Wireless sensor networks and environmental monitoring applications

Size: px
Start display at page:

Download "Wireless sensor networks and environmental monitoring applications"

Transcription

1 Wireless sensor networks and environmental monitoring applications LE BORGNE Yann-Aël ULB Machine Learning Group 1050 Brussels Belgium Group site: Personal site: WSN lab site: Work supported by the COMP 2 SYS project, sponsored by the Human Resources and Mobility program of the European community (MEST-CT )

2 ULB Machine learning group Head: Gianluca Bontempi 7 researchers Research topics: Machine learning, data mining, forecasting, modelling and simulation Theoretical research: Local learning, feature selection, model selection Speech recognition and text classification Bioinformatics Gene expression and cancer detection Computer-aided medicine Data processing in wireless sensor networks Facilities: Cluster of 16 computers 30 ultra low power wireless sensors Lego robotics lab (10 Mindstorms kits) More to come (mobile robot, Mindstorms NXT kits, 100 wireless sensors) Website:

3 Agenda Technology and applications Solbosch Greenhouse monitoring WSN: research challenges

4 Wireless sensor Tiny electronic system (aka mote) that can collect, process and communicate data 5 components Microprocessor Memory Radio Sensors Energy supply Smart dust project 2001 UC Berkeley Goal: scale wireless sensors down to 1mm3 Golem and deputy dust 16mm 3 circumbscribed volume Microprocessor: 4MHz Radio: 4kbps, 180m Sensors: Light and accelerometer Energy: Solar powered

5 Current research prototypes Examples Tmote sky (MoteIV) TI MSP430 8MHz 48KB prog flash, 10KB RAM, 512KB data flash 250kbps radio Light, temp, hum sensors Mica2Dot (Crossbow) Atmel AVR 8MHz 128KB prog flash, 4KB RAM, 512KB data SRAM 38.4kbps radio Eyes node (EU project) TI MSP430F149 5MHz 60KB prog flash, 2KB RAM, 4KB data flash 115kbps radio µchip (Particle computing) PIC12F675 4MHz 1.4KB prog flash, 64b SRAM, 128B data flash 19.2kbps radio Light, temp, movement

6 Wireless sensor networks Real-time monitoring of an environment Throw n play : WS scattered on a field Self-organization Data collection

7 Examples Habitat monitoring - Great duck island Coordinator: Intel Berkeley and College of Bar Harbor Study Leach s Storm Petrel nesting habits Over 150 Mica nodes deployed for 4 months Tungurahua Volcano Coordinator: Harvard University Real time survey of volcano activity 16 Tmote deployed for 2 months

8 Examples Ocean tracking network 2006 Coordinator : Dalhousie university - Canada Monitor endangered species Understand animal migration patterns CitySense Coordinator : Cambridge - Massachussets Monitor pollution in cambridge 100 wireless sensors operating on streetlamps

9 And more Applications in a wide variety of domains: Environmental monitoring Forest fires, pollution, agriculture, Civil engineering Building, pipeline monitoring Defense Battelfield surveillance Industry Failure prevention, failure diagnosis Medical healthcare Remote or non invasive monitoring

10 Solbosch greenhouses Greenhouses used by different research labs Locations of sensors within the greenhouses 3 greenhouses monitored with 18 Tmote Sky for a two day period

11 Data variation profiles Temperature ( C) Humidity (%) Sensors: Temperature, humidity, and light on two bandwidths Sampling period: 1 minute 1440 readings collected over 1 day PAR (raw) TSR (raw)

12 Data summary Variations within greenhouse 3 Range temp ( C) Differences up to: 12 C in temperature 15 C in humidity Range hum (%) Range PAR (raw) Main cause: Sun position Ventilation paths Range TSR (raw)

13 Data summary Variations between greenhouses 3 and 4 Diff temp ( C) Plots give the differences of averaged measurements between greenhouses n 3 and n 4 Diff hum (%) Greenhouse 3 takes more sunlight than greenhouse 4 Diff PAR (raw) Diff TSR (raw)

14 (Some of the) WSN challenges Mote Operating system: Low memory footprint, ease of programming, Network Self organization: synchronization, routing layer, Data Information extraction: Data compression, data prediction, Constraints: Limited computational, memory, network bandwith and energy resources If run continuously, Tmote s lifetime is about 5 days

15 Operating systems (OS) Resource constrained. Memory is about 100 s KB, forget Linux. Several OS research projects: TinyOS: Initiated at Berkeley university Mantis: Colorado University SOS: University of California Contiki: University of Sweden And some ad hoc solutions

16 Synchronization Energy consumption and duty cycle Component CPU Power consumption 3mW With 2AA batteries, operation time is about a few days if radio and CPU on Radio receive Radio transmit Flash read Flash write 38mW 35mW 7mW 27mW Sleep 15µW Tmote Sky power consumption Possibility to switch components on and off (CPU, memory, radio) Use of duty cycle: Motes are in a sleeping state most of the time Regularly wake up, take measurements, and forward or send packets Example: Duty cycle of 20% would increase mote lifetime by a factor 5

