Digital Communication Systems ECS 452

Size: px
Start display at page:

Download "Digital Communication Systems ECS 452"

Transcription

1 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong 2. Source Coding 1 Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40 Thursday 14:20-15:30

2 Elements of digital commu. sys. Message Transmitter Information Source Recovered Message Destination Source Encoder Remove redundancy Source Decoder Channel Encoder Add systematic redundancy Receiver Channel Decoder Digital Modulator Digital Demodulator Channel Transmitted Signal Received Signal Noise & Interference 2

3 System Under Consideration Message Transmitter Information Source Recovered Message Destination Source Encoder Remove redundancy Source Decoder Channel Encoder Add systematic redundancy Receiver Channel Decoder Digital Modulator Digital Demodulator Channel Transmitted Signal Received Signal Noise & Interference 3

4 Main Reference Elements of Information Theory 2006, 2nd Edition Chapters 2, 4 and 5 the jewel in Stanford's crown One of the greatest information theorists since Claude Shannon (and the one most like Shannon in approach, clarity, and taste). 4

5 5 English Alphabet (Non-Technical Use)

6 US UK The ASCII Coded Character Set (American Standard Code for Information Interchange) [The ARRL Handbook for Radio Communications 2013]

7 Example: ASCII Encoder Character x Codeword c(x) E L O V MATLAB: >> M = 'LOVE'; >> X = dec2bin(m,7); >> X = reshape(x',1,numel(x)) X = Remark: numel(a) = prod(size(a)) (the number of elements in matrix A) 7 Information Source LOVE Source Encoder

8 English Redundancy: Ex. 1 J-st tr- t- r--d th-s s-nt-nc-. 8

9 English Redundancy: Ex. 2 yxx cxn xndxrstxnd whxt x xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn 'x' (t gts lttl hrdr f y dn't vn kn whr th vwls r). 9

10 English Redundancy: Ex. 3 To be, or xxx xx xx, xxxx xx xxx xxxxxxxx 10

11 11 Entropy Rate of Thai Text

12 Introduction to Data Compression 12 [ ]

13 Introduction to Data Compression 13 [ ]

14 ASCII: Source Alphabet of Size = 128 (American Standard Code for Information Interchange) [The ARRL Handbook for Radio Communications 2013]

15 15 Ex. Source alphabet of size = 4

16 Ex. DMS (1) X abcde,,,, p X x 1, x abcde,,,, 5 0, otherwise Information Source a c a c e c d b c e d a e e d a b b b d b b a a b e b e d c c e d b c e c a a c a a e a c c a a d c d e e a a c a a a b b c a e b b e d b c d e b c a e e d d c d a b c a b c d d e d c e a b a a c a d 16 Approximately 20% are letter a s [GenRV_Discrete_datasample_Ex1.m]

17 Ex. DMS (1) clear all; close all; S_X = 'abcde'; p_x = [1/5 1/5 1/5 1/5 1/5]; n = 100; MessageSequence = datasample(s_x,n,'weights',p_x) MessageSequence = reshape(messagesequence,10,10) >> GenRV_Discrete_datasample_Ex1 MessageSequence = eebbedddeceacdbcbedeecacaecedcaedabecccabbcccebdbbbeccbadeaaaecceccdaccedadabceddaceadacdaededcdcade MessageSequence = eeeabbacde eacebeeead bcadcccdce bdcacccaed ebabcbedac dceeeacadd dbccbdcbac deecdedcca eddcbaaedd cecabacdae 17 [GenRV_Discrete_datasample_Ex1.m]

18 Ex. DMS (2) X 1, 2,3, 4 Information Source p X x , x 1, 2 1, x 2, 4 1, x 3,4 8 0, otherwise 18 Approximately 50% are number 1 s [GenRV_Discrete_datasample_Ex2.m]

19 Ex. DMS (2) clear all; close all; S_X = [ ]; p_x = [1/2 1/4 1/8 1/8]; n = 20; MessageSequence = randsrc(1,n,[s_x;p_x]); %MessageSequence = datasample(s_x,n,'weights',p_x); rf = hist(messagesequence,s_x)/n; % Ref. Freq. calc. stem(s_x,rf,'rx','linewidth',2) % Plot Rel. Freq. hold on stem(s_x,p_x,'bo','linewidth',2) % Plot pmf xlim([min(s_x)-1,max(s_x)+1]) legend('rel. freq. from sim.','pmf p_x(x)') xlabel('x') grid on Rel. freq. from sim. pmf p X (x) x 19 [GenRV_Discrete_datasample_Ex2.m]

