Size: px
Start display at page:

Download ""

Transcription

1 Jayakrishnan Chandrappan, Zhang Jing, Ramkumar V Mohan, Philbert Oliver Gomez, Than Aye Aung, Xiao Yongfei, Pamidighantam V Ramana, John Lau Hon Shing, Dim Lee Kwong, Cost effective optical coupling for polymer optical fiber communication, Photonics Packaging, Integration, and Interconnects VIII, edited by Alexei L. Glebov, Ray T. Chen Proc. of SPIE Vol. 6899, 68991A, (2008) Copyright 2009 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

2 Cost effective optical coupling for polymer optical fiber communication Jayakrishnan Chandrappan 1, Zhang Jing 1, Ramkumar V Mohan 2, Philbert Oliver Gomez 3, Than Aye Aung 4, Xiao Yongfei 5, Pamidighantam V Ramana 1, John Lau Hon Shing 1, Dim Lee Kwong 1 1 INSTITUTE OF MICROELECTRONICS, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Science Park II, Singapore jayac@ime.a-star.edu.sg 2 Electronics and Communication Engineering, National University, Singapore 3 School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 4 School of Engineering, Ngee Ann Polytechnic, Singapore 5 School of electrical engineering, National University, Singapore ABSTRACT Polymer Optical Fiber (POF) optical modules are gaining momentum due to their applications in short distance communications. POFs offer more flexibility for plug and play applications and provide cost advantages. They also offer significant weight advantage in automotive and avionic networks. One of the most interesting field of application is home networking. Low cost optical components are required, since cost is a major concern in local and home networks. In this publication, a fast and easy to install, low cost solution for efficient light coupling in and out of Step Index- POF is explored. The efficient coupling of light from a large core POF to a small area detector is the major challenge faced. We simulated direct coupling, lens coupling and bend losses for step index POF using ZEMAX R optical simulation software. Simulations show that a lensed fiber tip particularly at the receiver side improves the coupling efficiency. The design is optimized for 85% coupling efficiency and explored the low cost fabrication method to implement it in the system level. The two methods followed for lens fabrication is described here in detail. The fabricated fiber lenses are characterized using a beam analyzer. The fabrication process was reiterated to optimize the lens performance. It is observed that, the fabricated lenses converge the POF output spot size by one fourth, there by enabling a higher coupling efficiency. This low cost method proves to be highly efficient and effective optical coupling scheme in POF communications. Key words: Polymer Optical Fiber, Lensed fiber, Optical coupling, Simulation, Detector, Fabrication, Characterization 1. INTRODUCTION POFs are large core multimode optical fibers with very high numerical apertures. They have every advantage of optical fibers while maintaining the flexibility of copper cables in installation. POFs find exciting applications as low cost alternative in home networks, automotives and short reach applications 1. The lower connection costs and other low cost factors made large core multimode POFs attractive over single mode fibers for short distance communications. The major challenges for POF networks are low cost components, their packaging and the interfacing with existing net works. At present, both Light emitting diodes (LEDs) and vertical cavity surface emitting lasers (VCSEL) are being used as the light source. They give the cost advantage over laser diode as the light source. Since POFs are large core diameter fibers, the optical coupling is not an issue at the transmitter side. But the large core diameters always results in severe power coupling losses at the receiver side. The coupling losses lead to the reduction in maximum link distance achievable. Realization of additional coupling elements brings in process complexities at an added cost. This necessitates Photonics Packaging, Integration, and Interconnects VIII, edited by Alexei L. Glebov, Ray T. Chen Proc. of SPIE Vol. 6899, 68991A, (2008) X/08/$18 doi: / Proc. of SPIE Vol A-1

