Entropy, Coding and Data Compression

Size: px
Start display at page:

Download "Entropy, Coding and Data Compression"

Transcription

1 Entropy, Coding and Data Compression

2 Data vs. Information yes, not, yes, yes, not not In ASCII, each item is 3 8 = 24 bits of data But if the only possible answers are yes and not, there is only one bit of information per item

3 Compression = Squeezing out the Air Suppose you want to ship pillows in boxes and are charged by the size of the box To use as few boxes as possible, squeeze out all the air, pack into boxes, fluff them up at the other end Lossless data compression = pillows are perfectly restored Lossy data compression = some damage to the pillows is OK (MP3 is a lossy compression standard for music) Loss may be OK if it is below human perceptual threshold Entropy is a measure of limit of lossless compression

4 Example: Telegraphy Source English letters -> Morse Code Sender: from Hokkaido D D Receiver: in Tokyo

5 Coding Messages with Fixed Length Codes Example: 4 symbols, A, B, C, D A=, B=, C=, D= In general, with n symbols, codes need to be of length lg n, rounded up For English text, 26 letters + space = 27 symbols, length = 5 since 2 4 < 27 < 2 5 (replace all punctuation marks by space)

6 Modeling the Message Source Source Destination Characteristics of the stream of messages coming from the source affect the choice of the coding method We need a model for a source of English text that can be described and analyzed mathematically

7 Uniquely decodable codes If any encoded string has only one possible source string producing it then we have unique decodablity Example of uniquely decodable code is the prefix code

8 Prefix Coding A prefix code is defined as a code in which no codeword is the prefix of some other code word. A prefix code is uniquely decodable. Prefix Code Source Symbol Code A Symbol Codeword Code B Symbol Codeword Code C Symbol Codeword s s s 2 s 3 Uniquely Decodable Codes

9 Decoding of a Prefix Code Decision Tree for Code B Code B Initial State s s s 2 Source Symbol s k s s s 2 Symbol Codeword c k s 3 s 3 Example : Decode Answer : s s 3 s 2 s s

10 Prefix Codes Only one way to decode left to right when message received Example Symbol A B C D Probability.7... Code Received message:

11 Prefix Codes Example 2 Source Symbol s k A B C D Code E Symbol Codeword c k IS CODE E A PREFIX CODE? NO WHY? Code of D is a prefix to code of C

12 Average Code Length Information Source s k Source Encoder c k Source has K symbols Each symbol s k has probability p k Each symbol s k is represented by a codeword c k of length l k bits Average codeword length L K = k = pl k k

13 Shannon s First Theorem: The Source Coding Theorem L H( S ) The outputs of an information source cannot be represented by a source code whose average length is less than the source entropy

14 Average Code Length Example Average bits per symbol: L= =.6 bits/symbol (down from 2) A.7 B. C. D. Another prefix code that A B C D is better.7... L= =.5

15 Robot Example Source Entropy Examples 4-way random walk prob( x = S) =, prob( x = N) = 2 prob( x = E) = prob( x = W ) = 8 H ( X ) = ( log 2 + log 2 + log 2 + log 2 ) =. 75bps W N S E

16 Source Entropy Examples Robot Example symbol k S N E p k fixed-length codeword variable-length codeword W 5 symbol stream : S S N W S E N N N W S S S N E S S fixed length: variable length: 32bits 28bits 4 bits savings achieved by VLC (redundancy eliminated)

17 Entropy, Compressibility, Redundancy Lower entropy <=> More redundant <=> More compressible Higher entropy <=> Less redundant <=> Less compressible A source of yes s and not s takes 24 bits per symbol but contains at most one bit per symbol of information

18 Entropy and Compression First-order entropy is theoretical minimum on code length when only frequencies are taken into account A B C L= = First-order Entropy =.353 D. First-order Entropy of English is about 4 bits/character based on typical English texts

19 Bits You are watching a set of independent random samples of X You see that X has four possible values P(X=A) = /4 P(X=B) = /4 P(X=C) = /4 P(X=D) = /4 So you might see output: BAACBADCDADDDA You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A =, B =, C =, D = ) 2 bits on average per symbol

20 Fewer Bits Someone tells you that the probabilities are not equal P(X=A) = /2 P(X=B) = /4 P(X=C) = /8 P(X=D) = /8 Is it possible to invent a coding for your transmission that only uses.75 bits on average per symbol. How?

21 Fewer Bits Someone tells you that the probabilities are not equal P(X=A) = /2 P(X=B) = /4 P(X=C) = /8 P(X=D) = /8 It s possible to invent a coding for your transmission that only uses.75 bits on average per symbol. How? A B C D (This is just one of several ways)

22 Fewer Bits Suppose there are three equally likely values P(X=A) = /3 P(X=B) = /3 P(X=C) = /3 Here s a naïve coding, costing 2 bits per symbol A B C Can you think of a coding that would need only.6 bits per symbol on average? In theory, it can in fact be done with bits per symbol.

