(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

Size: px
Start display at page:

Download "(12) Patent Application Publication (10) Pub. No.: US 2016/ A1"

Transcription

1 US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/ A1 OKUMURA et al. (43) Pub. Date: Apr. 21, 2016 (54) RADIO WAVE TRANSMISSIVECOVER (30) Foreign Application Priority Data (71) Applicant: TOYODA GOSEICO.,LTD., Oct. 15, 2014 (JP) Kivosu-shi (JP y (JP) Publication Classification (72) Inventors: Koji OKUMURA, Kiyosu-shi (JP): Hideto MAEDA, Kiyosu-shi (JP): (51) Int. Cl. Kazuki TAKAO, Kiyosu-shi (JP); Kenji H01O 1/42 ( ) SUZUKI, Kiyosu-shi (JP); Kinji (52) U.S. Cl. FURUKAWA, Kiyosu-shi (JP); CPC... H01O 1/422 ( ) Daiichiro KAWASHIMA, Kiyosu-shi (57) ABSTRACT (JP) A radio wave transmissive cover is arranged in a path of a radio wave of a millimeter wave radar device. The cover (21) Appl. No.: 14/844,104 includes a transparent member, which serves as the Surface of the cover, and an ornamental layer, which is formed on the rear Surface of the transparent member. The transparent mem (22) Filed: Sep. 3, 2015 ber is formed from polyester copolymerized polycarbonate. 1 O 1 Oa 1 Ob 1 Ob

2 Patent Application Publication Apr. 21, 2016 Sheet 1 of 4 US 2016/ A1 Fig.1 2-s- 1 O 1 Ob A? 1 Oa Fig b 1 Ob

3

4 Patent Application Publication Apr. 21, 2016 Sheet 3 of 4 US 2016/ A1 Fig.4A Fig.4B Fig.4C

5

6 US 2016/ A1 Apr. 21, 2016 RADIO WAVE TRANSMISSIVE COVER TECHNICAL FIELD The present invention relates to a radio wave trans missive cover arranged in a radio wave path of a radio wave radar device. BACKGROUND ART 0002 Millimeter wave radar devices are nowadays installed in vehicles such as automobiles to measure the dis tance between the corresponding vehicle and a nearby vehicle or an obstacle. When the millimeter wave radar device is exposed to the outside of the vehicle, the millimeter wave radar device may adversely affect the aesthetic appeal of the vehicle. Thus, the millimeter wave radar device is arranged at, for example, the rear side of an emblem or a radiator grille located at the front side of the vehicle, and the emblem is used as a radio wave transmissive cover (hereinafter referred to as the cover). Refer to, for example, Japanese Laid-Open Patent Publication No Water drops, such as rain water, that collect on the Surface of the cover may greatly attenuate the millimeter waves transmitted through the cover when the millimeter waves pass through the water drops on the cover Surface In the above publication, polycarbonate is used in the surface of the cover. Further, the cover surface undergoes a water repellent treatment. Thus, the cover has high water repellency, and water drops easily fall off the cover Further, in a conventional radio wave transmissive cover, a hard coating is generally applied to the Surface of a polycarbonate transparent member to increase the impact resistance. Sucha hard coating also has high water repellency Even though the surfaces of such covers have high water repellency, when water drops are collected on the cover surface and the millimeter waves are transmitted through the water drops, the water drops still greatly attenuate the milli meter Waves. SUMMARY OF THE INVENTION It is an object of the present invention to provide a radio wave transmissive cover that is capable of limiting attenuation when radio waves are transmitted even if water drops are collected on the surface of the cover A radio wave transmissive cover is arranged in a path of a radio wave of a radio wave radar device. The radio wave transmissive cover includes a transparent member that serves as a Surface of the cover. The transparent member is formed from a resin material adapted so that when a water drop falls onto the Surface, a contact angle of the Surface and the water drop is 80 or greater and 90 or less. BRIEF DESCRIPTION OF THE DRAWINGS 0009 FIG. 1 is a front view showing one embodiment of a radio wave transmissive cover FIG. 2 is a cross-sectional view taken along line 2-2 in FIG FIG. 3 is an enlarged cross-sectional view showing the main section of the radio wave transmissive cover of FIG FIGS. 4A to 4C are schematic diagrams each show ing the form of a water drop on the surface of the cover, in which FIG. 4A is a diagram showing the water drop when a contact angle 0c is larger than 90, FIG. 4B is a diagram showing the water drop when the contact angle 0c is 90, and FIG.4C is a diagram showing the water drop when the contact angle 0c is smaller than FIG. 5 is a graph showing the relationship of the contact angle and the attenuation amount of millimeter WaVS. EMBODIMENTS OF THE INVENTION A radio wave transmissive cover according to one embodiment of the present invention will now be described with reference to FIGS. 1 to 5. In the drawings, each member is illustrated to be discernible and thus not in scale As shown in FIGS. 1 and 2, a radio wave transmis sive cover (hereinafter referred to as the cover 10) is an emblem attached to an opening of a radiator grille, which is arranged at the front side of a vehicle. The cover 10 is located in front of a millimeter wave radar device 90, which is arranged in the radiator grille of the vehicle. The cover 10 is arranged in a path of radio waves (millimeter waves) of the millimeter wave radar device As shown in FIG. 2, the cover 10 includes a trans parent member 20, which serves as the surface of the cover 10. In the present embodiment, the transparent member 20 is formed from polyester copolymerized polycarbonate, which has Superior impact resistance, weather resistance, and water absorption resistance As shown in FIG. 3, the rear surface of the transpar ent member 20 includes a flat portion 20a and a recess 20b, which is located toward the front of the flat portion 20a. The depth of the recess 20b is approximately 3.0 mm. The flat portion 20a corresponds to a background region 10a of the cover 10, which is shown in FIGS. 1 to 3. The recess 20b corresponds to a character region 10b of the cover 10, which is shown in FIGS. 1 to As shown in FIGS. 2 and 3, an ornamental layer 30 is formed on the rear surface of the transparent member 20. As shown in FIG. 3, the ornamental layer 30 includes a colored layer 31, a metal layer32, and an anti-corrosion layer 33. The colored layer 31 is printed, for example, in black on the flat portion 20a in the rear surface of the transparent member 20. The metal layer 32 is formed by vapor-depositing a metal material on the rear surface of the transparent member 20 in the recess 20b and on the entire rear surface of the colored layer 31. The anti-corrosion layer 33 is painted on the entire rear surface of the metal layer 32. The metal layer 32 is formed from, for example, indium and has a thickness of approximately 20 nm. The anti-corrosion layer 33 hinders corrosion of the metal layer32. The anti-corrosion layer 33 is formed from an acrylic or urethane resin material and has a thickness of several tens of micrometers. Accordingly, the rear surface of the anti-corrosion layer 33, that is, the rear surface of the ornamental layer 30, includes a flat portion 30a and a recess 30b. The flat portion 30a and the recess 30b correspond to the flat portion 20a and the recess 20b of the transparent member 20, respectively. The heat withstanding temperature of the anti-corrosion layer 33 is approximately 2000 C A buffer 40 is arranged on the rear surface of the anti-corrosion layer 33 to cover the entire rear surface of the anti-corrosion layer 33. The buffer 40 is shaped in conform ance with the rear surface of the ornamental layer 30. The front surface of the buffer 40 includes a flat portion 41a, which is adhered to the rear surface of the ornamental layer 30, and a projection 41b, which is adhered to the recess 30b in