3 a cost effective coupling method along with ease of installation, fiber plug-in modules, to keep POFs attractive in the market. 2. COST EFFECTIVE COUPLING METHODS Various methods are being adopted for effective coupling of light from the transmitter to the fiber and fiber to the detector. The conventional connector less transceiver packages for POF communication use an aspherical lens 5 or ball lens as an additional coupling element. The drawbacks of an external passive coupling element like a ball lens or an aspherical lens is that additional structures are required in the package to house these coupling elements. Also the integration of these components requires precision assembly which comes at an additional cost of manpower and time. Moreover it becomes necessary to study the alignment requirements of the standalone optical coupling elements at the transmitter and receiver side in great detail. Hence the total cost of the system will be increased by the cost of additional coupling components, the cost necessary to model and fabricate the substrate to assemble these components. At the receiver side of the POF, coupling takes place from a large core to a small area photo detector. If precision subassemblies and precise component placements are not employed, optical coupling with an external element becomes a tedious task. The requirement of an additional coupling element can be avoided by the use of lensed fibers. The conventional lensed fiber fabrication methods include fiber grinding, wet etching and hot melting 4. Since the core diameter of the plastic fiber is very high compared to its counterparts, it is easier to fabricate the hemispherical lenses at the tip. The manufacturing cost is lower since the fabrication is simple and doesn t require highly sophisticated equipments. This also gives the freedom to re-engineer the lens formed as and when it is required. The optical design and the fabrication methods followed are discussed here in detail. 3. OPTICAL COUPLING: SIMULATION AND ANALYSIS We have simulated the parameters of MH4001 Esaka fiber from Mitsubishi Rayon in Zemax software. This particular POF has got a core diameter of 980 µm, cladding diameter of 1000µm and numerical aperture of 0.3. The core material is made up of Poly Methyl MethAcrylate (PMMA) having an index of refraction Simulation analysis is done for direct coupling, light coupling with an external lens and lensed fiber. The direct coupling simulation studies with the bare fiber shows that the power output coupled to a 50µm detector radius is only 9.38%, which reflects the need for a coupling system for the fiber. * POP WITHOUT COUPLING POP WITHOUT COUPLING GEOMETRIC IMAGE ANALYSIS SO LAYOUT SEVERAL NONSEOUENTIAL COMPONENTS FRI OCT le 2D07 CONPICUEATION I OP I SEAL NOGeuENrrFL COMPONSITO FPI OCT L9 SN? gap i CL1NErG. FS-O POECrIGN: H.EEeD.EEEND PEG EmICIENCY: 9.SELW. total FQEA: 9.3OlE-H1 kflo gqjwanna SLFflCE; 5 CONPICUEATION I OP I Fig 1. Direct coupling of POF with source and detector Proc. of SPIE Vol A-2

4 At this juncture, the coupling can be improved by two ways: either by an external discrete lens placed between the fiber and source/detector or by reshaping the flat fiber tip to a lens. A comprehensive analysis to improve the coupling efficiency with a discrete lens system and lensed fiber system yielded the results below. The optical coupling simulations of POF with an external spherical ball lens are tried initially. Since the diameter of the POF is large, a large ball lens is required for better light coupling to the detector. But as the size of the coupling lens increases, the package dimension also becomes bigger. Various dimensions of ball lenses are simulated and a trade off between the package size and coupling efficiencies are reached. Based on these studies an optimum value of 2mm radius lens is simulated and it yielded a power output coupling efficiency of 37.45%. This shows that a discrete large ball lens would give better coupling efficiency in comparison to the bare fiber. However this coupling system will increase the dimensions of the transceiver module as the ball lens radius is large compared to the dimensions of the fiber, which is undesirable. EXTERNft_ ENLL LENS OJUPLING RNOILE 2MM EXTERNAL EALL LENS RADIUS 2MM IMAGE ANALYSIS SO LNYOUT SEVERAL NEASESUENTINL COMFONBTS FE' OCT SE 2ENS7 CONPIOUEATION I OP I SEAL NOGe3uENrrFL COMPONSITO FPI OCT 36 2N7 gap 1.AAA CL1NPr. FS-O POOCrIGN: H.PLeD.PPED PEG EmICIENCY: 37. HE3C. total FQEA L kflo lelqj lau! S00FACE; 7 CDNPICUEATIDN I DE I Fig 2. POF coupling using an external ball lens of radius 2mm On the other hand, a discrete ball lens of radius 0.48mm is a better fit since it will not increase the optical sub assembly size required to hold the fiber-lens system. Conversely a small radius lens will focus the beam to a nearer point at the expense of power output while a large radius lens will focus at a longer distance from the lens and maintain the power output to a high value. This can be observed with the fall in power to 18.81% in comparison to the larger lens radius coupling efficiency of 37.45%. Moreover an aspherical lens can be used instead of a large ball lens to improve coupling efficiency. Then it becomes necessary to concentrate more on the alignment and orientation of the lens in the module that brings in additional cost and effort for the sake of increasing the power output. S PEe WITH OISCETE SALL LE ZEMHX SIflJLATION FDA WITH DISCRETE EALL LENS GEOMETRIC EEAM ANALYSIS SO LAYOUT SEVERAL NEASESUENTIAL EOMFONBTS EEl OCT l 2ENS7 CONPIOUPATION I OP I SEAL NOGeuENrrFL COMPONSITO FPI OCT LA gap 1.OAPP AcL1NErG. FS-O POECrIGN: H.EEeD.EEEAD PEG EmICIENCY: JO.HLLC. total FQEA: L.EOlE-HL kflo SLFflCE; 7 Fig 3. POF coupling using an external ball lens of radius 0.48mm flelqjlau!a CONFICUEATION I OF I Proc. of SPIE Vol A-3