20 DMS in MATLAB clear all; close all; S_X = [ ]; p_x = [1/2 1/4 1/8 1/8]; n = 1e6; SourceString = randsrc(1,n,[s_x;p_x]); Alternatively, we can also use SourceString = datasample(s_x,n,'weights',p_x); 20 rf = hist(sourcestring,s_x)/n; % Ref. Freq. calc. stem(s_x,rf,'rx','linewidth',2) % Plot Rel. Freq. hold on stem(s_x,p_x,'bo','linewidth',2) % Plot pmf xlim([min(s_x)-1,max(s_x)+1]) legend('rel. freq. from sim.','pmf p_x(x)') xlabel('x') grid on [GenRV_Discrete_datasample_Ex.m]

21 A more realistic example of pmf: Relative freq. of letters in the English language 21 [

22 A more realistic example of pmf: Relative freq. of letters in the English language ordered by frequency 22 [

23 Example: ASCII Encoder Codebook Character x Codeword c(x) E L O V MATLAB: >> M = 'LOVE'; >> X = dec2bin(m,7); >> X = reshape(x',1,numel(x)) X = Remark: numel(a) = prod(size(a)) (the number of elements in matrix A) 23 Information Source LOVE Source Encoder c( L ) c( O ) c( V ) c( E )

24 The ASCII Coded Character Set [The ARRL Handbook for Radio Communications 2013]

25 A Byte (8 bits) vs. 7 bits >> dec2bin('i Love ECS452',7) ans = >> dec2bin('i Love ECS452',8) ans =

26 Geeky ways to express your love >> dec2bin('i Love You',8) >> dec2bin('i love you',8) ans = ans = &ga_filters=holidays+-supplies+valentine&ga_search_type=all&ga_view_type=gallery 26

27 27 Summary: Source Encoder Information Source source string LOVE Discrete Memoryless Source (DMS) The source alphabet is the collection of all possible source symbols. Each symbol that the source generates is assumed to be randomly selected from the source alphabet. Source Encoder An encoder is a function that maps each of the symbol in the source alphabet into a corresponding (binary) codeword. The list for such mapping is called the codebook. Source Symbol x Codeword c(x) E L O V w/o extension encoded string c( L ) c( O ) c( V ) c( E ) The codeword corresponding to a source symbol is denoted by. the length of Each codeword is constructed from a code alphabet. For binary codeword, the code alphabet is 0,1

28 Morse code (wired and wireless) Telegraph network Samuel Morse, 1838 A sequence of on-off tones (or, lights, or clicks) 28

29 Example 29 [

30 30 Example

31 Morse code: Key Idea Frequently-used characters are mapped to short codewords. 31 Relative frequencies of letters in the English language

32 Morse code: Key Idea Frequently-used characters (e,t) are mapped to short codewords. 32 Relative frequencies of letters in the English language

33 Morse code: Key Idea Frequently-used characters (e,t) are mapped to short codewords. Basic form of compression. 33

34 34 รห สมอร สภาษาไทย

35 Example: ASCII Encoder Character Codeword E L O V MATLAB: >> M = 'LOVE'; >> X = dec2bin(m,7); >> X = reshape(x',1,numel(x)) X = Information Source LOVE Source Encoder

36 Another Example of non-ud code Suppose we want to convey the sequence of outcomes from rolling a dice. x c(x) A sequence of throws such as is encoded as

37 Another Example of non-ud code Suppose we want to convey the sequence of outcomes from rolling a dice. x c(x) The encoded string 11 could be interpreted as 11: 1 1 3: 11 The encoded string 110 could be interpreted as 12: :

38 Another Example of non-ud code x c(x) A 1 B 011 C D 1110 E

39 Another Example of non-ud code x c(x) A 1 B 011 C D 1110 E Consider the encoded string It can be interpreted as CDB: BABE: [ ]

40 Game: 20 Questions 20 Questions is a classic game that has been played since the 19th century. One person thinks of something (an object, a person, an animal, etc.) The others playing can ask 20 questions in an effort to guess what it is. 40

41 41 20 Questions: Example

42 Shannon Fano coding Prof. Robert Fano ( ) Shannon Award (1976 ) Proposed in Shannon s A Mathematical Theory of Communication in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). The transmission of information. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon Fano Elias coding (also known as Elias coding), the precursor to arithmetic coding. 42

43 Huffman Code David Huffman ( ) Hamming Medal (1999) MIT, 1951 Information theory class taught by Professor Fano. Huffman and his classmates were given the choice of a term paper on the problem of finding the most efficient binary code. or a final exam. Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for the final when he hit upon the idea of using a frequency-sorted binary tree and quickly proved this method the most efficient. Huffman avoided the major flaw of the suboptimal Shannon-Fano coding by building the tree from the bottom up instead of from the top down. 43