7 US 2016/ A1 Apr. 21, 2016 the rear surface of the ornamental layer 30. The buffer 40, which is molded in advance, is formed from a resin material such as polyamide resin. It is preferred that the thickness of the buffer 40 be in a range from 0.1 mm to 1.0 mm. In the present embodiment, the thickness of the buffer 40 is approxi mately 0.6 mm, and the heat withstanding temperature of the buffer member 40 is approximately 140 C. The buffer 40 is arranged to reduce the movement of heat to the transparent member 20 when insert-molding of a base 50 is performed. When molding the base 50, the buffer 40 may be omitted when heat damage is tolerable in at least one of the transpar ent member 20 and the ornamental layer 30. More specifi cally, the buffer 40 may be omitted when the heat deflection temperature of the transparent member 20 is 115 C. or greater, and the buffer 40 is used when the temperature is less than 115 C. The heat deflection temperature is a value based on a testing method in compliance with ISO The base 50 is formed on the rear surface of the buffer 40. The base 50 is formed from acrylonitrile-ethylene propylene-diene styrene resin (AES resin). The front surface of the base 50 is shaped in conformance with the rear surface of the buffer 40. The front Surface of the base 50 includes a flat portion 50a, which is adhered to the rear surface of the buffer 40 on the flat portion 42a, and a projection 50b, which is adhered to the recess 42b in the rear surface of the buffer The operation of the present embodiment will now be described FIGS. 4A to 4C each show the form of a water drop on the cover surface in relation with the contact angle 0c As shown in FIG. 4A, when the contact angle 0c of the cover surface S and a water drop W is larger than 90, a water drop W has a generally semi-spherical shape that is close to a spherical shape. As shown in FIG. 4B, when the contact angle 0c of the cover surface S and the water drop W is 90, the water drop W has a spherical shape. As shown in FIG. 4C, when the contact angle 0c of the cover surface S and the water drop W is smaller than 90, the water drop wets and spreads on the cover surface S. Water is apt to wet and spread on the Surface of the cover as the contact angle 0c decreases A cover of a first comparison example includes a transparent member, which is formed from polycarbonate, and a hard coating, which is formed from acrylic resin and applied to the Surface of the transparent member In the cover of the first comparison example, the hard coating has high water repellency. Thus, when a water drop W such as rain water falls onto the surface of the cover, the water drop W has a semi-spherical shape that is close to a spherical shape, and the contact angle 0c of the cover Surface and the water drop W is approximately 91. This increases the height of the water drop W from the cover surface of the cover, that is, increases the thickness dof the water drop W. Thus, the water drop W greatly attenuates radio waves that are trans mitted through the cover and the water drop W A cover of a second comparison example is formed from isosorbide copolymerized polycarbonate and includes a transparent member, which serves as the Surface of the cover In the cover of the second comparison example, a water drop W wets and spreads on the cover surface, and the contact angle 0c of the cover surface and the water drop W on the cover is approximately 77. This decreases the thickness d of the water drop W. However, the water drop W partially permeates the cover and changes the permittivity of the cover. This greatly attenuates radio waves that are transmitted through the water drop W on the cover surface In the cover 10 of the present embodiment, the trans parent member 20 that serves as the surface of the cover 10 is formed from polyester copolymerized polycarbonate in which the contact angle 0c of the water drop W and the cover surface is approximately 84. Under a condition in which the contact angle 0c of the surface of the cover 10 and the water drop W is 80 or greater and 90 or less, when a water drop falls onto the surface of the cover 10, the thickness d of the water drop W is small. This limits permeating of the water drop W on the surface into the transparent member 20. As the contact angle 0c decreases, the water absorption rate of the cover 10 increases. Thus, when the contact angle 0c is 83 or greater and 87 or less like in the cover 10 of the present embodiment, the water absorption rate is 0.2% or less. This limits permeating of the water drop W on the surface of the cover 10 into the transparent member 20. Thus, attenuation of the radio waves is limited when radio waves are transmitted through the cover 10 and the water drop W The inventors of the present invention applied a predetermined amount of water drops to the surface of each cover overa predetermined area and measured the attenuation amount when radio waves were transmitted through the cover and the water drops As shown in FIG. 5, the attenuation amount of radio waves was approximately 2.6 db in the cover of the first comparison example, and the attenuation amount of radio waves was approximately 5.1 db in the cover of the second comparison example. The attenuation amount of radio waves was approximately 1.7 db in the cover 10 of the present embodiment Table 1 shows the relationship of the material of the transparent member that serves as the Surface of the cover and the test results of different properties. In Table 1, PC refers to polycarbonate (first comparison example), PMMA refers to polymethyl methacrylate resin (first reference example), and PDMS refers to dimethylpolysiloxane (second reference example). In the first and second reference examples, the material of the transparent member was changed and tests were conducted in the same manner as the present embodi ment. The test results are shown in Table 1. TABLE 1 Second Second Present Reference Comparison Embodiment First First Example Example Polyester Comparison Copolymerized Example Reference Example PDMS Isosorbide Copolymerized Copolymerized PC PC PMMA PC PC Presence of Hard Coat Contact Angle No Yes No No No