5 The following analysis discusses the proposed coupling type namely the hemispherical structure integrated to either side of the fiber. Here a plastic fiber of 0.49mm radius is simulated with hemispherical coupling ball lenses attached to both end of the fiber. The refractive indices of the fiber core and the hemispheres are made identical. Optimization of the simulation was carried out to find the optimal distance between the lenses and the fiber ends which would maximize the power output. The beam focusing distance from the lens at the receiver side is found to be 0.7mm. Also, a dummy surface with a circular aperture of 50µm radius is inserted just before the image surface. This is carried out in order to simulate the power incident on the surface of the photo detector of radius 50µm. The simulation result shows an increased power coupling efficiency of 85%. The power is concentrated in the 20 µm radius and hence shifting of the fiber by 15 µm offset from the centre will not affect the coupling efficiency of the system. Since the POF diameter being inherently large, the hemisphere s radius is also large, thereby improving the spatial resolution of the image. Besides this, the whole system is spherically symmetric. This eliminates the need for orientation unlike in the case of an aspherical lens. PMMA HEMISPHERE ZEMAX SIMULATION FMMA HEMISFHER GAD ETRIC tea ANALYSIS SO LAYOUT SEVERAL NONSEOUENTIAL COMPONENTS FRI OCT le 2E07 CONPICUEATION I OP I SEAL NAeeuENrrFL COMPONSITO FPI OCT L9 gap FS-O POECrIGN: H.PLeD.PPLA PEG EmICIENCY: OO.67LC. total FQEA: E.E6?E-HL katto SLFflCE; 7 Dnm!MaN! CDNPICUEATIDN I DE I Fig 4. POF coupling using hemispherical lenses formed at the tip The detailed analysis of various coupling schemes reveals that to improve the coupling efficiency with a discrete lens, the lens size has to be considerably bigger. But this greater coupling efficiency comes at the cost of a bigger transceiver package dimension and assembly costs. To maintain the package dimensions to minimum, lens size has to be the same as that of fiber where in the coupling efficiency drops significantly. On the other hand with a hemispherical lensed fiber tip both the higher coupling efficiency and compact package size can be achieved. 4. FABRICATION The two simple techniques followed for the fabrication of lensed tip POF are:- (a) Lens formation at the fiber end face by pressing the end face against a hot lens forming mold 2 (b) Lens formation by dipping the polished fiber tip in an optically transparent organic liquid 3 The process of fabrication of a lens by hot melting method onto a fiber of plastic or glass origins would include the mechanical process of injection molding or compression. The physical property of either a PMMA or perfluorinated polymer fiber and their lower fabrication temperatures have made the fabrication of lenses onto the fiber much easier. Hot plate method requires the melting the fiber tip at its material melting point temperature and molding it with a suitable cavity to form the lens. Based on the simulation results we fabricated a die in steel material by precisely machining the requisite lens radius of curvatures. Apart from this the set up requires a hot plate to heat the mold and an arrangement to hold the POF vertically to the cavity. This simple fabrication setup and highly repeatable process makes the fabrication method cheap and attractive. Proc. of SPIE Vol A-4