17 Routing Example: Routing tree Routing tree: Oriented graph overlaying the network Each node chooses a parent According to a given metric (nb of hops, energy, load) Retrieve data from its children, and forwards it to the parent Relies on synchronization for maximizing mote sleeping time

18 Data processing Approximate data queries In most cases, only an approximation ε to the real measurements is desired Temperature within ±0.5 C Humidity ±2%... Dual prediction scheme (DPS) Policy: Send a measurement only if it differs from the previous one by ±ε Sends current measurement s t and the prediction model parameters α Tries to guess upcoming measurements: Prediction model h : ŝ t+1 =h(s t,α) Retransmit or apply the prediction model h to get the measurements Prediction model: Examples Constant model (CM) : ŝ t+1 =s t Autoregressive model of order 2: ŝ t+1 = α 1 s t +α 2 s t-1

19 Example with greenhouse temperature data Out of 1440 samples (1 sample every minute for one day) ε=0.5 C CM: 105 updates AR2 : 75 updates temperature ( C) Real data Approximated data Update sent temperature ( C) Real data Approximated data Update sent

20 Example with greenhouse temperature data Out of 1440 samples (1 sample every minute for one day) ε=1 C CM: 21 updates AR2 : 45 updates temperature ( C) Real data Approximated data Update sent temperature ( C) Real data Approximated data Update sent

21 Adaptive model selection The goal of DPS is to reduce the network load The network load incurred by a model depends on: The average number of updates The number of parameters to send In most settings: No a priori knowledge on the best model to use Adaptive model selection (Le Borgne et al., 2006, submitted) : Simulation on the mote of several models, including the CM Online assessment of the competing models Use of the best performing one when an update is required Online selection procedure based on racing to ultimately reduce the number of competing models to one.

22 Data processing Data compression Data compression for distributing network load Network load unbalanced: Node further away transmits 1 packet/cycle Node next to the server transmits 6 packets/cycle Lossy compression, yielding k packets/cycle for all nodes. Le Borgne et al, 2007, submitted

23 References Handbook of sensor networks: Compact wireless and sensing systems. M Ilyas, I Mahgoub and L Kelly CRC Press, Inc. Wireless sensor networks: An information processing approach. F. Zhao and L. Guibas Morgan Kaufman publishers. Adaptive Model Selection for Time Series Prediction in Wireless Sensor Networks. Y. Le Borgne, S. Santini and G. Bontempi. Submitted to the Special Issue on Information Processing and Data Management in Wireless Sensor Networks, Journal of Signal Processing, Elsevier. Simulation architecture for data processing algorithms in wireless sensor networks. Y. Le Borgne, M. Moussaid, and G. Bontempi. Proceedings of the 20th Conference on Advanced Information Networking and Applications (AINA), pages IEEE Press, Piscataway, NJ, ULB MLG wireless sensor WebSite

24 Thank you for your attention Questions? Group site: Personal site: WSN lab site:

Principal component aggregation in wireless sensor networks

Principal component aggregation in wireless sensor networks Principal component aggregation in wireless sensor networks Y. Le Borgne 1 and G. Bontempi Machine Learning Group Department of Computer Science Université Libre de Bruxelles Brussels, Belgium August 29,

More information

Adaptive Sensor Selection Algorithms for Wireless Sensor Networks. Silvia Santini PhD defense October 12, 2009

Adaptive Sensor Selection Algorithms for Wireless Sensor Networks. Silvia Santini PhD defense October 12, 2009 Adaptive Sensor Selection Algorithms for Wireless Sensor Networks Silvia Santini PhD defense October 12, 2009 Wireless Sensor Networks (WSNs) WSN: compound of sensor nodes Sensor nodes Computation Wireless

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

CS620: New Trends in Information Technology Topic 05: Embedded Wireless Sensor Applications

CS620: New Trends in Information Technology Topic 05: Embedded Wireless Sensor Applications CS620: New Trends in Information Technology Topic 05: Embedded Wireless Sensor Applications Autumn 2007 (Jul-Dec) Bhaskaran Raman Department of CSE, IIT Bombay 1 Wireless Sensor Networks What are sensors?

More information

WiBeaM : Design and Implementation of Wireless Bearing Monitoring System

WiBeaM : Design and Implementation of Wireless Bearing Monitoring System WiBeaM : Design and Implementation of Wireless Bearing Monitoring System VMD Jagannath Supervisor: Dr Bhaskaran Raman Department of Computer Science & Engineering Indian Institute of Technology, Kanpur

More information

Fresh from the boat: Great Duck Island habitat monitoring. Robert Szewczyk Joe Polastre Alan Mainwaring June 18, 2003

Fresh from the boat: Great Duck Island habitat monitoring. Robert Szewczyk Joe Polastre Alan Mainwaring June 18, 2003 Fresh from the boat: Great Duck Island habitat monitoring Robert Szewczyk Joe Polastre Alan Mainwaring June 18, 2003 Outline Application overview System & node evolution Status & preliminary evaluations