23 Kraft-McMillan Inequality K 2 lk k = If codeword lengths of a code satisfy the Kraft McMillan s inequality, then a prefix code with these codeword lengths can be constructed. For code D = 9/8 This means that Code D IS NOT A PREFIX CODE Source Symbol s k Code D Symbol Codewor d C k s s 2 s 2 3 s 3 2 Codeword Length l k

24 Use of Kraft-McMillan Inequality We may use it if the number of symbols are large such that we cannot simply by inspection judge whether a given code is a prefix code or not WHAT Kraft-McMillan Inequality Can Do: It can determine that a given code IS NOT A PREFIX CODE It can identify that a prefix code could be constructed from a set of codeword lengths WHAT Kraft-McMillan Inequality Cannot Do: It cannot guarantee that a given code is indeed a prefix code

25 Example Source Symbo l s k Symbol Codewor d c k Code E Codeword Length l k s s 3 s 2 3 For code E s = IS CODE E A PREFIX CODE? NO WHY? s 3 is a prefix to s 2

26 Code Efficiency? η ( ) = H S L An efficient code means?

27 Source Symbol s k Symbol Probability p k Examples Code I Symbol Codeword c k Codeword Length l k Symbol Codeword c k s /2 2 s /4 2 2 s 2 /8 2 3 s 3 /8 2 3 Source Entropy H(S) =/2log 2 (2)+/4log 2 (4)+ /8log 2 (8)+/log 2 (8) = ¾ bits/symbol Code I L = = η = = Code II Code II Codeword Length l k 7 L = = η = = 74

28 For a Prefix Code Shannon s First Theorem ( S ) L ( S ) H < H + L = H( S ) if pk l = 2 k k p k 2 l k for some What is the Efficiency???= if?< However, we may increase efficiency by extending the source k

29 Increasing Efficiency by Source By extending the source we may potentially increase efficiency The drawback is Increased decoding complexity Extension ( n ) ( n S L ) n S H < H + ( ) ( ) nh S L < nh S + H η η n L < + n ( ) n S H( S ) = H L ( S ) n n n when n

30 Extension of a Discrete Memoryless Source Treats Blocks of n successive symbols Information Source Extended Information Source S = { } { } s,s,...,s K Pr s = p,k =,,...,K k k K- k = p k = { } n n S = σ, σ,..., σ K { } n Pr σ = q,i =,,...,K i K i n - i = p i =

31 Example 2 S={s,s,s 2 }, p =/4, p =/4, p 2 =/2 H(S)=(/4)log 2 (4)+ (/4)log 2 (4)+ (/2)log 2 (2) H(S)=3/2 bits Second-Order Extended Source Symbols of S 2 s s s 2 s 3 s 4 s 5 s 6 s 7 s 8 Sequence of Symbols from S s s s s s s 2 s s s s s s 2 s 2 s s 2 s s 2 s P{s i }, i=,,,8 /6 /6 /8 /6 /6 /8 /8 /8 /4 By Computing: H(S 2 )=3 bits

32 Example 3 Calculate the English of English language if. All alphabet letters are equally probable 2. For a, e, o, t P{s k }=. For h, i, n, r, s P{s k }=.7 For c, d, f, l, m, p, u, y P{s k }=.2 For b, g, j, k, q, v, w, x, z P{s k }=.. H(S)=4.7 bits 2. H(S)=4.7 bits

33 Source Encoding Efficient representation of information sources Source Coding Requirements Uniquely Decodable Codes Prefix Codes No codeword is a prefix to some other code word Code Efficiency η ( ) = H S L Kraft s Inequality K lk k = 2 Source Coding Theorem ( S ) L ( S ) H < H +

34 Source Coding Techniques. Huffman Code. 2. Two-path Huffman Code. 3. Lemple-Ziv Code. 4. Shannon Code. 5. Fano Code. 6. Arithmetic Code.

35 Source Coding Techniques. Huffman Code. 2. Two-path Huffman Code. 3. Lemple-Ziv Code. 4. Shannon Code. 5. Fano Code. 6. Arithmetic Code.