44 Huffman s paper (1952) 44 [D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes," in Proceedings of the IRE, vol. 40, no. 9, pp , Sept ] [ ]

45 Summary: All codes Nonsingular codes 45 [ ] A good code must be uniquely decodable (UD). Difficult to check. [Defn 2.18] [2.24] Consider a special family of codes: prefix(-free) code. Always UD. Same as being instantaneous. [Defn 2.30] Huffman s recipe UD codes Prefix-free codes Huffman codes No codeword is a prefix of any other codeword. Each source symbol can be decoded as soon as we come to the end of the codeword corresponding to it Repeatedly combine the two least-likely (combined) symbols. Automatically give prefix-free code. [Defn 2.36] [2.37] For a given source s pmf, Huffman codes are optimal among all UD codes for that source.

46 Huffman coding 46 [ ]

47 Ex. Huffman Coding in MATLAB [Ex. 2.31] Observe that MATLAB automatically give the expected length of the codewords px = [ ]; % pmf of X SX = [1:length(pX)]; % Source Alphabet [dict,el] = huffmandict(sx,px); % Create codebook %% Pretty print the codebook. codebook = dict; for i = 1:length(codebook) codebook{i,2} = num2str(codebook{i,2}); end codebook %% Try to encode some random source string n = 5; % Number of source symbols to be generated sourcestring = randsrc(1,10,[sx; px]) % Create data using px encodedstring = huffmanenco(sourcestring,dict) % Encode the data 47 [Huffman_Demo_Ex1]

48 Ex. Huffman Coding in MATLAB codebook = [1] '0' [2] '1 0' [3] '1 1 1' [4] '1 1 0' sourcestring = encodedstring = [Huffman_Demo_Ex1]

49 Ex. Huffman Coding in MATLAB [Ex. 2.32] px = [ ]; % pmf of X SX = [1:length(pX)]; [dict,el] = huffmandict(sx,px); % Source Alphabet % Create codebook %% Pretty print the codebook. codebook = dict; for i = 1:length(codebook) codebook{i,2} = num2str(codebook{i,2}); end codebook EL The codewords can be different from our answers found earlier. The expected length is the same. 49 [Huffman_Demo_Ex2] >> Huffman_Demo_Ex2 codebook = EL = [1] '1' [2] '0 1' [3] ' ' [4] '0 0 1' [5] ' ' [6] ' '

50 Ex. Huffman Coding in MATLAB px = [1/8, 5/24, 7/24, 3/8]; % pmf of X SX = [1:length(pX)]; [dict,el] = huffmandict(sx,px); % Source Alphabet % Create codebook %% Pretty print the codebook. codebook = dict; for i = 1:length(codebook) codebook{i,2} = num2str(codebook{i,2}); end codebook EL [Exercise] 50 >> -px*(log2(px)).' ans = codebook = [1] '0 0 1' [2] '0 0 0' [3] '0 1' [4] '1' EL =

51 x

52 Entropy and Description of RV 57 [ ]

53 Entropy and Description of RV 58 [ ]

54 59 Summary: Optimality of Huffman Codes Consider a given DMS with known pmf [Defn 2.36] A code is optimal if it is UD and its corresponding expected length is the shortest among all possible UD codes for that source. [2.37] Huffman codes are optimal. All codes [ ] Bounds on expected lengths: Nonsingular codes UD codes Prefix-free codes Huffman codes Expected length Expected length (per source (per source symbol) of an symbol) of a 1 optimal code Huffman code

55 Summary: Entropy 60 Entropy measures the amount of uncertainty (randomness) in a RV. Three formulas for calculating entropy: [Defn 2.41] Given a pmf of a RV, binary entropy function log. [2.44] Given a probability vector, log. [Defn 2.47] Given a number, Set 0log 0 0. log 1 log 1 [2.56] Operational meaning: Entropy of a random variable is the average length of its shortest description.