More information

Deformation Monitoring Based on Wireless Sensor Networks

Deformation Monitoring Based on Wireless Sensor Networks Deformation Monitoring Based on Wireless Sensor Networks Zhou Jianguo tinyos@whu.edu.cn 2 3 4 Data Acquisition Vibration Data Processing Summary 2 3 4 Data Acquisition Vibration Data Processing Summary

More information

Sensor network: storage and query. Overview. TAG Introduction. Overview. Device Capabilities

Sensor network: storage and query. Overview. TAG Introduction. Overview. Device Capabilities Sensor network: storage and query TAG: A Tiny Aggregation Service for Ad- Hoc Sensor Networks Samuel Madden UC Berkeley with Michael Franklin, Joseph Hellerstein, and Wei Hong Z. Morley Mao, Winter Slides

More information

#$%## & ##$ Large Medium Small Tiny. Resources Computation/memory Communication/range Power Sensors

#$%## & ##$ Large Medium Small Tiny. Resources Computation/memory Communication/range Power Sensors Important trend in embedded computing Connecting the physical world to the world of information Sensing (e.g., sensors Actuation (e.g., robotics Wireless sensor networks are enabled by three trends: Cheaper

More information

Introduction To Wireless Sensor Networks

Introduction To Wireless Sensor Networks Introduction To Wireless Sensor Networks Wireless Sensor Networks A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively

More information

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks He Ba, Ilker Demirkol, and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester

More information

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks

Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Energy Consumption and Latency Analysis for Wireless Multimedia Sensor Networks Alvaro Pinto, Zhe Zhang, Xin Dong, Senem Velipasalar, M. Can Vuran, M. Cenk Gursoy Electrical Engineering Department, University

More information

Wireless Sensor Network for Substation Monitoring

Wireless Sensor Network for Substation Monitoring Wireless Sensor Network for Substation Monitoring by Siddharth Kamath March 03, 2010 Need for Substation Monitoring Monitoring health of Electrical equipments Detecting faults in critical equipments. Example:

More information

Wireless Sensor Network based Shooter Localization

Wireless Sensor Network based Shooter Localization Wireless Sensor Network based Shooter Localization Miklos Maroti, Akos Ledeczi, Gyula Simon, Gyorgy Balogh, Branislav Kusy, Andras Nadas, Gabor Pap, Janos Sallai ISIS - Vanderbilt University Overview CONOPS

More information

Sensor Network Platforms and Tools

Sensor Network Platforms and Tools Sensor Network Platforms and Tools 1 AN OVERVIEW OF SENSOR NODES AND THEIR COMPONENTS References 2 Sensor Node Architecture 3 1 Main components of a sensor node 4 A controller Communication device(s) Sensor(s)/actuator(s)

More information

Drahtlose Kommunikation. Sensornetze

Drahtlose Kommunikation. Sensornetze Drahtlose Kommunikation Sensornetze Übersicht Beispielanwendungen Sensorhardware und Netzarchitektur Herausforderungen und Methoden MAC-Layer-Fallstudie IEEE 802.15.4 Energieeffiziente MAC-Layer WSN-Programmierung

More information

How Public Key Cryptography Influences Wireless Sensor Node Lifetime

How Public Key Cryptography Influences Wireless Sensor Node Lifetime How Public Key Cryptography Influences Wireless Sensor Node Lifetime Krzysztof Piotrowski and Peter Langendoerfer and Steffen Peter IHP Im Technologiepark 25 15236 Frankfurt (Oder), Germany September 18,

More information

Part I: Introduction to Wireless Sensor Networks. Alessio Di

Part I: Introduction to Wireless Sensor Networks. Alessio Di Part I: Introduction to Wireless Sensor Networks Alessio Di Mauro Sensors 2 DTU Informatics, Technical University of Denmark Work in Progress: Test-bed at DTU 3 DTU Informatics, Technical

More information

Applied to Wireless Sensor Networks. Objectives

Applied to Wireless Sensor Networks. Objectives Communication Theory as Applied to Wireless Sensor Networks muse Objectives Understand the constraints of WSN and how communication theory choices are influenced by them Understand the choice of digital

More information

distributed, adaptive resource allocation for sensor networks

distributed, adaptive resource allocation for sensor networks GEOFFREY MAINLAND AND MATT WELSH distributed, adaptive resource allocation for sensor networks Geoffrey Mainland is currently a Ph.D. student at Harvard University and received his A.B. in Physics from

More information

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements 15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements Simas Joneliunas 1, Darius Gailius 2, Stasys Vygantas Augutis 3, Pranas Kuzas 4 Kaunas University of Technology, Department

More information

IN Wireless Sensor Networks. Koen Langendoen Muneeb Ali, Aline Baggio Gertjan Halkes

IN Wireless Sensor Networks. Koen Langendoen Muneeb Ali, Aline Baggio Gertjan Halkes IN4181 - Wireless Sensor Networks Koen Langendoen Muneeb Ali, Aline Baggio Gertjan Halkes VLSI Trends: Moore s Law in 1965, Gordon Moore predicted that transistors would continue to shrink, allowing: doubled