8 US 2016/ A1 Apr. 21, 2016 Present TABLE 1-continued Second Reference Embodiment First First Example Polyester Comparison Reference PDMS Copolymerized Example Example Copolymerized PC PC PMMA PC Water Absorption Good Good Not Acceptable Good Not Acceptable Rate Impact Good Good Fair Good Not Acceptable Resistance Weather Good Good Good Not Acceptable Good Resistance Adhesiveness Good Good Not Good of Metal Layer Acceptable Second Comparison Example Isosorbide Copolymerized PC Good In this table, the item indicated as water absorption rate shows the measurement result of the water absorption rate of the transparent member that was placed for 24 hours in an environment in which the temperature was 23 C. and the relative humidity was 100%. When the water absorption rate of the transparent member was 0.2% or less, the water absorp tion rate was evaluated as good. When the water absorption rate was greater than 0.2%, the water absorption rate was evaluated as not acceptable The item indicated as impact resistance shows the result of a falling weight impact test conducted with a falling weight of 4.9 N on a transparent member that was placed for 3 hours in an environment in which the temperature was -15 C. More specifically, the impact resistance was evaluated as good when the minimum fracture strength of the transparent member was greater than 5 J, the impact resistance was evalu ated as fair when the minimum fracture strength of the trans parent member was greater than 1 J and 5 J or less, and the impact resistance was evaluated as not acceptable when the minimum fracture strength of the transparent member was 1 J or less The item indicated as weather resistance shows the result of a Sunshine weather test conducted for 1000 hours. The weather resistance was evaluated as good when the color difference AE of the transparent member was 3 or less, and the weather resistance was evaluated as not acceptable when the color difference AE was greater than The item indicated as adhesiveness of the metal layer 32 shows the result of a test conducted in compliance with JIS K The adhesiveness of the transparent member was evaluated as good when the adhesiveness was 1 MPa or greater, and the adhesiveness was evaluated as not acceptable when the adhesiveness was less than 1 MPa As shown in Table 1, the transparent member 20 that serves as the surface of the cover 10 of the present embodi ment satisfies the properties required for an emblem with regard to the water absorption rate, the impact resistance, the weather resistance, and the adhesiveness of the metal layer The above radio wave transmissive cover of the present embodiment has the advantages described below (1) The cover 10 includes the transparent member 20, which serves as the surface of the cover 10, and the ornamental layer 30, which is formed on the rear surface of the transparent member 20. The transparent member 20 is formed from a resin material. The resin material is selected so that whena water drop falls onto the surface of the transparent member 20, the contact angle 0c of the surface and the water drop is 80 or greater and 90 or less This reduces the thickness d of the water drop W on the surface of the cover and limits permeating of the water drop W on the surface of the cover 10 into the transparent member 20. Accordingly, even if there is a water drop W on the surface of the cover 10, attenuation of radio waves is limited when the radio waves are transmitted through the cover 10 and the water drop W The ornamental layer 30 is formed on the rear sur face of the transparent member 20, and the surface of the transparent member 20 serves as the surface of the cover 10. This simplifies the layer structure of the cover 10, which differs from the conventional structure in which a hard coat ing is applied to the Surface of a transparent member (2) The transparent member 20 is formed from poly ester copolymerized polycarbonate This significantly limits attenuation of radio waves transmitted through the cover 10 and water drops, which are collected on the surface of the cover It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the inven tion. Particularly, it should be understood that the present invention may be embodied in the following forms. 0044) The resin material that forms the transparent mem ber may be changed to another resin material that obtains the contact angle 0c of 83 or greater and 87 or less For example, an outer layer of polyester copolymer ized polycarbonate may be formed on an inner layer of poly carbonate so that the outer layer serves as the surface of the COV The present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims. 1. A radio wave transmissive cover arranged in a path of a radio wave of a radio wave radar device, the radio wave transmissive cover comprising: a transparent member that serves as a Surface of the cover, wherein the transparent member is formed from a resin material adapted so that when a water drop falls onto the Surface, a contact angle of the Surface and the water drop is 80 or greater and 90 or less.