36 Source Coding Techniques. Huffman Code. With the Huffman code in the binary case the two least probable source output symbols are joined together, resulting in a new message alphabet with one less symbol

37 Huffman Coding: Example Compute the Huffman Code for the source shown H( S ) = ( 4log. ) ( 2log. ) ( log. ) 2. = L Source Symbol s k. s s s 2.4 s 3. s 4 Symbol Probability p k

38 Solution A Source Symbol s k s 2 s s 3 s s 4 Stage I.4..

39 Solution A Source Symbol s k s 2 s s 3 s s 4 Stage I.4.. Stage II.4

40 Solution A Source Symbol s k Stage I Stage II Stage III s s.4 s 3 s. s 4.

41 Solution A Source Symbol s k Stage I Stage II Stage III Stage IV s s.4.4 s 3 s. s 4.

42 Solution A Source Symbol Stage I Stage II Stage III Stage IV s s k.6 s.4.4 s 3 s. s 4.

43 Solution A Source Symbol Stage I Stage II Stage III Stage IV s s k Code.6 s.4.4 s 3 s. s 4.

44 Source Symbol Symbol Probability p k Solution A Cont d s. s s 2.4 s 3. s 4 Code word c k s k ( ) = H S L = = 22. ( S ) L ( S ) H < H + THIS IS NOT THE ONLY SOLUTION!

45 Alternate Solution B Source Symbol Stage I Stage II Stage III Stage IV s s k Code.6 s.4.4 s 3 s. s 4.

46 Source Symbol Alternative Solution B Cont d Symbol Probability p k s. s s 2.4 s 3. s 4 Code word c k s k ( ) = H S L = = 22. ( S ) L ( S ) H < H +

47 What is the difference between the two solutions? They have the same average length They differ in the variance of the average code length Solution A s 2 =.6 Solution B s 2 =.36 σ 2 K ( ) 2 p l L k k k = =

48 Source Coding Techniques. Huffman Code. 2. Two-path Huffman Code. 3. Lemple-Ziv Code. 4. Shannon Code. 5. Fano Code. 6. Arithmetic Code.

49 Source Coding Techniques 2. Two-path Huffman Code. This method is used when the probability of symbols in the information source is unknown. So we first can estimate this probability by calculating the number of occurrence of the symbols in the given message then we can find the possible Huffman codes. This can be summarized by the following two passes. Pass : Measure the occurrence possibility of each character in the message Pass 2 : Make possible Huffman codes

50 Source Coding Techniques 2. Two-path Huffman Code. Example Consider the input: ABABABABABACADABACADABACADABACAD

51 Source Coding Techniques. Huffman Code. 2. Two-path Huffman Code. 3. Lemple-Ziv Code. 4. Shannon Code. 5. Fano Code. 6. Arithmetic Code.

52 Lempel-Ziv Coding Huffman coding requires knowledge of a probabilistic model of the source This is not necessarily always feasible Lempel-Ziv code is an adaptive coding technique that does not require prior knowledge of symbol probabilities Lempel-Ziv coding is the basis of well-known ZIP for data compression

53 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

54 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

55 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

56 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

57 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

58 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

59 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

60 Lempel-Ziv Coding Example Codebook Index Subsequence Representation Encoding

61 Lempel-Ziv Coding Example Information bits Source encoded bits Codebook Index Subsequence Representation Source Code

62 How Come this is Compression?! The hope is: If the bit sequence is long enough, eventually the fixed length code words will be shorter than the length of subsequences they represent. When applied to English text Lempel-Ziv achieves approximately 55% Huffman coding achieves approximately 43%

H(X,Y) = H(X) + H(Y X)

H(X,Y) = H(X) + H(Y X) Today s Topics Iformatio Theory Mohamed Hamada oftware gieerig ab The Uiversity of Aizu mail: hamada@u-aizu.ac.jp UR: http://www.u-aizu.ac.jp/~hamada tropy review tropy ad Data Compressio Uiquely decodable

More information

Introduction to Source Coding

Introduction to Source Coding Comm. 52: Communication Theory Lecture 7 Introduction to Source Coding - Requirements of source codes - Huffman Code Length Fixed Length Variable Length Source Code Properties Uniquely Decodable allow

More information

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding Comm. 50: Communication Theory Lecture 6 - Introduction to Source Coding Digital Communication Systems Source of Information User of Information Source Encoder Source Decoder Channel Encoder Channel Decoder

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 13: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 22 th, 2015 1 o Source Code Generation Lecture Outlines Source Coding

More information

A Brief Introduction to Information Theory and Lossless Coding

A Brief Introduction to Information Theory and Lossless Coding A Brief Introduction to Information Theory and Lossless Coding 1 INTRODUCTION This document is intended as a guide to students studying 4C8 who have had no prior exposure to information theory. All of

More information

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR

LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 1 LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR 2 STORAGE SPACE Uncompressed graphics, audio, and video data require substantial storage capacity. Storing uncompressed video is not possible

More information

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression # 2 ECE 253a Digital Image Processing Pamela Cosman /4/ Introductory material for image compression Motivation: Low-resolution color image: 52 52 pixels/color, 24 bits/pixel 3/4 MB 3 2 pixels, 24 bits/pixel