56 Examples Example 2.31 H X Huffman 1.75 X Efficiency = 100% Example 2.32 H X Huffman X Efficiency 97% 61

57 Examples Example 2.33 H X Huffman X Efficiency 99% Example 2.34 A B C D H X Huffman X Efficiency 93% 62

58 Summary: Entropy Important Bounds deterministic uniform The entropy of a uniform (discrete) random variable: The entropy of a Bernoulli random variable: binary entropy function 63

59 [Ex.2.40] Huffman Coding: Source Extension 1 1 X k i.i.d. Bernoulli p p L n n: order of extension

60 [Ex.2.40] Huffman Coding: Source Extension 1.8 X k i.i.d. Bernoulli p p L n H X 1 n 67 H X Order of source extension n

61 Summary: Source Extension The encoder operates on the blocks rather than on individual symbols. [Defn 2.39] -th extension coding: 1 block = successive source symbols = expected (average) codeword length per source symbol when Huffman coding is used with -th extension H X 1 n 68 H X 0.6 L n Order of source extension

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Source Coding 1 Office Hours: BKD 3601-7 Monday 14:00-16:00 Wednesday 14:40-16:00 Noise & Interference Elements

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพ นธ ส ขสมปอง) prapun@siit.tu.ac.th 1. Intro to Digital Communication Systems 1 Office Hours: BKD, 6th floor of Sirindhralai

More information

Principles of Communications ECS 332

Principles of Communications ECS 332 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 4:3-5:3 Friday 4:3-5:3 Example

More information

Lecture5: Lossless Compression Techniques

Lecture5: Lossless Compression Techniques Fixed to fixed mapping: we encoded source symbols of fixed length into fixed length code sequences Fixed to variable mapping: we encoded source symbols of fixed length into variable length code sequences

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Channel Coding 1 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 14:20-15:20 Wednesday 14:20-15:20

More information

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 1 LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 2 STORAGE SPACE Uncompressed graphics, audio, and video data require substantial storage capacity. Storing uncompressed video is not possible

More information

Entropy, Coding and Data Compression

Entropy, Coding and Data Compression Entropy, Coding and Data Compression Data vs. Information yes, not, yes, yes, not not In ASCII, each item is 3 8 = 24 bits of data But if the only possible answers are yes and not, there is only one bit

More information

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding Comm. 50: Communication Theory Lecture 6 - Introduction to Source Coding Digital Communication Systems Source of Information User of Information Source Encoder Source Decoder Channel Encoder Channel Decoder

More information

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Dr.-Ing. Heiko Schwarz COMM901 Source Coding and Compression Winter Semester

More information

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression # 2 ECE 253a Digital Image Processing Pamela Cosman /4/ Introductory material for image compression Motivation: Low-resolution color image: 52 52 pixels/color, 24 bits/pixel 3/4 MB 3 2 pixels, 24 bits/pixel

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 13: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 22 th, 2015 1 o Source Code Generation Lecture Outlines Source Coding

More information

Information Theory and Huffman Coding

Information Theory and Huffman Coding Information Theory and Huffman Coding Consider a typical Digital Communication System: A/D Conversion Sampling and Quantization D/A Conversion Source Encoder Source Decoder bit stream bit stream Channel

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

Computing and Communications 2. Information Theory -Channel Capacity

Computing and Communications 2. Information Theory -Channel Capacity 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Channel Capacity Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Communication

More information

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Course Presentation Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Data Compression Motivation Data storage and transmission cost money Use fewest number of

More information

Information Theory and Communication Optimal Codes

Information Theory and Communication Optimal Codes Information Theory and Communication Optimal Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/1 Roadmap Examples and Types of Codes Kraft Inequality

More information

Introduction to Source Coding

Introduction to Source Coding Comm. 52: Communication Theory Lecture 7 Introduction to Source Coding - Requirements of source codes - Huffman Code Length Fixed Length Variable Length Source Code Properties Uniquely Decodable allow

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Welcome to 6.004! Course

More information

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325 C 745 - Advanced Communication Theory, Spring 2007 Midterm xam Monday, April 23rd, 600-900pm, LAB 325 Overview The exam consists of five problems for 150 points. The points for each part of each problem

More information

Coding for Efficiency

Coding for Efficiency Let s suppose that, over some channel, we want to transmit text containing only 4 symbols, a, b, c, and d. Further, let s suppose they have a probability of occurrence in any block of text we send as follows

More information

A Brief Introduction to Information Theory and Lossless Coding

A Brief Introduction to Information Theory and Lossless Coding A Brief Introduction to Information Theory and Lossless Coding 1 INTRODUCTION This document is intended as a guide to students studying 4C8 who have had no prior exposure to information theory. All of

More information

Lecture 1 Introduction

Lecture 1 Introduction Lecture 1 Introduction I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw September 22, 2015 1 / 46 I-Hsiang Wang IT Lecture 1 Information Theory Information

More information

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix Send SMS s : ONJntuSpeed To 9870807070 To Recieve Jntu Updates Daily On Your Mobile For Free www.strikingsoon.comjntu ONLINE EXMINTIONS [Mid 2 - dc] http://jntuk.strikingsoon.com 1. Two binary random