9 US 2016/ A1 Apr. 21, The radio wave transmissive cover according to claim 1, wherein the transparent member is formed from a resin mate rial adapted so that when a water drop falls onto the surface, a contact angle of the surface and the water drop is 83 or greater and 87 or less. 3. The radio wave transmissive cover according to claim 2, wherein the transparent member is formed from polyester copolymerized polycarbonate. 4. The radio wave transmissive cover according to claim 1, wherein an ornamental layeris formed on a rear Surface of the transparent member. 5. The radio wave transmissive cover according to claim 4. wherein the ornamental layer includes a colored layer formed on the rear Surface of the transparent member, a metal layer formed in the transparent member on a rear surface of the colored layer, and an anti-corrosion layer formed on a rear surface of the metal layer. k k k k k

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1. Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1. Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009 (19) United States US 20090059759A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0059759 A1 Yoshizawa et al. (43) Pub. Date: Mar. 5, 2009 (54) TRANSMISSIVE OPTICAL RECORDING (22) Filed: Apr.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Berweiler USOO6328358B1 (10) Patent No.: (45) Date of Patent: (54) COVER PART LOCATED WITHIN THE BEAM PATH OF A RADAR (75) Inventor: Eugen Berweiler, Aidlingen (DE) (73) Assignee:

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O134516A1 (12) Patent Application Publication (10) Pub. No.: Du (43) Pub. Date: Jun. 23, 2005 (54) DUAL BAND SLEEVE ANTENNA (52) U.S. Cl.... 3437790 (75) Inventor: Xin Du, Schaumburg,

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 20050207013A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0207013 A1 Kanno et al. (43) Pub. Date: Sep. 22, 2005 (54) PHOTOELECTRIC ENCODER AND (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Street et al. (43) Pub. Date: Feb. 16, 2006

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Street et al. (43) Pub. Date: Feb. 16, 2006 (19) United States US 2006.00354O2A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0035402 A1 Street et al. (43) Pub. Date: Feb. 16, 2006 (54) MICROELECTRONIC IMAGING UNITS AND METHODS OF

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 2006004.4273A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0044273 A1 Numazawa et al. (43) Pub. Date: Mar. 2, 2006 (54) MOUSE-TYPE INPUT DEVICE (30) Foreign Application

More information

(12) United States Patent (10) Patent No.: US 8,836,894 B2. Gu et al. (45) Date of Patent: Sep. 16, 2014 DISPLAY DEVICE GO2F I/3.3.3 (2006.

(12) United States Patent (10) Patent No.: US 8,836,894 B2. Gu et al. (45) Date of Patent: Sep. 16, 2014 DISPLAY DEVICE GO2F I/3.3.3 (2006. USOO8836894B2 (12) United States Patent (10) Patent No.: Gu et al. (45) Date of Patent: Sep. 16, 2014 (54) BACKLIGHT UNIT AND LIQUID CRYSTAL (51) Int. Cl. DISPLAY DEVICE GO2F I/3.3.3 (2006.01) F2/8/00

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 200901 86.181A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0186181 A1 Mase (43) Pub. Date: Jul. 23, 2009 (54) SCREEN PROTECTOR FILM WITH (30) Foreign Application Priority

More information

(12) United States Patent (10) Patent No.: US 6,543,599 B2

(12) United States Patent (10) Patent No.: US 6,543,599 B2 USOO6543599B2 (12) United States Patent (10) Patent No.: US 6,543,599 B2 Jasinetzky (45) Date of Patent: Apr. 8, 2003 (54) STEP FOR ESCALATORS 5,810,148 A * 9/1998 Schoeneweiss... 198/333 6,398,003 B1

More information

(12) United States Patent

(12) United States Patent USOO7768461 B2 (12) United States Patent Cheng et al. (54) ANTENNA DEVICE WITH INSERT-MOLDED ANTENNA PATTERN (75) Inventors: Yu-Chiang Cheng, Taipei (TW); Ping-Cheng Chang, Chaozhou Town (TW); Cheng-Zing

More information

y y (12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (43) Pub. Date: Sep. 10, C 410C 422b 4200

y y (12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (43) Pub. Date: Sep. 10, C 410C 422b 4200 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0255300 A1 He et al. US 201502553.00A1 (43) Pub. Date: Sep. 10, 2015 (54) (71) (72) (73) (21) (22) DENSELY SPACED FINS FOR

More information

(12) United States Patent (10) Patent No.: US 6, 177,908 B1

(12) United States Patent (10) Patent No.: US 6, 177,908 B1 USOO6177908B1 (12) United States Patent (10) Patent No.: US 6, 177,908 B1 Kawahata et al. (45) Date of Patent: Jan. 23, 2001 (54) SURFACE-MOUNTING TYPE ANTENNA, 5,861,854 * 1/1999 Kawahate et al.... 343/700

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 US 201603061.41A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0306141 A1 CHEN et al. (43) Pub. Date: (54) OPTICAL LENS Publication Classification (71) Applicant: ABILITY

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 (19) United States US 2016.00200O2A1 (12) Patent Application Publication (10) Pub. No.: US 2016/0020002 A1 FENG (43) Pub. Date: Jan. 21, 2016 (54) CABLE HAVING ASIMPLIFIED CONFIGURATION TO REALIZE SHIELDING

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0379053 A1 B00 et al. US 20140379053A1 (43) Pub. Date: Dec. 25, 2014 (54) (71) (72) (73) (21) (22) (86) (30) MEDICAL MASK DEVICE

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 20060239744A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0239744 A1 Hideaki (43) Pub. Date: Oct. 26, 2006 (54) THERMAL TRANSFERTYPE IMAGE Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015O108945A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0108945 A1 YAN et al. (43) Pub. Date: Apr. 23, 2015 (54) DEVICE FOR WIRELESS CHARGING (52) U.S. Cl. CIRCUIT

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 US 2015 0096785A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0096785 A1 HAYASHSHTA et al. (43) Pub. Date: Apr. 9, 2015 (54) MULTICORE CABLE Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015 0311941A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0311941 A1 Sorrentino (43) Pub. Date: Oct. 29, 2015 (54) MOBILE DEVICE CASE WITH MOVABLE Publication Classification

More information

(12) United States Patent (10) Patent No.: US 6,765,631 B2. Ishikawa et al. (45) Date of Patent: Jul. 20, 2004

(12) United States Patent (10) Patent No.: US 6,765,631 B2. Ishikawa et al. (45) Date of Patent: Jul. 20, 2004 USOO6765631 B2 (12) United States Patent (10) Patent No.: US 6,765,631 B2 Ishikawa et al. (45) Date of Patent: Jul. 20, 2004 (54) VEHICLE WINDSHIELD RAIN SENSOR (56) References Cited (75) Inventors: Junichi