More information

Field Testing of Wireless Interactive Sensor Nodes

Field Testing of Wireless Interactive Sensor Nodes Field Testing of Wireless Interactive Sensor Nodes Judith Mitrani, Jan Goethals, Steven Glaser University of California, Berkeley Introduction/Purpose This report describes the University of California

More information

Computer Networks II Advanced Features (T )

Computer Networks II Advanced Features (T ) Computer Networks II Advanced Features (T-110.5111) Wireless Sensor Networks, PhD Postdoctoral Researcher DCS Research Group For classroom use only, no unauthorized distribution Wireless sensor networks:

More information

Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks

Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks Giuseppe Anastasi Pervasive Computing & Networking Lab () Dept. of Information Engineering, University of Pisa E-mail:

More information

IN Wireless Sensor Networks. Koen Langendoen

IN Wireless Sensor Networks. Koen Langendoen IN4316 - Wireless Sensor Networks Koen Langendoen Stefan Dulman, Kavitha Muthukrishnan Anrei Pruteanu, Niels Brouwers,, Matthias Woehrle VLSI Trends: Moore s Law in 1965, Gordon Moore predicted that transistors

More information

On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks

On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks On the problem of energy efficiency of multi-hop vs one-hop routing in Wireless Sensor Networks Symon Fedor and Martin Collier Research Institute for Networks and Communications Engineering (RINCE), Dublin

More information

CS649 Sensor Networks Lecture 3: Hardware

CS649 Sensor Networks Lecture 3: Hardware CS649 Sensor Networks Lecture 3: Hardware Andreas Terzis http://hinrg.cs.jhu.edu/wsn05/ With help from Mani Srivastava, Andreas Savvides Spring 2006 CS 649 1 Outline Hardware characteristics of a WSN node

More information

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Richard Su, Thomas Watteyne, Kristofer S. J. Pister BSAC, University of California, Berkeley, USA {yukuwan,watteyne,pister}@eecs.berkeley.edu

More information

FTSP Power Characterization

FTSP Power Characterization 1. Introduction FTSP Power Characterization Chris Trezzo Tyler Netherland Over the last few decades, advancements in technology have allowed for small lowpowered devices that can accomplish a multitude

More information

Design and Implementation of a Wireless Sensor Network on Precision Agriculture

Design and Implementation of a Wireless Sensor Network on Precision Agriculture I J C T A, 9(37) 2016, pp. 103-108 International Science Press Design and Implementation of a Wireless Sensor Network on Precision Agriculture Kedari Sai Abhishek * and S. Malarvizhi ** Abstract: The main

More information

Wireless crack measurement for control of construction vibrations

Wireless crack measurement for control of construction vibrations Wireless crack measurement for control of construction vibrations Charles H. Dowding 1, Hasan Ozer 2, Mathew Kotowsky 3 1 Professor, Northwestern University, Department of Civil and Environmental Eng.,

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Design of Low Power Wake-up Receiver for Wireless Sensor Network

Design of Low Power Wake-up Receiver for Wireless Sensor Network Design of Low Power Wake-up Receiver for Wireless Sensor Network Nikita Patel Dept. of ECE Mody University of Sci. & Tech. Lakshmangarh (Rajasthan), India Satyajit Anand Dept. of ECE Mody University of

More information

Wireless Sensor Networks (aka, Active RFID)

Wireless Sensor Networks (aka, Active RFID) Politecnico di Milano Advanced Network Technologies Laboratory Wireless Sensor Networks (aka, Active RFID) Hardware and Hardware Abstractions Design Challenges/Guidelines/Opportunities 1 Let s start From

More information

Chapter 2: Hardware Sensor Mote Architecture and Design

Chapter 2: Hardware Sensor Mote Architecture and Design Copyrighted (Textbook) Fei Hu and Xiaojun Cao, Wireless Sensor Networks: Principles and Practice, CRC Press Page 1 Chapter 2: Hardware Sensor Mote Architecture and Design In this chapter, we will go through

More information

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 8 (2017) pp. 2243-2255 Research India Publications http://www.ripublication.com Node Deployment Strategies and Coverage

More information

K-RLE : A new Data Compression Algorithm for Wireless Sensor Network

K-RLE : A new Data Compression Algorithm for Wireless Sensor Network K-RLE : A new Data Compression Algorithm for Wireless Sensor Network Eugène Pamba Capo-Chichi, Hervé Guyennet Laboratory of Computer Science - LIFC University of Franche Comté Besançon, France {mpamba,

More information

Engineering Project Proposals

Engineering Project Proposals Engineering Project Proposals (Wireless sensor networks) Group members Hamdi Roumani Douglas Stamp Patrick Tayao Tyson J Hamilton (cs233017) (cs233199) (cs232039) (cs231144) Contact Information Email:

More information

Performance comparison of AODV, DSDV and EE-DSDV routing protocol algorithm for wireless sensor network