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Name: Year /Sem: II / IV UNIT I INFORMATION ENTROPY FUNDAMENTALS PART A (2 MARKS) 1. What is uncertainty? 2. What is prefix coding? 3. State the

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 14: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 25 th, 2015 1 Previous Lecture: Source Code Generation: Lossless

More information

Scheduling in omnidirectional relay wireless networks

Scheduling in omnidirectional relay wireless networks Scheduling in omnidirectional relay wireless networks by Shuning Wang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : COMMUNICATION THEORY SUB.CODE: EC1252 YEAR : II SEMESTER : IV UNIT I AMPLITUDE MODULATION SYSTEMS

More information

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication INTRODUCTION Digital Communication refers to the transmission of binary, or digital, information over analog channels. In this laboratory you will

More information

Hamming net based Low Complexity Successive Cancellation Polar Decoder

Hamming net based Low Complexity Successive Cancellation Polar Decoder Hamming net based Low Complexity Successive Cancellation Polar Decoder [1] Makarand Jadhav, [2] Dr. Ashok Sapkal, [3] Prof. Ram Patterkine [1] Ph.D. Student, [2] Professor, Government COE, Pune, [3] Ex-Head

More information

SHANNON S source channel separation theorem states

SHANNON S source channel separation theorem states IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009 3927 Source Channel Coding for Correlated Sources Over Multiuser Channels Deniz Gündüz, Member, IEEE, Elza Erkip, Senior Member,

More information

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication 1 Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING 1.1 SOURCE CODING Whether a source is analog or digital, a digital communication system is designed to transmit information in digital form.

More information

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF COURSE WORK Course Details: Course Title : DIGITAL COMMUNICATIONS Course Code : 13EC1114 L T P C 4 0 0 3 Program Specialization Semester Prerequisites Courses to which it is a prerequisite :

More information

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley - A Greedy Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Greedy Algorithms Greedy Algorithms Build up solutions in small steps Make local decisions Previous decisions are never reconsidered

More information

Rab Nawaz. Prof. Zhang Wenyi

Rab Nawaz. Prof. Zhang Wenyi Rab Nawaz PhD Scholar (BL16006002) School of Information Science and Technology University of Science and Technology of China, Hefei Email: rabnawaz@mail.ustc.edu.cn Submitted to Prof. Zhang Wenyi wenyizha@ustc.edu.cn

More information

Block Markov Encoding & Decoding

Block Markov Encoding & Decoding 1 Block Markov Encoding & Decoding Deqiang Chen I. INTRODUCTION Various Markov encoding and decoding techniques are often proposed for specific channels, e.g., the multi-access channel (MAC) with feedback,

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London An Overview of Fundamentals: Channels, Criteria and Limits Prof. A. Manikas (Imperial

More information

TCET3202 Analog and digital Communications II

TCET3202 Analog and digital Communications II NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED COURSE Electrical and Telecommunications Engineering Technology TCET3202

More information

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 MIT OpenCourseWare http://ocw.mit.edu MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 For information about citing these materials or our Terms of Use, visit:

More information

6.450: Principles of Digital Communication 1

6.450: Principles of Digital Communication 1 6.450: Principles of Digital Communication 1 Digital Communication: Enormous and normally rapidly growing industry, roughly comparable in size to the computer industry. Objective: Study those aspects of

More information

Revision of Lecture Eleven

Revision of Lecture Eleven Revision of Lecture Eleven Previous lecture we have concentrated on carrier recovery for QAM, and modified early-late clock recovery for multilevel signalling as well as star 16QAM scheme Thus we have

More information

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Available online at www.interscience.in Convolutional Coding Using Booth Algorithm For Application in Wireless Communication Sishir Kalita, Parismita Gogoi & Kandarpa Kumar Sarma Department of Electronics

More information

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Error Control Coding Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Topics Introduction The Channel Coding Problem Linear Block Codes Cyclic Codes BCH and Reed-Solomon

More information

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided.

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided. " 11111111111111111111111111111111111111111111111111111111111111III *U-3091/8400* Printed Pages : 7 TEC - 601! I i B. Tech. (SEM. VI) EXAMINATION, 2007-08 DIGIT AL COMMUNICATION \ V Time: 3 Hours] [Total

More information

Part A: Question & Answers UNIT I AMPLITUDE MODULATION

Part A: Question & Answers UNIT I AMPLITUDE MODULATION PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS & COMMUNICATON ENGG. Branch: ECE EC6402 COMMUNICATION THEORY Semester: IV Part A: Question & Answers UNIT I AMPLITUDE MODULATION 1.

More information

Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless

Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-30, 2011 Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless Zhiyu Cheng, Natasha

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON).