More information

(12) United States Patent (10) Patent No.: US 8, B1

(12) United States Patent (10) Patent No.: US 8, B1 US008284.487B1 (12) United States Patent (10) Patent No.: US 8,284.487 B1 Liu (45) Date of Patent: Oct. 9, 2012 (54) LARGE FORMAT TILED PROJECTION (56) References Cited DISPLAY SCREEN WITH FLEXBLE SURFACE

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0287650 A1 Anderson et al. US 20120287650A1 (43) Pub. Date: Nov. 15, 2012 (54) (75) (73) (21) (22) (60) INTERCHANGEABLE LAMPSHADE

More information

(12) United States Patent (10) Patent No.: US 6,752,496 B2

(12) United States Patent (10) Patent No.: US 6,752,496 B2 USOO6752496 B2 (12) United States Patent (10) Patent No.: US 6,752,496 B2 Conner (45) Date of Patent: Jun. 22, 2004 (54) PLASTIC FOLDING AND TELESCOPING 5,929.966 A * 7/1999 Conner... 351/118 EYEGLASS

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Takekuma USOO6850001B2 (10) Patent No.: (45) Date of Patent: Feb. 1, 2005 (54) LIGHT EMITTING DIODE (75) Inventor: Akira Takekuma, Tokyo (JP) (73) Assignee: Agilent Technologies,

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United States US 2002O191820A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0191820 A1 Kim et al. (43) Pub. Date: Dec. 19, 2002 (54) FINGERPRINT SENSOR USING A PIEZOELECTRIC MEMBRANE

More information

(12) United States Patent (10) Patent No.: US 8,926,262 B2

(12) United States Patent (10) Patent No.: US 8,926,262 B2 USOO8926262B2 (12) United States Patent (10) Patent No.: US 8,926,262 B2 Tanahashi et al. (45) Date of Patent: Jan. 6, 2015 (54) CMCTURBINE STATOR BLADE USPC... 415/9, 200, 209.3, 209.4, 210.1, 211.2,

More information

(12) United States Patent

(12) United States Patent USOO9434098B2 (12) United States Patent Choi et al. (10) Patent No.: (45) Date of Patent: US 9.434,098 B2 Sep. 6, 2016 (54) SLOT DIE FOR FILM MANUFACTURING (71) Applicant: SAMSUNGELECTRONICS CO., LTD.,

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0052224A1 Yang et al. US 2005OO52224A1 (43) Pub. Date: Mar. 10, 2005 (54) (75) (73) (21) (22) QUIESCENT CURRENT CONTROL CIRCUIT

More information

United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 LLP 57)

United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 LLP 57) III US005621555A United States Patent (19) 11) Patent Number: 5,621,555 Park (45) Date of Patent: Apr. 15, 1997 (54) LIQUID CRYSTAL DISPLAY HAVING 5,331,447 7/1994 Someya et al.... 359/59 REDUNDANT PXEL

More information

( 12 ) United States Patent

( 12 ) United States Patent THI NANIULUH TNICI UNTUK US009941606B1 ( 12 ) United States Patent Hashimoto et al. ( 54 ) COAXIAL CABLE CONNECTOR AND METHOD OF USE THEREOF ( 71 ) Applicant : DAI - ICHI SEIKO CO., LTD., Kyoto ( JP )

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO9472442B2 (10) Patent No.: US 9.472.442 B2 Priewasser (45) Date of Patent: Oct. 18, 2016 (54) WAFER PROCESSING METHOD H01L 21/304; H01L 23/544; H01L 21/68728; H01L 21/78;

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (19) United States US 2004.0058664A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0058664 A1 Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (54) SAW FILTER (30) Foreign Application Priority

More information

United States Patent (19) Sun

United States Patent (19) Sun United States Patent (19) Sun 54 INFORMATION READINGAPPARATUS HAVING A CONTACT IMAGE SENSOR 75 Inventor: Chung-Yueh Sun, Tainan, Taiwan 73 Assignee: Mustek Systems, Inc., Hsinchu, Taiwan 21 Appl. No. 916,941

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0103923 A1 Mansor et al. US 2012O103923A1 (43) Pub. Date: May 3, 2012 (54) (76) (21) (22) (63) (60) RAIL CONNECTOR FORMODULAR

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O1893.99A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0189399 A1 Hu et al. (43) Pub. Date: Sep. 30, 2004 (54) BIAS CIRCUIT FOR A RADIO FREQUENCY (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O165930A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0165930 A1 SerfoSS (43) Pub. Date: Aug. 26, 2004 (54) IMPRESSION MEDIUM FOR PRESERVING HANDPRINTS AND FOOTPRINTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0132875 A1 Lee et al. US 20070132875A1 (43) Pub. Date: Jun. 14, 2007 (54) (75) (73) (21) (22) (30) OPTICAL LENS SYSTEM OF MOBILE

More information

Si,"Sir, sculptor. Sinitialising:

Si,Sir, sculptor. Sinitialising: (19) United States US 20090097281A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0097281 A1 LIN (43) Pub. Date: Apr. 16, 2009 (54) LEAKAGE-INDUCTANCE ENERGY Publication Classification RECYCLING

More information

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green III United States Patent (19) 11) US005230172A Patent Number: 5,230,172 Hsu (45) Date of Patent: Jul. 27, 1993 54 PICTURE FRAME Primary Examiner-Kenneth J. Dorner o Assistant Examiner-Brian K. Green 76)

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0073337 A1 Liou et al. US 20090073337A1 (43) Pub. Date: Mar. 19, 2009 (54) (75) (73) (21) (22) (30) LCD DISPLAY WITH ADJUSTABLE

More information

United States Patent (19)

United States Patent (19) United States Patent (19) van den Berg et al. 11 Patent Number: Date of Patent: Sep. 8, 1987 54) TRANSDUCING DEVICE FOR CONTACTLESS ULTRASONIC INSPECTION OF PIPELINES OR TUBINGS 75 Inventors: Wilhemus

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005OO17592A1 (12) Patent Application Publication (10) Pub. No.: Fukushima (43) Pub. Date: Jan. 27, 2005 (54) ROTARY ELECTRIC MACHINE HAVING ARMATURE WINDING CONNECTED IN DELTA-STAR

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1. (30) Foreign Application Priority Data Aug. 2, 2000 (JP)...