Performance comparison of AODV, DSDV and EE-DSDV routing protocol algorithm for wireless sensor network Performance comparison of AODV, DSDV and EE-DSDV routing algorithm for wireless sensor network Mohd.Taufiq Norhizat a, Zulkifli Ishak, Mohd Suhaimi Sauti, Md Zaini Jamaludin a Wireless Sensor Network Group,

More information

Supervisors: Rachel Cardell-Oliver Adrian Keating. Program: Bachelor of Computer Science (Honours) Program Dates: Semester 2, 2014 Semester 1, 2015

Supervisors: Rachel Cardell-Oliver Adrian Keating. Program: Bachelor of Computer Science (Honours) Program Dates: Semester 2, 2014 Semester 1, 2015 Supervisors: Rachel Cardell-Oliver Adrian Keating Program: Bachelor of Computer Science (Honours) Program Dates: Semester 2, 2014 Semester 1, 2015 Background Aging population [ABS2012, CCE09] Need to

More information

Open Access Research on RSSI Based Localization System in the Wireless Sensor Network

Open Access Research on RSSI Based Localization System in the Wireless Sensor Network Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 2014, 6, 1139-1146 1139 Open Access Research on RSSI Based Localization System in the Wireless Sensor

More information

An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks

An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks An Ultrasonic Sensor Based Low-Power Acoustic Modem for Underwater Communication in Underwater Wireless Sensor Networks Heungwoo Nam and Sunshin An Computer Network Lab., Dept. of Electronics Engineering,

More information

From Sensors to Sensor Networks

From Sensors to Sensor Networks From Sensors to Sensor Networks Giuseppe Anastasi Head of Department Dept. of Information Engineering, University of Pisa E-mail: giuseppe.anastasi@unipi.it Website: www.iet.unipi.it/g.anastasi/ Introduction

More information

Low-Power Interoperability for the IPv6 Internet of Things

Low-Power Interoperability for the IPv6 Internet of Things for the IPv6 Adam Dunkels, Joakim Eriksson, Nicolas Tsiftes Swedish Institute of Computer Science Presenter - Bob Kinicki Fall 2015 Introduction The is a current buzz term that many see as the direction

More information

An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon Tracking Method

An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon Tracking Method International Journal of Emerging Trends in Science and Technology DOI: http://dx.doi.org/10.18535/ijetst/v2i8.03 An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon

More information

A Survey of Sensor Technologies for Prognostics and Health Management of Electronic Systems

A Survey of Sensor Technologies for Prognostics and Health Management of Electronic Systems Applied Mechanics and Materials Submitted: 2014-06-06 ISSN: 1662-7482, Vols. 602-605, pp 2229-2232 Accepted: 2014-06-11 doi:10.4028/www.scientific.net/amm.602-605.2229 Online: 2014-08-11 2014 Trans Tech

More information

Design of Heavy Metals Monitoring System in Water Based on WSN and GPRS

Design of Heavy Metals Monitoring System in Water Based on WSN and GPRS Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Design of Heavy Metals Monitoring System in Water Based on WSN and GPRS Ke Lin, Ting-Lei Huang School of Computer Science

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 181 A NOVEL RANGE FREE LOCALIZATION METHOD FOR MOBILE SENSOR NETWORKS Anju Thomas 1, Remya Ramachandran 2 1

More information

Data Dissemination in Wireless Sensor Networks

Data Dissemination in Wireless Sensor Networks Data Dissemination in Wireless Sensor Networks Philip Levis UC Berkeley Intel Research Berkeley Neil Patel UC Berkeley David Culler UC Berkeley Scott Shenker UC Berkeley ICSI Sensor Networks Sensor networks

More information

Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications

Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications Using the Wake Up Receiver for Low Frequency Data Acquisition in Wireless Health Applications Stevan J. Marinkovic and Emanuel M. Popovici Dept. of Microelectronic Engineering, University College Cork,

More information

Wireless Data Acquisition System. Hasan Ozer and Mat Kotowsky. An Application to Crossbow s Smart Dust Challenge Contest

Wireless Data Acquisition System. Hasan Ozer and Mat Kotowsky. An Application to Crossbow s Smart Dust Challenge Contest Wireless Data Acquisition System Hasan Ozer and Mat Kotowsky An Application to Crossbow s Smart Dust Challenge Contest December, 2004 1 Project Description... 3 2 Origin of Idea... 3 3 Objective...4 4

More information

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol S. Mahlknecht, M. Spinola Durante Institute of Computer Technology Vienna University of Technology Vienna, Austria {mahlknecht,spinola}@ict.tuwien.ac.at

More information

Q-Coverage Maximum Connected Set Cover (QC-MCSC) Heuristic for Connected Target Problem in Wireless Sensor Network

Q-Coverage Maximum Connected Set Cover (QC-MCSC) Heuristic for Connected Target Problem in Wireless Sensor Network Global Journal of Computer Science and Technology: E Network, Web & Security Volume 15 Issue 6 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Jamming Wireless Networks: Attack and Defense Strategies