6 Fig.5. Steel cylinder with mechanical mold The steel mold is heated to the required temperature initially. The temperature from the top of the mold is cross checked with the help of a thermo-couple to reaffirm the required temperature level. Once the temperature reaches an approximate level of 150C~160C, the fiber is lowered towards the mold and allowed to take the shape of the mold. The fiber is subsequently allowed to cool to normal room temperature for 3-4 minutes. The processed fiber under microscopic view shows the formation of a clear lens at the tip. Fig. 6. Lens tip POF with Unpolished edges Fig.7. Lens tip POF with polished edges During the fabrication, it is observed that the entire fiber area is touching the cylindrical mold surface. This leads to the melting of POF edges and creates unwanted curvatures, thereby reducing the effect of the lens. These extended portions are further polished down to give the perfect shape. A new mold with wider aperture is being considered to get rid of these problems. Another concern is that, if the molded portions are not allowed to cool down properly, instead of a perfect smooth spherical surface, a lot of fiber hairs are being formed. This reduces the lensing effect and further polishing is required to make the surface perfect. The polymer dip method involves the formation of a spherical convex contour at the end face of POF by immersing the tip in an organic solvent containing an optically transparent material. Here the fiber tip is polished initially by mechanical polishing. Once the polishing is done, the fiber ends are cleaned and dipped in to the polymer liquid. Then the fiber is pulled out and the liquid is allowed to take a convex lens shape under surface tension. The shape of the lens formed depends on the viscosity of the polymer and the time given to settle down. Once the required shape is reached the fiber tip is irradiated with UV light to make a proper adhesion. Many experiments have been carried out to optimize the required profile by using various viscous liquids and variable time for settling. The lens formed is as shown in the figure 9. Proc. of SPIE Vol A-5

7 Fig.8. Hemispherical lens formed by polymer dipping The characterizations of these lenses are being carried out to assess the lensing effect and their impact on coupling efficiency. Initial trials show a significant spot size reduction using these lensed fiber tips. Fabrication trials are in progress to optimize the lens performance. 5. CONCLUSION We have analyzed the various possible optical coupling schemes by simulations for POF communication. It is realized that POF with a lensed tip is a cost effective coupling method for coupling light from the transmitter to the POF and from the POF to the photodiode. We have adopted low cost fabrication methods for realizing the lensed POF. In this coupling method, the hemispherical lens fabricated to the fiber tip makes the system simple and efficient. This eliminates precision subassembly and alignment, hence lowers the manufacturing cost. In addition to this, it is seen that reflections and scattering is greatly reduced at transition surfaces in the hemispherical model since the ball lens and the fiber are of precisely the same material. Since POF has large core radius, this hemispherical addendum will also have greater dimensions which will help to collect and focus light effectively and with ease of manufacturability. The device will be more mechanically stable, less prone to shock and vibrations as external components are minimized, thereby saving cost. ACKNOWLEDGEMENTS This work was supported by the Science and Engineering Research Council (SERC) of A*STAR (Agency for Science, Technology and Research), Singapore. REFERENCES 1). S. Junger, W. Tschekalinskij, N. Weber, Multimedia and multiservice systems for home, office and industrial networks, Asia-Pacific Optical and Wireless Communications Conference 2003, Wuhan, China, ). Y.Ohtsuka and Y.Hatanaka, Preparation of light focusing plastic fiber by heat drawing process, Appl.Phys.Lett vol 29, no. 11,pp , Dec ). K. L. Mittal, Kang-wook Lee, Polymer Surfaces and Interfaces: Characterization, Modification and Application VSP, Science ISBN: , July ). Yu-Kuan Lu, Ying-Chien Tsai, Yu-Da Liu, Szu-Ming Yeh, Chi-Chung Lin, and Wood-Hi Cheng Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes Optics Express, Vol. 15, Issue 4, pp ). Fujimoto, N.; Rokugawa, H.; Watanabe, H.; Ishizuka, A.; Sukegawa, T, Photonic access connector: a compact, gigabit optical link for plastic optical fiber ECOC Sept. 1996, Volume 2, Page(s): Proc. of SPIE Vol A-6

Copyright 2009 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES. Such permission of the IEEE does not in any way

Copyright 2009 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES. Such permission of the IEEE does not in any way Copyright 2009 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Institute of Microelectronics