More information

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Course Presentation Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Data Compression Motivation Data storage and transmission cost money Use fewest number of

More information

Lecture5: Lossless Compression Techniques

Lecture5: Lossless Compression Techniques Fixed to fixed mapping: we encoded source symbols of fixed length into fixed length code sequences Fixed to variable mapping: we encoded source symbols of fixed length into variable length code sequences

More information

Information Theory and Huffman Coding

Information Theory and Huffman Coding Information Theory and Huffman Coding Consider a typical Digital Communication System: A/D Conversion Sampling and Quantization D/A Conversion Source Encoder Source Decoder bit stream bit stream Channel

More information

Information Theory and Communication Optimal Codes

Information Theory and Communication Optimal Codes Information Theory and Communication Optimal Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/1 Roadmap Examples and Types of Codes Kraft Inequality

More information

Coding for Efficiency

Coding for Efficiency Let s suppose that, over some channel, we want to transmit text containing only 4 symbols, a, b, c, and d. Further, let s suppose they have a probability of occurrence in any block of text we send as follows

More information

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication 1 Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING 1.1 SOURCE CODING Whether a source is analog or digital, a digital communication system is designed to transmit information in digital form.

More information

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains:

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains: The Lecture Contains: The Need for Video Coding Elements of a Video Coding System Elements of Information Theory Symbol Encoding Run-Length Encoding Entropy Encoding file:///d /...Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2040/40_1.htm[12/31/2015

More information

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution 2.1. General Purpose There are many popular general purpose lossless compression techniques, that can be applied to any type of data. 2.1.1. Run Length Encoding Run Length Encoding is a compression technique

More information

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON).

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). 1. Some easy problems. 1.1. Guessing a number. Someone chose a number x between 1 and N. You are allowed to ask questions: Is this number larger

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003 MAS160: Signals, Systems & Information for Media Technology Problem Set 4 DUE: October 20, 2003 Instructors: V. Michael Bove, Jr. and Rosalind Picard T.A. Jim McBride Problem 1: Simple Psychoacoustic Masking

More information

Computing and Communications 2. Information Theory -Channel Capacity

Computing and Communications 2. Information Theory -Channel Capacity 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Channel Capacity Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Communication

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Name: Year /Sem: II / IV UNIT I INFORMATION ENTROPY FUNDAMENTALS PART A (2 MARKS) 1. What is uncertainty? 2. What is prefix coding? 3. State the

More information

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 MIT OpenCourseWare http://ocw.mit.edu MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 For information about citing these materials or our Terms of Use, visit:

More information

Compression. Encryption. Decryption. Decompression. Presentation of Information to client site

Compression. Encryption. Decryption. Decompression. Presentation of Information to client site DOCUMENT Anup Basu Audio Image Video Data Graphics Objectives Compression Encryption Network Communications Decryption Decompression Client site Presentation of Information to client site Multimedia -

More information

The Lempel-Ziv (LZ) lossless compression algorithm was developed by Jacob Ziv (AT&T Bell Labs / Technion Israel) and Abraham Lempel (IBM) in 1978;

The Lempel-Ziv (LZ) lossless compression algorithm was developed by Jacob Ziv (AT&T Bell Labs / Technion Israel) and Abraham Lempel (IBM) in 1978; Georgia Institute of Technology - Georgia Tech Lorraine ECE 6605 Information Theory Lempel-Ziv Lossless Compresion General comments The Lempel-Ziv (LZ) lossless compression algorithm was developed by Jacob

More information

Solutions to Assignment-2 MOOC-Information Theory

Solutions to Assignment-2 MOOC-Information Theory Solutions to Assignment-2 MOOC-Information Theory 1. Which of the following is a prefix-free code? a) 01, 10, 101, 00, 11 b) 0, 11, 01 c) 01, 10, 11, 00 Solution:- The codewords of (a) are not prefix-free

More information

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley - A Greedy Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Greedy Algorithms Greedy Algorithms Build up solutions in small steps Make local decisions Previous decisions are never reconsidered

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 2. Source Coding 1 Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 14: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 25 th, 2015 1 Previous Lecture: Source Code Generation: Lossless

More information

PROBABILITY AND STATISTICS Vol. II - Information Theory and Communication - Tibor Nemetz INFORMATION THEORY AND COMMUNICATION

PROBABILITY AND STATISTICS Vol. II - Information Theory and Communication - Tibor Nemetz INFORMATION THEORY AND COMMUNICATION INFORMATION THEORY AND COMMUNICATION Tibor Nemetz Rényi Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary Keywords: Shannon theory, alphabet, capacity, (transmission) channel, channel

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325 C 745 - Advanced Communication Theory, Spring 2007 Midterm xam Monday, April 23rd, 600-900pm, LAB 325 Overview The exam consists of five problems for 150 points. The points for each part of each problem

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Source Coding 1 Office Hours: BKD 3601-7 Monday 14:00-16:00 Wednesday 14:40-16:00 Noise & Interference Elements

More information

Speech Coding in the Frequency Domain

Speech Coding in the Frequency Domain Speech Coding in the Frequency Domain Speech Processing Advanced Topics Tom Bäckström Aalto University October 215 Introduction The speech production model can be used to efficiently encode speech signals.