Jamming Wireless Networks: Attack and Defense Strategies Jamming Wireless Networks: Attack and Defense Strategies Wenyuan Xu, Ke Ma, Wade Trappe, Yanyong Zhang, WINLAB, Rutgers University IAB, Dec. 6 th, 2005 Roadmap Introduction and Motivation Jammer Models

More information

Agenda. A short overview of the CITI lab. Wireless Sensor Networks : Key applications & constraints. Energy consumption and network lifetime

Agenda. A short overview of the CITI lab. Wireless Sensor Networks : Key applications & constraints. Energy consumption and network lifetime CITI Wireless Sensor Networks in a Nutshell Séminaire Internet du Futur, ASPROM Paris, 24 octobre 2012 Prof. Fabrice Valois, Université de Lyon, INSA-Lyon, INRIA fabrice.valois@insa-lyon.fr 1 Agenda A

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

CS649 Sensor Networks Lecture 2: Applications

CS649 Sensor Networks Lecture 2: Applications CS649 Sensor Networks Lecture 2: Applications Andreas Terzis http://hinrg.cs.jhu.edu/wsn06/ Spring 2006 CS 649 1 Outline Study WSN applications Environmental Monitoring Wildlife Monitoring Sniper Detection

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

Mobile and Sensor Systems. Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo

Mobile and Sensor Systems. Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo Mobile and Sensor Systems Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo In this lecture We will describe techniques to reprogram a sensor network while deployed. We describe

More information

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee Design of an energy efficient Medium Access Control protocol for wireless sensor networks Thesis Committee Masters Thesis Defense Kiran Tatapudi Dr. Chansu Yu, Dr. Wenbing Zhao, Dr. Yongjian Fu Organization

More information

Volcanic Earthquake Timing Using Wireless Sensor Networks

Volcanic Earthquake Timing Using Wireless Sensor Networks Volcanic Earthquake Timing Using Wireless Sensor Networks GuojinLiu 1,2 RuiTan 2,3 RuoguZhou 2 GuoliangXing 2 Wen-Zhan Song 4 Jonathan M. Lees 5 1 Chongqing University, P.R. China 2 Michigan State University,

More information

Lightweight Acoustic Classification for Cane-Toad Monitoring

Lightweight Acoustic Classification for Cane-Toad Monitoring Lightweight Acoustic Classification for Cane-Toad Monitoring Thanh Dang and Nirupama Bulusu Department of Computer Science Portland State University Portland, OR, USA 9721 Email: dangtx,nbulusu@cs.pdx.edu

More information

Advanced Topics on Wireless Ad Hoc Networks. Lecture 1: Introduction / Data propagation in Wireless Sensor Networks I

Advanced Topics on Wireless Ad Hoc Networks. Lecture 1: Introduction / Data propagation in Wireless Sensor Networks I Advanced Topics on Wireless Ad Hoc Networks Lecture 1: Introduction / Data propagation in Wireless Sensor Networks I Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor

More information

An Improved MAC Model for Critical Applications in Wireless Sensor Networks

An Improved MAC Model for Critical Applications in Wireless Sensor Networks An Improved MAC Model for Critical Applications in Wireless Sensor Networks Gayatri Sakya Vidushi Sharma Trisha Sawhney JSSATE, Noida GBU, Greater Noida JSSATE, Noida, ABSTRACT The wireless sensor networks

More information

Study on Monitoring System for Fore Wireless Sensor Networks. Title. Author(s) Teguh, Rony. Citation. Issue Date DOI

Study on Monitoring System for Fore Wireless Sensor Networks. Title. Author(s) Teguh, Rony. Citation. Issue Date DOI Title Study on Monitoring System for Fore Wireless Sensor Networks Author(s) Teguh, Rony Citation Issue Date 2014-09-25 DOI Doc URLhttp://hdl.handle.net/2115/57288 Right Type theses (doctoral) Additional

More information

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks Cross-layer Approach to Low Energy Wireless Ad Hoc Networks By Geethapriya Thamilarasu Dept. of Computer Science & Engineering, University at Buffalo, Buffalo NY Dr. Sumita Mishra CompSys Technologies,

More information

UNISI Team. UNISI Team - Expertise

UNISI Team. UNISI Team - Expertise Control Alberto Bemporad (prof.) Davide Barcelli (student) Daniele Bernardini (PhD student) Marta Capiluppi (postdoc) Giulio Ripaccioli (PhD student) XXXXX (postdoc) Communications Andrea Abrardo (prof.)