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1. (30) Foreign Application Priority Data Aug. 2, 2000 (JP)... (19) United States US 200200152O2A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0015202 A1 Michishita et al. (43) Pub. Date: Feb. 7, 2002 (54) WAVELENGTH DIVISION MULTIPLEXING OPTICAL TRANSMISSION

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 O273427A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0273427 A1 Park (43) Pub. Date: Nov. 10, 2011 (54) ORGANIC LIGHT EMITTING DISPLAY AND METHOD OF DRIVING THE

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007.961391 B2 (10) Patent No.: US 7.961,391 B2 Hua (45) Date of Patent: Jun. 14, 2011 (54) FREE SPACE ISOLATOR OPTICAL ELEMENT FIXTURE (56) References Cited U.S. PATENT DOCUMENTS

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 200801 06809A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0106809 A1 HIRANO (43) Pub. Date: (54) WIDE-ANGLE LENS SYSTEM (75) Inventor: Hiroyuki HIRANO, Kanagawa (JP)

More information

(12) United States Patent (10) Patent No.: US 6,548,005 B2. Hansen et al. (45) Date of Patent: Apr. 15, 2003

(12) United States Patent (10) Patent No.: US 6,548,005 B2. Hansen et al. (45) Date of Patent: Apr. 15, 2003 USOO6548005B2 (12) United States Patent (10) Patent No.: US 6,548,005 B2 Hansen et al. (45) Date of Patent: Apr. 15, 2003 (54) MULTIPLE APPLIQUE PROCESS FOR 4,810,452. A * 3/1989 Taillefert et al... 264/247

More information

United States Patent (19) Sherlock et al.

United States Patent (19) Sherlock et al. United States Patent (19) Sherlock et al. (54) (75) (73) (21) 22 (51) (52) (58) (56) SKN FOLD CAL PER Inventors: Hugh P. Sherlock, Palo Alto; Allan M. Golderg, Laguna Niguel; Werner W. Ciupke, Burlingame;

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1 (19) United States US 2002O180938A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0180938A1 BOk (43) Pub. Date: Dec. 5, 2002 (54) COOLINGAPPARATUS OF COLOR WHEEL OF PROJECTOR (75) Inventor:

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US007124695B2 (10) Patent No.: US 7,124.695 B2 Buechler (45) Date of Patent: Oct. 24, 2006 (54) MODULAR SHELVING SYSTEM 4,635,564 A 1/1987 Baxter 4,685,576 A 8, 1987 Hobson (76)

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 2014.0075787A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0075787 A1 Cartagena (43) Pub. Date: Mar. 20, 2014 (54) DETACHABLE SOLE FOR ATHLETIC SHOE Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 US 20120312936A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0312936A1 HUANG (43) Pub. Date: Dec. 13, 2012 (54) HOLDING DEVICE OF TABLET ELECTRONIC DEVICE (52) U.S. Cl....

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 20070147825A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0147825 A1 Lee et al. (43) Pub. Date: Jun. 28, 2007 (54) OPTICAL LENS SYSTEM OF MOBILE Publication Classification

More information

(12) United States Patent (10) Patent No.: US 7.704,201 B2

(12) United States Patent (10) Patent No.: US 7.704,201 B2 USOO7704201B2 (12) United States Patent (10) Patent No.: US 7.704,201 B2 Johnson (45) Date of Patent: Apr. 27, 2010 (54) ENVELOPE-MAKING AID 3,633,800 A * 1/1972 Wallace... 223/28 4.421,500 A * 12/1983...

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 US 2015O113835A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0113835 A1 Rosenberger (43) Pub. Date: Apr. 30, 2015 (54) SHOE PAD FOR ATTACHMENT TO THE Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090249965A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0249965 A1 Hauser (43) Pub. Date: (54) PIT REMOVER (75) Inventor: Lawrence M. Hauser, Auburn, WA (US) Correspondence

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003009 1220A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0091220 A1 Sato et al. (43) Pub. Date: May 15, 2003 (54) CAPACITIVE SENSOR DEVICE (75) Inventors: Hideaki

More information

United States Patent 19

United States Patent 19 United States Patent 19 Kohayakawa 54) OCULAR LENS MEASURINGAPPARATUS (75) Inventor: Yoshimi Kohayakawa, Yokohama, Japan 73 Assignee: Canon Kabushiki Kaisha, Tokyo, Japan (21) Appl. No.: 544,486 (22 Filed:

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States US 20130222876A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0222876 A1 SATO et al. (43) Pub. Date: Aug. 29, 2013 (54) LASER LIGHT SOURCE MODULE (52) U.S. Cl. CPC... H0IS3/0405

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 20030085640A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0085640 A1 Chan (43) Pub. Date: May 8, 2003 (54) FOLDABLE CABINET Publication Classification (76) Inventor:

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 2005O277913A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0277913 A1 McCary (43) Pub. Date: Dec. 15, 2005 (54) HEADS-UP DISPLAY FOR DISPLAYING Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060270.380A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0270380 A1 Matsushima et al. (43) Pub. Date: Nov.30, 2006 (54) LOW NOISE AMPLIFICATION CIRCUIT (30) Foreign