More information

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Dr.-Ing. Heiko Schwarz COMM901 Source Coding and Compression Winter Semester

More information

1 This work was partially supported by NSF Grant No. CCR , and by the URI International Engineering Program.

1 This work was partially supported by NSF Grant No. CCR , and by the URI International Engineering Program. Combined Error Correcting and Compressing Codes Extended Summary Thomas Wenisch Peter F. Swaszek Augustus K. Uht 1 University of Rhode Island, Kingston RI Submitted to International Symposium on Information

More information

Lecture 1 Introduction

Lecture 1 Introduction Lecture 1 Introduction I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw September 22, 2015 1 / 46 I-Hsiang Wang IT Lecture 1 Information Theory Information

More information

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix Send SMS s : ONJntuSpeed To 9870807070 To Recieve Jntu Updates Daily On Your Mobile For Free www.strikingsoon.comjntu ONLINE EXMINTIONS [Mid 2 - dc] http://jntuk.strikingsoon.com 1. Two binary random

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pk Pakorn Watanachaturaporn, Wt ht Ph.D. PhD pakorn@live.kmitl.ac.th,

More information

The Need for Data Compression. Data Compression (for Images) -Compressing Graphical Data. Lossy vs Lossless compression

The Need for Data Compression. Data Compression (for Images) -Compressing Graphical Data. Lossy vs Lossless compression The Need for Data Compression Data Compression (for Images) -Compressing Graphical Data Graphical images in bitmap format take a lot of memory e.g. 1024 x 768 pixels x 24 bits-per-pixel = 2.4Mbyte =18,874,368

More information

A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES

A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES Shreya A 1, Ajay B.N 2 M.Tech Scholar Department of Computer Science and Engineering 2 Assitant Professor, Department of Computer Science

More information

CSE 100: BST AVERAGE CASE AND HUFFMAN CODES

CSE 100: BST AVERAGE CASE AND HUFFMAN CODES CSE 100: BST AVERAGE CASE AND HUFFMAN CODES Recap: Average Case Analysis of successful find in a BST N nodes Expected total depth of all BSTs with N nodes Recap: Probability of having i nodes in the left

More information

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided.

B. Tech. (SEM. VI) EXAMINATION, (2) All question early equal make. (3) In ease of numerical problems assume data wherever not provided. " 11111111111111111111111111111111111111111111111111111111111111III *U-3091/8400* Printed Pages : 7 TEC - 601! I i B. Tech. (SEM. VI) EXAMINATION, 2007-08 DIGIT AL COMMUNICATION \ V Time: 3 Hours] [Total

More information

Wednesday, February 1, 2017

Wednesday, February 1, 2017 Wednesday, February 1, 2017 Topics for today Encoding game positions Constructing variable-length codes Huffman codes Encoding Game positions Some programs that play two-player games (e.g., tic-tac-toe,

More information

Chapter 3 LEAST SIGNIFICANT BIT STEGANOGRAPHY TECHNIQUE FOR HIDING COMPRESSED ENCRYPTED DATA USING VARIOUS FILE FORMATS

Chapter 3 LEAST SIGNIFICANT BIT STEGANOGRAPHY TECHNIQUE FOR HIDING COMPRESSED ENCRYPTED DATA USING VARIOUS FILE FORMATS 44 Chapter 3 LEAST SIGNIFICANT BIT STEGANOGRAPHY TECHNIQUE FOR HIDING COMPRESSED ENCRYPTED DATA USING VARIOUS FILE FORMATS 45 CHAPTER 3 Chapter 3: LEAST SIGNIFICANT BIT STEGANOGRAPHY TECHNIQUE FOR HIDING

More information

FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING

FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING Harman Jot, Rupinder Kaur M.Tech, Department of Electronics and Communication, Punjabi University, Patiala, Punjab, India I. INTRODUCTION

More information

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria

Error Control Coding. Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Error Control Coding Aaron Gulliver Dept. of Electrical and Computer Engineering University of Victoria Topics Introduction The Channel Coding Problem Linear Block Codes Cyclic Codes BCH and Reed-Solomon

More information

Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information

Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information 1992 2008 R. C. Gonzalez & R. E. Woods For the image in Fig. 8.1(a): 1992 2008 R. C. Gonzalez & R. E. Woods Measuring

More information

Course Developer: Ranjan Bose, IIT Delhi

Course Developer: Ranjan Bose, IIT Delhi Course Title: Coding Theory Course Developer: Ranjan Bose, IIT Delhi Part I Information Theory and Source Coding 1. Source Coding 1.1. Introduction to Information Theory 1.2. Uncertainty and Information

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : COMMUNICATION THEORY SUB.CODE: EC1252 YEAR : II SEMESTER : IV UNIT I AMPLITUDE MODULATION SYSTEMS

More information

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015.