More information

Energy Efficiency using Data Filtering Approach on Agricultural Wireless Sensor Network

Energy Efficiency using Data Filtering Approach on Agricultural Wireless Sensor Network International Journal of Computer Engineering and Information Technology VOL. 9, NO. 9, September 2017, 192 197 Available online at: www.ijceit.org E-ISSN 2412-8856 (Online) Energy Efficiency using Data

More information

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Shih-Hsien Yang, Hung-Wei Tseng, Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

Life Under your Feet: A Wireless Soil Ecology Sensor Network

Life Under your Feet: A Wireless Soil Ecology Sensor Network Life Under your Feet: A Wireless Soil Ecology Sensor Network R. Musaloiu-E., A. Terzis, K. Szlavecz, A. Szalay *, J. Cogan *, J. Gray Computer Science Department, JHU Earth and Planetary Sciences Department,

More information

An Adaptable Energy-Efficient Medium Access Control Protocol for Wireless Sensor Networks

An Adaptable Energy-Efficient Medium Access Control Protocol for Wireless Sensor Networks An Adaptable Energy-Efficient ium Access Control Protocol for Wireless Sensor Networks Justin T. Kautz 23 rd Information Operations Squadron, Lackland AFB TX Justin.Kautz@lackland.af.mil Barry E. Mullins,

More information

Measurement and Experimental Characterization of RSSI for Indoor WSN

Measurement and Experimental Characterization of RSSI for Indoor WSN International Journal of Computer Science and Telecommunications [Volume 5, Issue 10, October 2014] 25 ISSN 2047-3338 Measurement and Experimental Characterization of RSSI for Indoor WSN NNEBE Scholastica.

More information

Detection and Verification of Potential Peat Fire Using Wireless Sensor Network and UAV

Detection and Verification of Potential Peat Fire Using Wireless Sensor Network and UAV Detection and Verification of Potential Peat Fire Using Wireless Sensor Network and UAV Rony Teguh 1, Toshihisa Honma 1, Aswin Usop 2, Heosin Shin 3 and Hajime Igarashi 1 1 Graduate School of Information

More information

Web Based Poultry Farm Monitoring System Using Wireless Sensor Network

Web Based Poultry Farm Monitoring System Using Wireless Sensor Network Web Based Poultry Farm Monitoring System Using Wireless Sensor Network Mohsin Murad mohsin_murad@yahoo.com Khawaja Mohammad Yahya yahyakm@yahoo.com Ghulam Mubashar Hassan gmjally@yahoo.com ABSTRACT In

More information

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Wenbo Zhao and Xueyan Tang School of Computer Engineering, Nanyang Technological University, Singapore 639798 Email:

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014 Design of Wireless Sensor Networks (WSN) in Energy Conversion Module Based On Multiplier Circuits Rajiv Dahiya 1, A. K. Arora 2 and V. R. Singh 3 1 Research Scholar, Manav Rachna International University,

More information

Optimization of QAM-64 Modulation Technique Within WSN

Optimization of QAM-64 Modulation Technique Within WSN J. Appl. Environ. Biol. Sci., 7(3)7-14, 2017 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Optimization of QAM-64 Modulation Technique

More information

Multi-Hop Wireless Crack Measurement For Control Of Construction Vibrations

Multi-Hop Wireless Crack Measurement For Control Of Construction Vibrations Multi-Hop Wireless Crack Measurement For Control Of Construction Vibrations Charles H. Dowding 1, Mat Kotowsky 2, Hasan Ozer 3 1 Professor, Northwestern University, Department of Civil and Environmental

More information

Energy-efficient and lifetime aware routing in WSNs

Energy-efficient and lifetime aware routing in WSNs Loughborough University Institutional Repository Energy-efficient and lifetime aware routing in WSNs This item was submitted to Loughborough University's Institutional Repository by the/an author. Additional

More information

ēko Pro Series System

ēko Pro Series System ēko Pro Series System FOR ENVIRONMENTAL MONITORING The ACEINNA ēko Pro Series Starter Kit is a wireless agricultural and environmental sensing system for crop monitoring, microclimate studies and environmental

More information

WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES

WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES WIRELESS SENSOR NETWORKS TO MONITOR CRACK GROWTH ON BRIDGES MATHEW KOTOWSKY, CHARLES DOWDING, KEN FULLER Infrastructure Technology Institute Northwestern University, Evanston, Illinois {kotowsky, c-dowding}@northwestern.edu,

More information

Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node

Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node Available online at www.sciencedirect.com Energy Procedia 16 (01) 107 103 01 International Conference on Future Energy, Environment, and Materials Indoor Light Energy Harvesting System for Energy-aware

More information

College of William & Mary Department of Computer Science

College of William & Mary Department of Computer Science College of William & Mary Department of Computer Science Remora: Sensing Resource Sharing Among Smartphone-based Body Sensor Networks Matthew Keally, College of William and Mary Gang Zhou, College of William

More information

Comparing MAC Layer Implementations using Contiki-OS

Comparing MAC Layer Implementations using Contiki-OS Comparing MAC Layer Implementations using Contiki-OS Shantanoo Desai prepared for: Prof. Dr. Anna Förster Sustainable Communication Networks University of Bremen November 20, 2015 1 Outline Parameters

More information

March 20 th Sensor Web Architecture and Protocols

March 20 th Sensor Web Architecture and Protocols March 20 th 2017 Sensor Web Architecture and Protocols Soukaina Filali Boubrahimi Why a energy conservation in WSN is needed? Growing need for sustainable sensor networks Slow progress on battery capacity

More information

WSN Based Fire Detection And Extinguisher For Fireworks Warehouse

WSN Based Fire Detection And Extinguisher For Fireworks Warehouse WSN Based Fire Detection And Extinguisher For Fireworks Warehouse 1 S.Subalakshmi, 2 D.Balamurugan, Abstract-Security is primary concern for everyone. There are many ways to provide security at industries.

