCAL overview Yong Liu (IHEP), on behalf of the CALICE collaboration Nov. 13, 2018 CALICE-AHCAL Progress, CEPC

More information

The ATLAS Level-1 Calorimeter Trigger

The ATLAS Level-1 Calorimeter Trigger PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA R E C E I V E D: January 22, 2008 A C C E P T E D: February 15, 2008 P U B L I S H E D: March 6, 2008 The ATLAS Level-1 Calorimeter Trigger R. Achenbach,

More information

Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics

Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics How to compose a very very large jigsaw-puzzle CMS ECAL Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin,

More information

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance

Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance Signal Reconstruction of the ATLAS Hadronic Tile Calorimeter: implementation and performance G. Usai (on behalf of the ATLAS Tile Calorimeter group) University of Texas at Arlington E-mail: giulio.usai@cern.ch

More information

MuLan Experiment Progress Report

MuLan Experiment Progress Report BV 37 PSI February 16 2006 p. 1 MuLan Experiment Progress Report PSI Experiment R 99-07 Françoise Mulhauser, University of Illinois at Urbana Champaign (USA) The MuLan Collaboration: BERKELEY BOSTON ILLINOIS

More information

irpc upgrade project for CMS during HL-LHC program

irpc upgrade project for CMS during HL-LHC program irpc upgrade project for CMS during HL-LHC program 1) CMS muon spectrometer 2) irpc project 3) Team, activities, timing M. Gouzevitch (IPNL, France) and T.J Kim (Hanyang University, Korea) FJPPL/FKPPL

More information

CMS SLHC Tracker Upgrade: Selected Thoughts, Challenges and Strategies

CMS SLHC Tracker Upgrade: Selected Thoughts, Challenges and Strategies : Selected Thoughts, Challenges and Strategies CERN Geneva, Switzerland E-mail: marcello.mannelli@cern.ch Upgrading the CMS Tracker for the SLHC presents many challenges, of which the much harsher radiation

More information

The upgrade of the LHCb trigger for Run III

The upgrade of the LHCb trigger for Run III The upgrade of the LHCb trigger for Run III Mark Whitehead on behalf of the LHCb collaboration Introduction LHCb upgrade for Run III Detector upgrades to cope with increased luminosity Run II L =4 32 cm

More information

The online muon identification with the ATLAS experiment at the LHC

The online muon identification with the ATLAS experiment at the LHC 32 he online muon identification with the ALAS exeriment at the LHC Abstract he Large Hadron Collider (LHC) at CERN is a roton-roton collider roviding the highest energy and the highest instantaneous luminosity

More information

PoS(EPS-HEP2017)476. The CMS Tracker upgrade for HL-LHC. Sudha Ahuja on behalf of the CMS Collaboration

PoS(EPS-HEP2017)476. The CMS Tracker upgrade for HL-LHC. Sudha Ahuja on behalf of the CMS Collaboration UNESP - Universidade Estadual Paulista (BR) E-mail: sudha.ahuja@cern.ch he LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 34 cm s in 228, to possibly reach

More information

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring

LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring LHCb Preshower(PS) and Scintillating Pad Detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Olloqui on behalf of the LHCb Collaboration Universitat de Barcelona, Facultat de Física,

More information

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary Contents Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test data @PSI autumn 04 Templates and time resolution Pulse Shape Discrimination Pile-up rejection Summary 2 In the MEG experiment

More information

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC

Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC Ankush Mitra, University of Warwick, UK on behalf of the ATLAS ITk Collaboration PSD11 : The 11th International Conference

More information

The detector read-out in ALICE during Run 3 and 4

The detector read-out in ALICE during Run 3 and 4 The detector read-out in ALICE during Run 3 and 4 CHEP 2016 Conference, San Francisco, October 8-14, 2016 Filippo Costa ALICE O2/CRU for the ALICE collaboration OUTLINE 1 st PART: INTRODUCTION TO ALICE

More information

The ATLAS detector at the LHC

The ATLAS detector at the LHC The ATLAS detector at the LHC Andrée Robichaud-Véronneau on behalf of the ATLAS collaboration Université de Genève July 17th, 2009 Abstract The world s largest multi-purpose particle detector, ATLAS, is

More information

9. TRIGGER AND DATA ACQUISITION

9. TRIGGER AND DATA ACQUISITION 9. TRIGGER AND DATA ACQUISITION 9.1 INTRODUCTION The CMS trigger and data acquisition system is shown in Fig. 9.1 and the used terminology in Table 9.1. For the nominal LHC design luminosity of 1 34 cm

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/349 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 09 October 2017 (v4, 10 October 2017)

More information

CALICE Software. Data handling, prototype reconstruction, and physics analysis. Niels Meyer, DESY DESY DV Seminar June 29, 2009