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015. Monday, February 2, 2015 Topics for today Homework #1 Encoding checkers and chess positions Constructing variable-length codes Huffman codes Homework #1 Is assigned today. Answers due by noon on Monday,

More information

6.450: Principles of Digital Communication 1

6.450: Principles of Digital Communication 1 6.450: Principles of Digital Communication 1 Digital Communication: Enormous and normally rapidly growing industry, roughly comparable in size to the computer industry. Objective: Study those aspects of

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Welcome to 6.004! Course

More information

Tarek M. Sobh and Tarek Alameldin

Tarek M. Sobh and Tarek Alameldin Operator/System Communication : An Optimizing Decision Tool Tarek M. Sobh and Tarek Alameldin Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania,

More information

COURSE MATERIAL Subject Name: Communication Theory UNIT V

COURSE MATERIAL Subject Name: Communication Theory UNIT V NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. - 639114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Communication Theory Subject Code: 080290020 Class/Sem:

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

ECE/OPTI533 Digital Image Processing class notes 288 Dr. Robert A. Schowengerdt 2003

ECE/OPTI533 Digital Image Processing class notes 288 Dr. Robert A. Schowengerdt 2003 Motivation Large amount of data in images Color video: 200Mb/sec Landsat TM multispectral satellite image: 200MB High potential for compression Redundancy (aka correlation) in images spatial, temporal,

More information

Multicasting over Multiple-Access Networks

Multicasting over Multiple-Access Networks ing oding apacity onclusions ing Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley May 9, 2006 EE 228A Outline ing oding apacity onclusions 1 2 3 4 oding 5 apacity

More information

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency

15.Calculate the local oscillator frequency if incoming frequency is F1 and translated carrier frequency DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:COMMUNICATION THEORY YEAR/SEM: II/IV SUBJECT CODE: EC 6402 UNIT I:l (AMPLITUDE MODULATION) PART A 1. Compute the bandwidth of the AMP

More information

Entropy Coding. Outline. Entropy. Definitions. log. A = {a, b, c, d, e}

Entropy Coding. Outline. Entropy. Definitions. log. A = {a, b, c, d, e} Outline efinition of ntroy Three ntroy coding techniques: Huffman coding rithmetic coding Lemel-Ziv coding ntroy oding (taken from the Technion) ntroy ntroy of a set of elements e,,e n with robabilities,

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

Rab Nawaz. Prof. Zhang Wenyi

Rab Nawaz. Prof. Zhang Wenyi Rab Nawaz PhD Scholar (BL16006002) School of Information Science and Technology University of Science and Technology of China, Hefei Email: rabnawaz@mail.ustc.edu.cn Submitted to Prof. Zhang Wenyi wenyizha@ustc.edu.cn

More information

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society Abstract MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING A Public Lecture to the Uganda Mathematics Society F F Tusubira, PhD, MUIPE, MIEE, REng, CEng Mathematical theory and techniques play a vital

More information

SYLLABUS of the course BASIC ELECTRONICS AND DIGITAL SIGNAL PROCESSING. Master in Computer Science, University of Bolzano-Bozen, a.y.

SYLLABUS of the course BASIC ELECTRONICS AND DIGITAL SIGNAL PROCESSING. Master in Computer Science, University of Bolzano-Bozen, a.y. SYLLABUS of the course BASIC ELECTRONICS AND DIGITAL SIGNAL PROCESSING Master in Computer Science, University of Bolzano-Bozen, a.y. 2017-2018 Lecturer: LEONARDO RICCI (last updated on November 27, 2017)

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES

CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES 119 CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES 5.1 INTRODUCTION In this work the peak powers of the OFDM signal is reduced by applying Adaptive Huffman Codes (AHC). First the encoding

More information

Keywords Audio Steganography, Compressive Algorithms, SNR, Capacity, Robustness. (Figure 1: The Steganographic operation) [10]

Keywords Audio Steganography, Compressive Algorithms, SNR, Capacity, Robustness. (Figure 1: The Steganographic operation) [10] Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Audio Steganography