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0091458 A1 Asami et al. US 20070091458A1 (43) Pub. Date: Apr. 26, 2007 (54) WIDE-ANGLE IMAGING LENS (75) Inventors: Taro Asami,

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003O2325O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0232502 A1 Asakawa (43) Pub. Date: Dec. 18, 2003 (54) METHOD OF MANUFACTURING Publication Classification SEMCONDUCTOR

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Suzuki et al. USOO6385294B2 (10) Patent No.: US 6,385,294 B2 (45) Date of Patent: May 7, 2002 (54) X-RAY TUBE (75) Inventors: Kenji Suzuki; Tadaoki Matsushita; Tutomu Inazuru,

More information

58 Field of Search... 66/216, 222, 223, tively arranged in an outertrack thereof, and the needle

58 Field of Search... 66/216, 222, 223, tively arranged in an outertrack thereof, and the needle USOO6112558A United States Patent (19) 11 Patent Number: 6,112,558 Wang (45) Date of Patent: Sep. 5, 2000 54) COMPUTER-CONTROLLED GROUND MESH Primary Examiner Danny Worrell JACQUARD KNITTING MACHINE Attorney,

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States US 20120202410A1 (12) Patent Application Publication (10) Pub. No.: US 2012/0202410 A1 Byers (43) Pub. Date: Aug. 9, 2012 54) SHARPENING TOOL Publication Classification (76) Inventor:

More information

(12) United States Patent

(12) United States Patent US007810974B2 (12) United States Patent Van Rijswicket al. (10) Patent No.: (45) Date of Patent: Oct. 12, 2010 (54) LIGHTING DEVICE (75) Inventors: Mathias Hubertus Johannes Van Rijswick, Eindhoven (NL);

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 2006O151349A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0151349 A1 Andrews et al. (43) Pub. Date: Jul. 13, 2006 (54) TRADING CARD AND CONTAINER (76) Inventors: Robert

More information

(12) United States Patent (10) Patent No.: US 6,890,073 B2

(12) United States Patent (10) Patent No.: US 6,890,073 B2 USOO6890O73B2 (12) United States Patent (10) Patent No.: US 6,890,073 B2 DiChiara et al. (45) Date of Patent: May 10, 2005 (54) IMPACT RESISTANT EYE WEAR FRAME FR 592.096 4/1925 ASSEMBLY HAVING ASPLT FRAME

More information

United States Patent (19) Lieber

United States Patent (19) Lieber United States Patent (19) Lieber 54 76 (21) 22 51 (52) 58) NOISE REDUCTION DEVICE FOR IMPACT TOOLS Inventor: Raymond S. Lieber, 1105 Alumni Ave., Las Cruces, N. Mex. 88003 Appl. No.: 676,878 Filed: Apr.

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 20110165057A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0165057 A1 Honda et al. (43) Pub. Date: (54) PLASMACVD DEVICE, DLC FILM, AND C23C I6/455 (2006.01) METHOD

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 2004.0060551A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0060551A1 Gallops, JR. (43) Pub. Date: Apr. 1, 2004 (54) METHOD FOR MANUFACTURING (21) Appl. No.: 10/255.287

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003.0118154A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0118154 A1 Maack et al. (43) Pub. Date: (54) X-RAY DEVICE WITH A STORAGE FOR X-RAY EXPOSURE PARAMETERS (76)

More information

United States Patent (19)

United States Patent (19) United States Patent (19) 11 US006023898A Patent Number: JOSey (45) Date of Patent: Feb. 15, 2000 54 METAL FRAME BUILDING 4,050,498 9/1977 Lucchetti... 52?657 X CONSTRUCTION 4,283,892 8/1981 Brown. 4,588,156

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 US 20150217450A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0217450 A1 HUANG et al. (43) Pub. Date: Aug. 6, 2015 (54) TEACHING DEVICE AND METHOD FOR Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005OO65580A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0065580 A1 Choi (43) Pub. Date: Mar. 24, 2005 (54) BED TYPE HOT COMPRESS AND ACUPRESSURE APPARATUS AND A METHOD

More information

United States Patent Fischell et al.

United States Patent Fischell et al. United States Patent Fischell et al. 19 US006006124A 11 Patent Number: 6,006,124 (45) Date of Patent: Dec. 21, 1999 54 (75) MEANS AND METHOD FOR THE PLACEMENT OF BRAIN ELECTRODES Inventors: Robert E. Fischell,

More information

United States Patent (19) Shahan

United States Patent (19) Shahan United States Patent (19) Shahan 54, HEAVY DUTY SHACKLE 75 Inventor: James B. Shahan, Tulsa, Okla. (73) Assignee: American Hoist & Derrick Company, Tulsa, Okla. (21) Appl. No.: 739,056 22 Filed: Nov. 5,

More information

(12) United States Patent

(12) United States Patent USOO9304615B2 (12) United States Patent Katsurahira (54) CAPACITIVE STYLUS PEN HAVING A TRANSFORMER FOR BOOSTING ASIGNAL (71) Applicant: Wacom Co., Ltd., Saitama (JP) (72) Inventor: Yuji Katsurahira, Saitama

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1. KM (43) Pub. Date: Oct. 24, 2013

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1. KM (43) Pub. Date: Oct. 24, 2013 (19) United States US 20130279282A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0279282 A1 KM (43) Pub. Date: Oct. 24, 2013 (54) E-FUSE ARRAY CIRCUIT (52) U.S. Cl. CPC... GI IC 17/16 (2013.01);

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 US 2013 0334265A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0334265 A1 AVis0n et al. (43) Pub. Date: Dec. 19, 2013 (54) BRASTORAGE DEVICE Publication Classification

More information

rectifying smoothing circuit

rectifying smoothing circuit USOO648671.4B2 (12) United States Patent (10) Patent No.: Ushida et al. (45) Date of Patent: Nov. 26, 2002 (54) HALF-BRIDGE INVERTER CIRCUIT (56) References Cited (75) Inventors: Atsuya Ushida, Oizumi-machi