CALICE Software. Data handling, prototype reconstruction, and physics analysis. Niels Meyer, DESY DESY DV Seminar June 29, 2009 CALICE Software Data handling, prototype reconstruction, and physics analysis Niels Meyer, DESY DESY DV Seminar June 29, 2009 The ILC Well, the next kid around the block (hopefully...) Precision physics

More information

James W. Rohlf. Super-LHC: The Experimental Program. Boston University. Int. Workshop on Future Hadron Colliders Fermilab, 17 October 2003

James W. Rohlf. Super-LHC: The Experimental Program. Boston University. Int. Workshop on Future Hadron Colliders Fermilab, 17 October 2003 Int. Workshop on Future Hadron Colliders Fermilab, 17 October 2003 Super-LHC: The Experimental Program James W. Rohlf Boston University Rohlf/SLHC p.1/69 SLHC SLHC experimental overview Machine Detectors

More information

CMS Silicon Strip Tracker: Operation and Performance

CMS Silicon Strip Tracker: Operation and Performance CMS Silicon Strip Tracker: Operation and Performance Laura Borrello Purdue University, Indiana, USA on behalf of the CMS Collaboration Outline The CMS Silicon Strip Tracker (SST) SST performance during

More information

Phase 1 upgrade of the CMS pixel detector

Phase 1 upgrade of the CMS pixel detector Phase 1 upgrade of the CMS pixel detector, INFN & University of Perugia, On behalf of the CMS Collaboration. IPRD conference, Siena, Italy. Oct 05, 2016 1 Outline The performance of the present CMS pixel

More information

ATLAS ITk and new pixel sensors technologies

ATLAS ITk and new pixel sensors technologies IL NUOVO CIMENTO 39 C (2016) 258 DOI 10.1393/ncc/i2016-16258-1 Colloquia: IFAE 2015 ATLAS ITk and new pixel sensors technologies A. Gaudiello INFN, Sezione di Genova and Dipartimento di Fisica, Università

More information

Level-1 Track Trigger R&D. Zijun Xu Peking University

Level-1 Track Trigger R&D. Zijun Xu Peking University Level-1 Trigger R&D Zijun Xu Peking University 2016-12 1 Level-1 Trigger for CMS Phase2 Upgrade HL-LHC, ~2025 Pileup 140-250 Silicon based Level 1 Trigger Be crucial for trigger objects reconstruction

More information

The Liquid Argon Jet Trigger of the H1 Experiment at HERA. 1 Abstract. 2 Introduction. 3 Jet Trigger Algorithm

The Liquid Argon Jet Trigger of the H1 Experiment at HERA. 1 Abstract. 2 Introduction. 3 Jet Trigger Algorithm The Liquid Argon Jet Trigger of the H1 Experiment at HERA Bob Olivier Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 München, Germany 1 Abstract The Liquid Argon

More information

The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC

The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC Journal of Physics: Conference Series OPEN ACCESS The CMS electromagnetic calorimeter barrel upgrade for High-Luminosity LHC To cite this article: Philippe Gras and the CMS collaboration 2015 J. Phys.:

More information

Introduction to Trigger and Data Acquisition

Introduction to Trigger and Data Acquisition Introduction to Trigger and Data Acquisition Monika Wielers Rutherford Appleton Laboratory DAQ intro, Oct 20, 2015 1 What is it about... How to get from to DAQ intro, Oct 20, 2015 2 Or Main role of Trigger

More information

HARDWARE TRIGGERS AT THE LHC

HARDWARE TRIGGERS AT THE LHC HARDWARE TRIGGERS AT THE LHC Eric Eisenhandler Physics Department, Queen Mary & Westfield College, University of London, London E1 4NS, UK email: e.eisenhandler@qmw.ac.uk Abstract This paper gives an overview

More information

The CMS ECAL Laser Monitoring System

The CMS ECAL Laser Monitoring System The CMS ECAL Laser Monitoring System IPRD 2008 11th Topical Seminar On Innovative Particle and Radiation Detectors Adi Bornheim California Institute of Technology On behalf of the CMS ECAL Collaboration

More information

Operation and performance of the CMS Resistive Plate Chambers during LHC run II

Operation and performance of the CMS Resistive Plate Chambers during LHC run II Operation and performance of the CMS Resistive Plate Chambers during LHC run II, Isabel Pedraza Benemérita Universidad Autónoma de Puebla On behalf of the CMS collaboration XXXI Reunión Anual de la División

More information

arxiv: v1 [physics.ins-det] 25 Oct 2012

arxiv: v1 [physics.ins-det] 25 Oct 2012 The RPC-based proposal for the ATLAS forward muon trigger upgrade in view of super-lhc arxiv:1210.6728v1 [physics.ins-det] 25 Oct 2012 University of Michigan, Ann Arbor, MI, 48109 On behalf of the ATLAS