More information

Bell Labs celebrates 50 years of Information Theory

Bell Labs celebrates 50 years of Information Theory 1 Bell Labs celebrates 50 years of Information Theory An Overview of Information Theory Humans are symbol-making creatures. We communicate by symbols -- growls and grunts, hand signals, and drawings painted

More information

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance

Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Error Detection and Correction: Parity Check Code; Bounds Based on Hamming Distance Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin

More information

REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES

REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES 1 Tamanna, 2 Neha Bassan 1 Student- Department of Computer science, Lovely Professional University Phagwara 2 Assistant Professor, Department

More information

Lossless Grayscale Image Compression using Blockwise Entropy Shannon (LBES)

Lossless Grayscale Image Compression using Blockwise Entropy Shannon (LBES) Volume No., July Lossless Grayscale Image Compression using Blockwise ntropy Shannon (LBS) S. Anantha Babu Ph.D. (Research Scholar) & Assistant Professor Department of Computer Science and ngineering V

More information

Image Processing Computer Graphics I Lecture 20. Display Color Models Filters Dithering Image Compression

Image Processing Computer Graphics I Lecture 20. Display Color Models Filters Dithering Image Compression 15-462 Computer Graphics I Lecture 2 Image Processing April 18, 22 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Display Color Models Filters Dithering Image Compression

More information

GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE

GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE Wook-Hyun Jeong and Yo-Sung Ho Kwangju Institute of Science and Technology (K-JIST) Oryong-dong, Buk-gu, Kwangju,

More information

Chapter 6: Memory: Information and Secret Codes. CS105: Great Insights in Computer Science

Chapter 6: Memory: Information and Secret Codes. CS105: Great Insights in Computer Science Chapter 6: Memory: Information and Secret Codes CS105: Great Insights in Computer Science Overview When we decide how to represent something in bits, there are some competing interests: easily manipulated/processed

More information

Channel Concepts CS 571 Fall Kenneth L. Calvert

Channel Concepts CS 571 Fall Kenneth L. Calvert Channel Concepts CS 571 Fall 2006 2006 Kenneth L. Calvert What is a Channel? Channel: a means of transmitting information A means of communication or expression Webster s NCD Aside: What is information...?

More information

Lossless Image Compression Techniques Comparative Study

Lossless Image Compression Techniques Comparative Study Lossless Image Compression Techniques Comparative Study Walaa Z. Wahba 1, Ashraf Y. A. Maghari 2 1M.Sc student, Faculty of Information Technology, Islamic university of Gaza, Gaza, Palestine 2Assistant

More information

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 1 Information Transmission Chapter 5, Block codes FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 2 Methods of channel coding For channel coding (error correction) we have two main classes of codes,

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 1: Introduction & Overview Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Information Theory 1 / 26 Outline 1 Course Information 2 Course Overview

More information

Information Theory: the Day after Yesterday

Information Theory: the Day after Yesterday : the Day after Yesterday Department of Electrical Engineering and Computer Science Chicago s Shannon Centennial Event September 23, 2016 : the Day after Yesterday IT today Outline The birth of information

More information

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island City University of New York--College of Staten Island Masters of Engineering in Electrical Engineering Course Syllabi (2017-2018) Required Core Courses ELE 600/ MTH 6XX Probability Theory and Stochastic

More information

Scheduling in omnidirectional relay wireless networks

Scheduling in omnidirectional relay wireless networks Scheduling in omnidirectional relay wireless networks by Shuning Wang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science

More information

Computer Science 1001.py. Lecture 25 : Intro to Error Correction and Detection Codes

Computer Science 1001.py. Lecture 25 : Intro to Error Correction and Detection Codes Computer Science 1001.py Lecture 25 : Intro to Error Correction and Detection Codes Instructors: Daniel Deutch, Amiram Yehudai Teaching Assistants: Michal Kleinbort, Amir Rubinstein School of Computer

More information

SHANNON S source channel separation theorem states

SHANNON S source channel separation theorem states IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009 3927 Source Channel Coding for Correlated Sources Over Multiuser Channels Deniz Gündüz, Member, IEEE, Elza Erkip, Senior Member,

More information

Background Dirty Paper Coding Codeword Binning Code construction Remaining problems. Information Hiding. Phil Regalia

Background Dirty Paper Coding Codeword Binning Code construction Remaining problems. Information Hiding. Phil Regalia Information Hiding Phil Regalia Department of Electrical Engineering and Computer Science Catholic University of America Washington, DC 20064 regalia@cua.edu Baltimore IEEE Signal Processing Society Chapter,

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Information is stored and exchanged in the form of streams of characters from some alphabet. An alphabet is a finite set of symbols, such as the lower-case Roman alphabet {a,b,c,,z}.