More information

Pamidighantam V Ramana, Li Jing, Jayakrishnan Chandrappan, Lim Teck Guan, Zhang Jing, John Lau Hon Shing, Dim Lee Kwong, Optical design of a miniature semi-integrated tunable laser on a Silicon Optical

More information

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide 4-Channel Optical Parallel Transceiver Using 3-D Polymer Waveguide 1 Description Fujitsu Component Limited, in cooperation with Fujitsu Laboratories Ltd., has developed a new bi-directional 4-channel optical

More information

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE Chih-Yuan Chang and Yi-Min Hsieh and Xuan-Hao Hsu Department of Mold and Die Engineering, National

More information

Photonic device package design, assembly and encapsulation.

Photonic device package design, assembly and encapsulation. Photonic device package design, assembly and encapsulation. Abstract. A.Bos, E. Boschman Advanced Packaging Center. Duiven, The Netherlands Photonic devices like Optical transceivers, Solar cells, LED

More information

The Beam Characteristics of High Power Diode Laser Stack

The Beam Characteristics of High Power Diode Laser Stack IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Beam Characteristics of High Power Diode Laser Stack To cite this article: Yuanyuan Gu et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS

A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS Chih-Yuan Chang and Po-Cheng Chen Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences,

More information

Fiber Optic Communications Communication Systems

Fiber Optic Communications Communication Systems INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

Aspheric Lenses. Contact us for a Stock or Custom Quote Today! Edmund Optics BROCHURE

Aspheric Lenses. Contact us for a Stock or Custom Quote Today!   Edmund Optics BROCHURE Edmund Optics BROCHURE Aspheric Lenses products & capabilities Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE: +44 (0) 1904 788600 ASIA: +65 6273 6644 JAPAN: +81-3-3944-6210

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Mark Woolley, Wesley Brown, and Dr. Jae Choi Avaya Inc. 1300 W 120 th Avenue Westminster, CO 80234 Abstract:

More information

Design of a light-guide used for the real-time monitoring of LCD-displays

Design of a light-guide used for the real-time monitoring of LCD-displays Design of a light-guide used for the real-time monitoring of LCD-displays W. Meulebroeck *a, Y. Meuret a, C. Ruwisch a, T. Kimpe b, P. Vandenberghe b, H. Thienpont a a Vrije Universiteit Brussel, Dept.

More information

Lecture 22 Optical MEMS (4)

Lecture 22 Optical MEMS (4) EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Lecture 22 Optical MEMS (4) Agenda: Refractive Optical Elements Microlenses GRIN Lenses Microprisms Reference: S. Sinzinger and J. Jahns,

More information

Copyright 2000 Society of Photo Instrumentation Engineers.

Copyright 2000 Society of Photo Instrumentation Engineers. Copyright 2000 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 4043 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 39 Laboratory Experiment - 1 Let us now conduct some experiments

More information

Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams

Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams - 1 - Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams Alexander Laskin a, Vadim Laskin b a MolTech GmbH, Rudower Chaussee 29-31, 12489

More information

Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr.

Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr. Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr. Introduction Chapter 4 of Opto-Mechanical Systems Design by Paul R. Yoder, Jr. is an introduction

More information

Tolerancing microlenses using ZEMAX

Tolerancing microlenses using ZEMAX Tolerancing microlenses using ZEMAX Andrew Stockham, John G. Smith MEMS Optical *, Inc., 05 Import Circle, Huntsville, AL, USA 35806 ABSTRACT This paper demonstrates a new tolerancing technique that allows

More information

Design of null lenses for testing of elliptical surfaces

Design of null lenses for testing of elliptical surfaces Design of null lenses for testing of elliptical surfaces Yeon Soo Kim, Byoung Yoon Kim, and Yun Woo Lee Null lenses are designed for testing the oblate elliptical surface that is the third mirror of the

More information

Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane

Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane Xiaohui Lin a, Xinyuan Dou a, Alan X. Wang b and Ray T. Chen 1,*, Fellow, IEEE a Department of Electrical

More information

Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding

Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding From the SelectedWorks of Fang-Tzu Chuang Summer June 22, 2006 Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding Fang-Tzu Chuang Available at: https://works.bepress.com/ft_chuang/4/