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). 1. Some easy problems. 1.1. Guessing a number. Someone chose a number x between 1 and N. You are allowed to ask questions: Is this number larger

More information

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution 2.1. General Purpose There are many popular general purpose lossless compression techniques, that can be applied to any type of data. 2.1.1. Run Length Encoding Run Length Encoding is a compression technique

More information

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin

More information

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains:

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains: The Lecture Contains: The Need for Video Coding Elements of a Video Coding System Elements of Information Theory Symbol Encoding Run-Length Encoding Entropy Encoding file:///d /...Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2040/40_1.htm[12/31/2015

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003 MAS160: Signals, Systems & Information for Media Technology Problem Set 4 DUE: October 20, 2003 Instructors: V. Michael Bove, Jr. and Rosalind Picard T.A. Jim McBride Problem 1: Simple Psychoacoustic Masking

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 1: Introduction & Overview Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Information Theory 1 / 26 Outline 1 Course Information 2 Course Overview

More information

On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT

On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT Syed Ali Jafar University of California Irvine Irvine, CA 92697-2625 Email: syed@uciedu Andrea Goldsmith Stanford University Stanford,

More information

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015.

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015. Monday, February 2, 2015 Topics for today Homework #1 Encoding checkers and chess positions Constructing variable-length codes Huffman codes Homework #1 Is assigned today. Answers due by noon on Monday,

More information

Basics of Error Correcting Codes

Basics of Error Correcting Codes Basics of Error Correcting Codes Drawing from the book Information Theory, Inference, and Learning Algorithms Downloadable or purchasable: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html CSE

More information

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY i Syllabus osmania university UNIT - I CHAPTER - 1 : INTRODUCTION TO Elements of Digital Communication System, Comparison of Digital and Analog Communication Systems. CHAPTER - 2 : DIGITAL TRANSMISSION

More information

EC Talk. Asst. Prof. Dr. Prapun Suksompong.

EC Talk. Asst. Prof. Dr. Prapun Suksompong. EC Talk Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: (BKD 3601-7) Wednesday 9:30-11:30 Wednesday 16:00-17:00 Thursday 14:40-16:00 Outline Courses ECS 452: Digital Communication

More information

Introduction to Error Control Coding

Introduction to Error Control Coding Introduction to Error Control Coding 1 Content 1. What Error Control Coding Is For 2. How Coding Can Be Achieved 3. Types of Coding 4. Types of Errors & Channels 5. Types of Codes 6. Types of Error Control

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, April 28, 26 Midterm Solutions (Prepared by TA Shouvik Ganguly) There are 3 problems, each problem with multiple parts, each part worth points. Your

More information

The Z Channel. Nihar Jindal Department of Electrical Engineering Stanford University, Stanford, CA

The Z Channel. Nihar Jindal Department of Electrical Engineering Stanford University, Stanford, CA The Z Channel Sriram Vishwanath Dept. of Elec. and Computer Engg. Univ. of Texas at Austin, Austin, TX E-mail : sriram@ece.utexas.edu Nihar Jindal Department of Electrical Engineering Stanford University,

More information

6. FUNDAMENTALS OF CHANNEL CODER

6. FUNDAMENTALS OF CHANNEL CODER 82 6. FUNDAMENTALS OF CHANNEL CODER 6.1 INTRODUCTION The digital information can be transmitted over the channel using different signaling schemes. The type of the signal scheme chosen mainly depends on

More information

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1.

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1. EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code Project #1 is due on Tuesday, October 6, 2009, in class. You may turn the project report in early. Late projects are accepted

More information

Background Dirty Paper Coding Codeword Binning Code construction Remaining problems. Information Hiding. Phil Regalia

Background Dirty Paper Coding Codeword Binning Code construction Remaining problems. Information Hiding. Phil Regalia Information Hiding Phil Regalia Department of Electrical Engineering and Computer Science Catholic University of America Washington, DC 20064 regalia@cua.edu Baltimore IEEE Signal Processing Society Chapter,

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

Channel Coding/Decoding. Hamming Method

Channel Coding/Decoding. Hamming Method Channel Coding/Decoding Hamming Method INFORMATION TRANSFER ACROSS CHANNELS Sent Received messages symbols messages source encoder Source coding Channel coding Channel Channel Source decoder decoding decoding

More information

PROBABILITY AND STATISTICS Vol. II - Information Theory and Communication - Tibor Nemetz INFORMATION THEORY AND COMMUNICATION

PROBABILITY AND STATISTICS Vol. II - Information Theory and Communication - Tibor Nemetz INFORMATION THEORY AND COMMUNICATION INFORMATION THEORY AND COMMUNICATION Tibor Nemetz Rényi Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary Keywords: Shannon theory, alphabet, capacity, (transmission) channel, channel