More information

arxiv: v2 [physics.ins-det] 20 Oct 2008

arxiv: v2 [physics.ins-det] 20 Oct 2008 Commissioning of the ATLAS Inner Tracking Detectors F. Martin University of Pennsylvania, Philadelphia, PA 19104, USA On behalf of the ATLAS Inner Detector Collaboration arxiv:0809.2476v2 [physics.ins-det]

More information

CMS Phase 2 Upgrade: Preliminary Plan and Cost Estimate

CMS Phase 2 Upgrade: Preliminary Plan and Cost Estimate CMS Phase 2 Upgrade: Preliminary Plan and Cost Estimate CMS Collaboration Submitted to the CERN LHC Experiments Resource Review Board October 2013 Abstract With the major discovery of a Higgs boson in

More information

Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4. Final design and pre-production.

Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4 Q1-2 Q3-4. Final design and pre-production. high-granularity sfcal Performance simulation, option selection and R&D Figure 41. Overview of the time-line and milestones for the implementation of the high-granularity sfcal. tooling and cryostat modification,

More information

Status of the LHCb Experiment

Status of the LHCb Experiment Status of the LHCb Experiment Werner Witzeling CERN, Geneva, Switzerland On behalf of the LHCb Collaboration Introduction The LHCb experiment aims to investigate CP violation in the B meson decays at LHC

More information

Towards an ADC for the Liquid Argon Electronics Upgrade

Towards an ADC for the Liquid Argon Electronics Upgrade 1 Towards an ADC for the Liquid Argon Electronics Upgrade Gustaaf Brooijmans Upgrade Workshop, November 10, 2009 2 Current LAr FEB Existing FEB (radiation tolerant for LHC, but slhc?) Limits L1 latency

More information

Electronics, trigger and physics for LHC experiments

Electronics, trigger and physics for LHC experiments Electronics, trigger and physics for LHC experiments 1 The Large hadron Collider 27 km length, 100 m underground, four interaction points (experiments) proton-proton collisions, 7 TeV + 7 TeV (14 TeV in

More information

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Noemi Calace noemi.calace@cern.ch On behalf of the ATLAS Collaboration 25th International Workshop on Deep Inelastic Scattering

More information

Measurement of the charged particle density with the ATLAS detector: First data at vs = 0.9, 2.36 and 7 TeV Kayl, M.S.

Measurement of the charged particle density with the ATLAS detector: First data at vs = 0.9, 2.36 and 7 TeV Kayl, M.S. UvA-DARE (Digital Academic Repository) Measurement of the charged particle density with the ATLAS detector: First data at vs = 0.9, 2.36 and 7 TeV Kayl, M.S. Link to publication Citation for published

More information

PoS(LHCP2018)031. ATLAS Forward Proton Detector

PoS(LHCP2018)031. ATLAS Forward Proton Detector . Institut de Física d Altes Energies (IFAE) Barcelona Edifici CN UAB Campus, 08193 Bellaterra (Barcelona), Spain E-mail: cgrieco@ifae.es The purpose of the ATLAS Forward Proton (AFP) detector is to measure

More information

Silicon W Calorimeters for the PHENIX Forward Upgrade

Silicon W Calorimeters for the PHENIX Forward Upgrade E.Kistenev Silicon W Calorimeters for the PHENIX Forward Upgrade Event characterization detectors in middle PHENIX today Two central arms for measuring hadrons, photons and electrons Two forward arms for

More information

arxiv: v1 [hep-ex] 12 Nov 2010

arxiv: v1 [hep-ex] 12 Nov 2010 Trigger efficiencies at BES III N. Berger ;) K. Zhu ;2) Z.A. Liu D.P. Jin H. Xu W.X. Gong K. Wang G. F. Cao : Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 49, China arxiv:.2825v

More information

Some Studies on ILC Calorimetry

Some Studies on ILC Calorimetry Some Studies on ILC Calorimetry M. Benyamna, C. Carlogan, P. Gay, S. Manen, F. Morisseau, L. Royer (LPC-Clermont) & Y. Gao, H. Gong, Z. Yang (Tsinghua Univ.) Topics of the collaboration - Algorithm for

More information

3.1 Introduction, design of HERA B

3.1 Introduction, design of HERA B 3. THE HERA B EXPERIMENT In this chapter we discuss the setup of the HERA B experiment. We start with an introduction on the design of HERA B (section 3.1) and a short description of the accelerator (section

More information

Muon reconstruction in ATLAS

Muon reconstruction in ATLAS Muon reconstruction in ATLAS Niels van Eldik CERN Muons for physics analysis: Four flavors Combined muons: ID+MS hits + full track fit the bulk of all muons Standalone muons track in the MS, no associated

More information