More information

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT

BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering. Cohorts: BCNS/17A/FT & BEE/16B/FT BSc (Hons) Computer Science with Network Security, BEng (Hons) Electronic Engineering Cohorts: BCNS/17A/FT & BEE/16B/FT Examinations for 2016-2017 Semester 2 & 2017 Semester 1 Resit Examinations for BEE/12/FT

More information

Fundamentals of Digital Communications and Data Transmission

Fundamentals of Digital Communications and Data Transmission Fundamentals of Digital Communications and Data Transmission 29 th October 2008 Abdullah Al-Meshal Overview Introduction Communication systems Digital communication system Importance of Digital transmission

More information

Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor

Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor A Study of Image Compression Techniques Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor Department of Computer Science & Engineering, BPS Mahila Vishvavidyalya, Sonipat kulriapooja@gmail.com,

More information

TCET3202 Analog and digital Communications II

TCET3202 Analog and digital Communications II NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED COURSE Electrical and Telecommunications Engineering Technology TCET3202

More information

Arithmetic Compression on SPIHT Encoded Images

Arithmetic Compression on SPIHT Encoded Images Arithmetic Compression on SPIHT Encoded Images Todd Owen, Scott Hauck {towen, hauck}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2002-0007

More information

6.02 Introduction to EECS II Spring Quiz 1

6.02 Introduction to EECS II Spring Quiz 1 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.02 Introduction to EECS II Spring 2011 Quiz 1 Name SOLUTIONS Score Please

More information

Byte = More common: 8 bits = 1 byte Abbreviation:

Byte = More common: 8 bits = 1 byte Abbreviation: Text, Images, Video and Sound ASCII-7 In the early days, a was used, with of 0 s and 1 s, enough for a typical keyboard. The standard was developed by (American Standard Code for Information Interchange)

More information

Engineering Scope and Sequence Student Outcomes (Objectives Skills/Verbs)

Engineering Scope and Sequence Student Outcomes (Objectives Skills/Verbs) The World of Modern Engineering What do Scientists and Engineers do? What is the difference between analog and digital devices? How do Engineers organize their designs? Introduction to LabView software

More information

Chapter 1 Coding for Reliable Digital Transmission and Storage

Chapter 1 Coding for Reliable Digital Transmission and Storage Wireless Information Transmission System Lab. Chapter 1 Coding for Reliable Digital Transmission and Storage Institute of Communications Engineering National Sun Yat-sen University 1.1 Introduction A major

More information

The ternary alphabet is used by alternate mark inversion modulation; successive ones in data are represented by alternating ±1.

The ternary alphabet is used by alternate mark inversion modulation; successive ones in data are represented by alternating ±1. Alphabets EE 387, Notes 2, Handout #3 Definition: An alphabet is a discrete (usually finite) set of symbols. Examples: B = {0,1} is the binary alphabet T = { 1,0,+1} is the ternary alphabet X = {00,01,...,FF}

More information

EENG 444 / ENAS 944 Digital Communication Systems

EENG 444 / ENAS 944 Digital Communication Systems EENG 444 / ENAS 944 Digital Communication Systems Introduction!! Wenjun Hu Communication Systems What s the first thing that comes to your mind? Communication Systems What s the first thing that comes

More information

UNIT 7C Data Representation: Images and Sound

UNIT 7C Data Representation: Images and Sound UNIT 7C Data Representation: Images and Sound 1 Pixels An image is stored in a computer as a sequence of pixels, picture elements. 2 1 Resolution The resolution of an image is the number of pixels used

More information

Error Detection and Correction

Error Detection and Correction . Error Detection and Companies, 27 CHAPTER Error Detection and Networks must be able to transfer data from one device to another with acceptable accuracy. For most applications, a system must guarantee

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, April 28, 26 Midterm Solutions (Prepared by TA Shouvik Ganguly) There are 3 problems, each problem with multiple parts, each part worth points. Your

More information

A Hybrid Technique for Image Compression

A Hybrid Technique for Image Compression Australian Journal of Basic and Applied Sciences, 5(7): 32-44, 2011 ISSN 1991-8178 A Hybrid Technique for Image Compression Hazem (Moh'd Said) Abdel Majid Hatamleh Computer DepartmentUniversity of Al-Balqa

More information

5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010 5984 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010 Interference Channels With Correlated Receiver Side Information Nan Liu, Member, IEEE, Deniz Gündüz, Member, IEEE, Andrea J.

More information

Introduction to Error Control Coding

Introduction to Error Control Coding Introduction to Error Control Coding 1 Content 1. What Error Control Coding Is For 2. How Coding Can Be Achieved 3. Types of Coding 4. Types of Errors & Channels 5. Types of Codes 6. Types of Error Control

More information