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O187408A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0187408A1 Smith (43) Pub. Date: Sep. 30, 2004 (54) JAMB EXTENDER FOR WALL FINISHING (57) ABSTRACT SYSTEM A

More information

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1. Jin (43) Pub. Date: Sep. 26, 2002

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1. Jin (43) Pub. Date: Sep. 26, 2002 US 2002O13632OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0136320 A1 Jin (43) Pub. Date: Sep. 26, 2002 (54) FLEXIBLE BIT SELECTION USING TURBO Publication Classification

More information

(12) United States Patent (10) Patent No.: US 6,462,700 B1. Schmidt et al. (45) Date of Patent: Oct. 8, 2002

(12) United States Patent (10) Patent No.: US 6,462,700 B1. Schmidt et al. (45) Date of Patent: Oct. 8, 2002 USOO64627OOB1 (12) United States Patent (10) Patent No.: US 6,462,700 B1 Schmidt et al. (45) Date of Patent: Oct. 8, 2002 (54) ASYMMETRICAL MULTI-BEAM RADAR 6,028,560 A * 2/2000 Pfizenmaier et al... 343/753

More information

& S S. SS S. (12) Patent Application Publication (10) Pub. No.: US 2006/ A1. (19) United States. (75) Inventors: Miguel Angel Gomez Caudevilla,

& S S. SS S. (12) Patent Application Publication (10) Pub. No.: US 2006/ A1. (19) United States. (75) Inventors: Miguel Angel Gomez Caudevilla, (19) United States US 2006.0125150A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0125150 A1 Gomez Caudevilla et al. (43) Pub. Date: Jun. 15, 2006 (54) PLASTIC RECEPTACLE FOR DOMESTIC WASHING

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Yoshida et al. 54 SHAFT WITH GROOVES FOR DYNAMIC PRESSURE GENERATION AND MOTOR EMPLOYNG THE SAME 75 Inventors: Fumio Yoshida, Toride; Mikio Nakasugi, Chofu, both of Japan 73)

More information

(12) United States Patent (10) Patent No.: US 6,438,377 B1

(12) United States Patent (10) Patent No.: US 6,438,377 B1 USOO6438377B1 (12) United States Patent (10) Patent No.: Savolainen (45) Date of Patent: Aug. 20, 2002 : (54) HANDOVER IN A MOBILE 5,276,906 A 1/1994 Felix... 455/438 COMMUNICATION SYSTEM 5,303.289 A 4/1994

More information

(12) Patent Application Publication

(12) Patent Application Publication (19) United States (12) Patent Application Publication Ryken et al. US 2003.0076261A1 (10) Pub. No.: US 2003/0076261 A1 (43) Pub. Date: (54) MULTIPURPOSE MICROSTRIPANTENNA FOR USE ON MISSILE (76) Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090167438A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0167438 A1 Yang et al. (43) Pub. Date: Jul. 2, 2009 (54) HARMONIC TUNED DOHERTY AMPLIFIER (75) Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015.0312556A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0312556A1 CHO et al. (43) Pub. Date: Oct. 29, 2015 (54) RGB-IR SENSOR, AND METHOD AND (30) Foreign Application

More information

WA wrippe Z/// (12) United States Patent US 8,091,830 B2. Jan. 10, (45) Date of Patent: (10) Patent No.: Childs

WA wrippe Z/// (12) United States Patent US 8,091,830 B2. Jan. 10, (45) Date of Patent: (10) Patent No.: Childs US008091830B2 (12) United States Patent Childs (10) Patent No.: (45) Date of Patent: US 8,091,830 B2 Jan. 10, 2012 (54) STRINGER FOR AN AIRCRAFTWING ANDA METHOD OF FORMING THEREOF (75) Inventor: Thomas

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O273930A1 (12) Patent Application Publication (10) Pub. No.: Philipps (43) Pub. Date: Dec. 15, 2005 (54) BEDDING PRODUCTS (52) U.S. Cl.... 5/486 (76) Inventor: Victoria Philipps,

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0081252 A1 Markgraf et al. US 2013 0081252A1 (43) Pub. Date: Apr. 4, 2013 (54) ARRANGEMENT FOR FIXINGA COMPONENT INSIDE OF

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 2004O155237A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0155237 A1 Kerber (43) Pub. Date: Aug. 12, 2004 (54) SELF-ALIGNED JUNCTION PASSIVATION Publication Classification

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States US 20170O80447A1 (12) Patent Application Publication (10) Pub. No.: US 2017/0080447 A1 Rouaud (43) Pub. Date: Mar. 23, 2017 (54) DYNAMIC SYNCHRONIZED MASKING AND (52) U.S. Cl. COATING

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 2004000017OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0000170 A1 Matsumura et al. (43) Pub. Date: Jan. 1, 2004 (54) OPTICAL ELEMENT MOLDING APPARATUS (30) Foreign

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States US 201701 01828A1 (12) Patent Application Publication (10) Pub. No.: US 2017/0101828A1 McGowan et al. (43) Pub. Date: (54) PRE-INSTALLED ANTI-ROTATION KEY (52) U.S. Cl. FOR THREADED

More information

Sa Sass. (12) Patent Application Publication (10) Pub. No.: US 2017/ A1. (19) United States. (43) Pub. Date: Apr. 27, PACK et al.

Sa Sass. (12) Patent Application Publication (10) Pub. No.: US 2017/ A1. (19) United States. (43) Pub. Date: Apr. 27, PACK et al. (19) United States US 201701 12163A1 (12) Patent Application Publication (10) Pub. No.: US 2017/0112163 A1 PACK et al. (43) Pub. Date: Apr. 27, 2017 (54) STAMP PLATE WITH MOULDING STOP (71) Applicant:

More information