More information

State-Dependent Relay Channel: Achievable Rate and Capacity of a Semideterministic Class

State-Dependent Relay Channel: Achievable Rate and Capacity of a Semideterministic Class IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 5, MAY 2013 2629 State-Dependent Relay Channel: Achievable Rate and Capacity of a Semideterministic Class Majid Nasiri Khormuji, Member, IEEE, Abbas

More information

DIGITAL COMMINICATIONS

DIGITAL COMMINICATIONS Code No: R346 R Set No: III B.Tech. I Semester Regular and Supplementary Examinations, December - 23 DIGITAL COMMINICATIONS (Electronics and Communication Engineering) Time: 3 Hours Max Marks: 75 Answer

More information

5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010 5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010 Interference Channels With Correlated Receiver Side Information Nan Liu, Member, IEEE, Deniz Gündüz, Member, IEEE, Andrea J.

More information

Communications IB Paper 6 Handout 3: Digitisation and Digital Signals

Communications IB Paper 6 Handout 3: Digitisation and Digital Signals Communications IB Paper 6 Handout 3: Digitisation and Digital Signals Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent

More information

Course Developer: Ranjan Bose, IIT Delhi

Course Developer: Ranjan Bose, IIT Delhi Course Title: Coding Theory Course Developer: Ranjan Bose, IIT Delhi Part I Information Theory and Source Coding 1. Source Coding 1.1. Introduction to Information Theory 1.2. Uncertainty and Information

More information

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016

International Journal of Computer Trends and Technology (IJCTT) Volume 40 Number 2 - October2016 Signal Power Consumption in Digital Communication using Convolutional Code with Compared to Un-Coded Madan Lal Saini #1, Dr. Vivek Kumar Sharma *2 # Ph. D. Scholar, Jagannath University, Jaipur * Professor,

More information

Applications of Probability Theory

Applications of Probability Theory Applications of Probability Theory The subject of probability can be traced back to the 17th century when it arose out of the study of gambling games. The range of applications extends beyond games into

More information

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION)

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) UNIT-I: PCM & Delta modulation system Q.1 Explain the difference between cross talk & intersymbol interference. Q.2 What is Quantization error? How does

More information

Solutions to Assignment-2 MOOC-Information Theory

Solutions to Assignment-2 MOOC-Information Theory Solutions to Assignment-2 MOOC-Information Theory 1. Which of the following is a prefix-free code? a) 01, 10, 101, 00, 11 b) 0, 11, 01 c) 01, 10, 11, 00 Solution:- The codewords of (a) are not prefix-free

More information

S Coding Methods (5 cr) P. Prerequisites. Literature (1) Contents

S Coding Methods (5 cr) P. Prerequisites. Literature (1) Contents S-72.3410 Introduction 1 S-72.3410 Introduction 3 S-72.3410 Coding Methods (5 cr) P Lectures: Mondays 9 12, room E110, and Wednesdays 9 12, hall S4 (on January 30th this lecture will be held in E111!)

More information

Channel Coding and Cryptography

Channel Coding and Cryptography Hochschule Wismar Channel Coding and Cryptography Baltic Summer School Technical Informatics & Information Technology (BaSoTi) Tartu (Estonia) July/August 2012 Prof. Dr.-Ing. habil. Andreas Ahrens Communications

More information

Exercises to Chapter 2 solutions

Exercises to Chapter 2 solutions Exercises to Chapter 2 solutions 1 Exercises to Chapter 2 solutions E2.1 The Manchester code was first used in Manchester Mark 1 computer at the University of Manchester in 1949 and is still used in low-speed

More information

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems 1 Introduction The reliable transmission of information over noisy channels is one of the basic requirements of digital information and communication systems. Here, transmission is understood both as transmission

More information

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society Abstract MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING A Public Lecture to the Uganda Mathematics Society F F Tusubira, PhD, MUIPE, MIEE, REng, CEng Mathematical theory and techniques play a vital

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Lecture 4: Wireless Physical Layer: Channel Coding Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Channel Coding Modulated waveforms disrupted by signal propagation through wireless channel leads

More information

Coding Techniques and the Two-Access Channel

Coding Techniques and the Two-Access Channel Coding Techniques and the Two-Access Channel A.J. Han VINCK Institute for Experimental Mathematics, University of Duisburg-Essen, Germany email: Vinck@exp-math.uni-essen.de Abstract. We consider some examples

More information

The idea of similarity is through the Hamming

The idea of similarity is through the Hamming Hamming distance A good channel code is designed so that, if a few bit errors occur in transmission, the output can still be identified as the correct input. This is possible because although incorrect,