More information

A multi-mode structural health monitoring system for wind turbine blades and components

A multi-mode structural health monitoring system for wind turbine blades and components A multi-mode structural health monitoring system for wind turbine blades and components Robert B. Owen 1, Daniel J. Inman 2, and Dong S. Ha 2 1 Extreme Diagnostics, Inc., Boulder, CO, 80302, USA rowen@extremediagnostics.com

More information

2-4 Research and Development on the Low-Energy Wireless Grid Technologies for Agricultural and Aquacultural Sensings

2-4 Research and Development on the Low-Energy Wireless Grid Technologies for Agricultural and Aquacultural Sensings 2 Terrestrial Communication Technology Research and Development 2-4 Research and Development on the Low-Energy Wireless Grid Technologies for Agricultural and Aquacultural Sensings Fumihide KOJIMA This

More information

Appendix S2. Technical description of EDAPHOLOG LOGGER - Communication unit of the EDAPHOLOG System

Appendix S2. Technical description of EDAPHOLOG LOGGER - Communication unit of the EDAPHOLOG System Appendix S2 Technical description of EDAPHOLOG LOGGER - Communication unit of the EDAPHOLOG System The EDAPHOLOG Logger transfers data collected by the EDAPHOLOG probes to the EDAPHOWEB server. The device

More information

Adaptive Model Selection for Time Series. Prediction in Wireless Sensor Networks

Adaptive Model Selection for Time Series. Prediction in Wireless Sensor Networks Adaptive Model Selection for Time Series Prediction in Wireless Sensor Networks Yann-Aël Le Borgne,1 ULB Machine Learning Group Department of Computer Science Université Libre de Bruxelles (U.L.B.) 1050

More information

Efficiently multicasting medical images in mobile Adhoc network for patient diagnosing diseases.

Efficiently multicasting medical images in mobile Adhoc network for patient diagnosing diseases. Biomedical Research 2017; Special Issue: S315-S320 ISSN 0970-938X www.biomedres.info Efficiently multicasting medical images in mobile Adhoc network for patient diagnosing diseases. Deepa R 1*, Sutha J

More information

A Forwarding Station Integrated the Low Energy Adaptive Clustering Hierarchy in Ad-hoc Wireless Sensor Networks

A Forwarding Station Integrated the Low Energy Adaptive Clustering Hierarchy in Ad-hoc Wireless Sensor Networks A Forwarding Station Integrated the Low Energy Adaptive Clustering Hierarchy in Ad-hoc Wireless Sensor Networks Chao-Shui Lin, Ching-Mu Chen, Tung-Jung Chan and Tsair-Rong Chen Department of Electrical

More information

METHODS FOR ENERGY CONSUMPTION MANAGEMENT IN WIRELESS SENSOR NETWORKS

METHODS FOR ENERGY CONSUMPTION MANAGEMENT IN WIRELESS SENSOR NETWORKS 10 th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION METHODS FOR ENERGY CONSUMPTION MANAGEMENT IN WIRELESS SENSOR NETWORKS Dražen Pašalić 1, Zlatko

More information

Research on Embedded Systems

Research on Embedded Systems Research on Embedded Systems Chenyang Lu Department of Computer Science and Engineering Embedded Systems Any device that includes a computer (but you don t think of it as a computer) iphone. Digital camera.

More information

Performance Analysis of Energy-aware Routing Protocols for Wireless Sensor Networks using Different Radio Models

Performance Analysis of Energy-aware Routing Protocols for Wireless Sensor Networks using Different Radio Models Performance Analysis of Energy-aware Routing Protocols for Wireless Sensor Networks using Different Radio Models Adamu Murtala Zungeru, Joseph Chuma and Mmoloki Mangwala Department of Electrical, Computer

More information

Energy Consumption Reduction of Clustering Communication Based on Number of Neighbors for Wireless Sensor Networks

Energy Consumption Reduction of Clustering Communication Based on Number of Neighbors for Wireless Sensor Networks Energy Consumption Reduction of Clustering Communication Based on Number of Neighbors for Wireless Sensor Networks Noritaka Shigei, Hiromi Miyajima, and Hiroki Morishita Abstract The wireless sensor network

More information

Resource-Efficient Vibration Data Collection in Cyber-Physical Systems

Resource-Efficient Vibration Data Collection in Cyber-Physical Systems Resource-Efficient Vibration Data Collection in Cyber-Physical Systems M. Z. A Bhuiyan, G. Wang, J. Wu, T. Wang, and X. Liu Proc. of the 15th International Conference on Algorithms and Architectures for

More information

Chapter 2 Single-node Architecture

Chapter 2 Single-node Architecture Chapter 2 Single-node Architecture Outline 2.1. Sensor Node Architecture 2.2. Introduction of Sensor Hardware Platform 2.3. Energy Consumption of Sensor Node 2.4. Network Architecture 2.5. Challenges of

More information