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 18 Today: (1) da Silva Discussion, (2) Error Correction Coding, (3) Error Detection (CRC) HW 8 due Tue. HW 9 (on Lectures

More information

ELEC3028 (EL334) Digital Transmission

ELEC3028 (EL334) Digital Transmission ELEC3028 (EL334) Digital Transmission Half of the unit: Information Theory MODEM (modulator and demodulator) Professor Sheng Chen: Building 53, Room 4005 E-mail: sqc@ecs.soton.ac.uk Lecture notes from:

More information

DCSP-1: Introduction. Jianfeng Feng. Department of Computer Science Warwick Univ., UK

DCSP-1: Introduction. Jianfeng Feng. Department of Computer Science Warwick Univ., UK DCSP-1: Introduction Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Time Monday (L) 14.00-15.00 CS 1.01 Tuesday

More information

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless

EECS 473 Advanced Embedded Systems. Lecture 13 Start on Wireless EECS 473 Advanced Embedded Systems Lecture 13 Start on Wireless Team status updates Losing track of who went last. Cyberspeaker VisibleLight Elevate Checkout SmartHaus Upcoming Last lecture this Thursday

More information

Introduction to Coding Theory

Introduction to Coding Theory Coding Theory Massoud Malek Introduction to Coding Theory Introduction. Coding theory originated with the advent of computers. Early computers were huge mechanical monsters whose reliability was low compared

More information

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27)

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27) ECEn 665: Antennas and Propagation for Wireless Communications 131 9. Modulation Modulation is a way to vary the amplitude and phase of a sinusoidal carrier waveform in order to transmit information. When

More information

ENGR 4323/5323 Digital and Analog Communication

ENGR 4323/5323 Digital and Analog Communication ENGR 4323/5323 Digital and Analog Communication Chapter 1 Introduction Engineering and Physics University of Central Oklahoma Dr. Mohamed Bingabr Course Materials Textbook: Modern Digital and Analog Communication,

More information

Wednesday, February 1, 2017

Wednesday, February 1, 2017 Wednesday, February 1, 2017 Topics for today Encoding game positions Constructing variable-length codes Huffman codes Encoding Game positions Some programs that play two-player games (e.g., tic-tac-toe,

More information

Multicasting over Multiple-Access Networks

Multicasting over Multiple-Access Networks ing oding apacity onclusions ing Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley May 9, 2006 EE 228A Outline ing oding apacity onclusions 1 2 3 4 oding 5 apacity

More information

Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters

Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters Vibhooti Sharma M.Tech, E.C.E. Lovely Professional University PHAGWARA Amanjot Singh (Assistant Professor)

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif

PROJECT 5: DESIGNING A VOICE MODEM. Instructor: Amir Asif PROJECT 5: DESIGNING A VOICE MODEM Instructor: Amir Asif CSE4214: Digital Communications (Fall 2012) Computer Science and Engineering, York University 1. PURPOSE In this laboratory project, you will design

More information

Lossy Compression of Permutations

Lossy Compression of Permutations 204 IEEE International Symposium on Information Theory Lossy Compression of Permutations Da Wang EECS Dept., MIT Cambridge, MA, USA Email: dawang@mit.edu Arya Mazumdar ECE Dept., Univ. of Minnesota Twin

More information

ECE 6640 Digital Communications

ECE 6640 Digital Communications ECE 6640 Digital Communications Dr. Bradley J. Bazuin Assistant Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 8 8. Channel Coding: Part

More information

The ternary alphabet is used by alternate mark inversion modulation; successive ones in data are represented by alternating ±1.

The ternary alphabet is used by alternate mark inversion modulation; successive ones in data are represented by alternating ±1. Alphabets EE 387, Notes 2, Handout #3 Definition: An alphabet is a discrete (usually finite) set of symbols. Examples: B = {0,1} is the binary alphabet T = { 1,0,+1} is the ternary alphabet X = {00,01,...,FF}

More information

ICE1495 Independent Study for Undergraduate Project (IUP) A. Lie Detector. Prof. : Hyunchul Park Student : Jonghun Park Due date : 06/04/04

ICE1495 Independent Study for Undergraduate Project (IUP) A. Lie Detector. Prof. : Hyunchul Park Student : Jonghun Park Due date : 06/04/04 ICE1495 Independent Study for Undergraduate Project (IUP) A Lie Detector Prof. : Hyunchul Park Student : 20020703 Jonghun Park Due date : 06/04/04 Contents ABSTRACT... 2 1. INTRODUCTION... 2 1.1 BASIC

More information