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

PROCEEDINGS OF SPIE. Automated asphere centration testing with AspheroCheck UP

PROCEEDINGS OF SPIE. Automated asphere centration testing with AspheroCheck UP PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Automated asphere centration testing with AspheroCheck UP F. Hahne, P. Langehanenberg F. Hahne, P. Langehanenberg, "Automated asphere

More information

FIBER OPTICS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

FIBER OPTICS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam FIBER OPTICS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the propagation of light through optical

More information

University of Arizona College of Optical Sciences

University of Arizona College of Optical Sciences University of Arizona College of Optical Sciences Name: Nachiket Kulkarni Course: OPTI521 Topic Plastic Injection Molding Submitted to Prof. J. Burge Date 1. Introduction In daily life, we come across

More information

METAL-BASED 1 2 AND 1 4 ASYMMETRIC PLASTIC OPTICAL FIBER COUPLERS FOR OPTICAL CODE GENERATING DEVICES

METAL-BASED 1 2 AND 1 4 ASYMMETRIC PLASTIC OPTICAL FIBER COUPLERS FOR OPTICAL CODE GENERATING DEVICES Progress In Electromagnetics Research, PIER 101, 1 16, 2010 METAL-BASED 1 2 AND 1 4 ASYMMETRIC PLASTIC OPTICAL FIBER COUPLERS FOR OPTICAL CODE GENERATING DEVICES A. A. Ehsan and S. Shaari Institute of

More information

2006 International Students and Young Scientists Workshop Photonics and Microsystems. Demultiplexers.

2006 International Students and Young Scientists Workshop Photonics and Microsystems. Demultiplexers. Realization of an Economical Polymer Optical Fiber Demultiplexer M. Haupt 1), C. Reinboth 2) and U. H. P. Fischer 1) 1) Harz University of Applied Studies and Research Friedrichstraße 57-59, 38855 Wernigerode,

More information

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Daisuke Shimura Kyoko Kotani Hiroyuki Takahashi Hideaki Okayama Hiroki Yaegashi Due to the proliferation of broadband services

More information

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining)

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) The Go!Foton Interconnect (Go!Foton FSSC) is an in-fiber, spot size converting interconnect for convenient

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

Omni-directional Free Space Optical Laser Communication MERIT Kenneth Tukei. University of Maryland, College Park. Maryland Optics Group

Omni-directional Free Space Optical Laser Communication MERIT Kenneth Tukei. University of Maryland, College Park. Maryland Optics Group Omni-directional Free Space Optical Laser Communication MERIT 2007 Kenneth Tukei University of Maryland, College Park Dr. Christopher Davis Faculty Advisor Navik Agrawal Graduate Student Advisor Maryland

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Soft-lithography-based Inter-chip Optical Interconnects

Soft-lithography-based Inter-chip Optical Interconnects PIERS ONLINE, VOL. 4, NO. 8, 2008 871 Soft-lithography-based Inter-chip Optical Interconnects Wei Ni 1, Rubing Shao 1, Jing Wu 2, and X. Wu 1 1 State Key Laboratory of Modern Optical Instrumentation, Department

More information

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS Optics and Photonics Letters Vol. 4, No. 2 (2011) 75 81 c World Scientific Publishing Company DOI: 10.1142/S1793528811000226 UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS ANDREW

More information

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding AKL`12 9th May 2012 Dr. Daniel Vogler Page 1 Motivation: Quality and flexibility diffractive spot shaping

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

EUV Plasma Source with IR Power Recycling

EUV Plasma Source with IR Power Recycling 1 EUV Plasma Source with IR Power Recycling Kenneth C. Johnson kjinnovation@earthlink.net 1/6/2016 (first revision) Abstract Laser power requirements for an EUV laser-produced plasma source can be reduced

More information

Application Note 5342

Application Note 5342 General Information for Avago SFH series Plastic Fiber Components (PFC) Application Note 5342 Introduction Optical communications offer important advantages over electrical transmission links. The following

More information

Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process. R. P. Rocha, J. P. Carmo, and J. H.

Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process. R. P. Rocha, J. P. Carmo, and J. H. Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process R. P. Rocha, J. P. Carmo, and J. H. Correia Department of Industrial Electronics, University of Minho, Campus

More information

Understanding Optical Specifications

Understanding Optical Specifications Understanding Optical Specifications Optics can be found virtually everywhere, from fiber optic couplings to machine vision imaging devices to cutting-edge biometric iris identification systems. Despite

More information

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Supplementary Information for Focusing and Extraction of Light mediated by Bloch Surface Waves Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Emanuele Enrico, Fabrizio Giorgis,

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Study of Circular Bends in Multimode Polymer Optical Fiber Couplers Fabrication Using Lapping Technique

Study of Circular Bends in Multimode Polymer Optical Fiber Couplers Fabrication Using Lapping Technique Study of Circular Bends in Multimode Polymer Optical Fiber Couplers Fabrication Using Lapping Technique L.S.Supian* 1,2, Mohd Syuhaimi Ab-Rahman 1, Norhana Arsad 1, Harry Ramza 1 1 Department of Electrical,

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

Injection moulding. Introduction. Typical characteristics of injection moulded parts

Injection moulding. Introduction. Typical characteristics of injection moulded parts Injection moulding Introduction Injection molding is generally used to produce thermoplastic polymers. It consists of heating of thermo plastic materials until it melts and then injecting into the steel

More information

ASPHERIC LENSES FOR OPTICS AND PHOTONICS

ASPHERIC LENSES FOR OPTICS AND PHOTONICS ASPHERIC LENSES FOR OPTICS AND PHOTONICS Products for Laser Guides, Measurement Systems, Metrology & Bio Medical Geltech Molded Glass Aspheres Infrared Optics Fiber Collimators GRADIUM Lenses OPTICAL TECHNOLOGIES

More information

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. The

More information

COLLIMATORS AND FOCUSERS RECEPTACLE STYLE

COLLIMATORS AND FOCUSERS RECEPTACLE STYLE COLLIMATORS AND FOCUSERS RECEPTACLE STYLE FEATURES: High power handling Rugged and compact design Low insertion loss Wide wavelength range 200-2100 nm Wide range of beam diameters GRIN, aspheric, achromatic,

More information

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens George Curatu a, Brent Binkley a, David Tinch a, and Costin Curatu b a LightPath Technologies, 2603

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens Lecture Notes 10 Image Sensor Optics Imaging optics Space-invariant model Space-varying model Pixel optics Transmission Vignetting Microlens EE 392B: Image Sensor Optics 10-1 Image Sensor Optics Microlens

More information

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

More information

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P.448-450) Curved Lenses We see the world through lenses even if we do not wear glasses or contacts. We all have natural lenses in

More information

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Bidirectional Optical Data Transmission 77 Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Martin Stach and Alexander Kern We report on the fabrication and

More information

Parallel Mode Confocal System for Wafer Bump Inspection

Parallel Mode Confocal System for Wafer Bump Inspection Parallel Mode Confocal System for Wafer Bump Inspection ECEN5616 Class Project 1 Gao Wenliang wen-liang_gao@agilent.com 1. Introduction In this paper, A parallel-mode High-speed Line-scanning confocal

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305 Alexander Laskin, Vadim Laskin AdlOptica Optical Systems GmbH, Rudower Chaussee 29, 12489 Berlin,

More information

Optimization of Process Parameters to Achieve Nano Level Surface Quality on Polycarbonate

Optimization of Process Parameters to Achieve Nano Level Surface Quality on Polycarbonate Optimization of Process Parameters to Achieve Nano Level Surface Quality on Polycarbonate Neha Khatri CSIR-Central Scientific Instruments Organisation Chandigarh India, 160030 Vinod Mishra CSIR-Central

More information

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 563 568 LANE 2012 Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Kristian Cvecek a,b,, Isamu

More information

Practice Problems (Geometrical Optics)

Practice Problems (Geometrical Optics) 1 Practice Problems (Geometrical Optics) 1. A convex glass lens (refractive index = 3/2) has a focal length of 8 cm when placed in air. What is the focal length of the lens when it is immersed in water

More information

Application Note AN-1011

Application Note AN-1011 AN-1011 Board Mounting Application Note for 0.800mm Pitch Devices For part numbers IRF6100, IRF6100PBF, IR130CSP, IR130CSPPBF, IR140CSP, IR140CSPPBF, IR1H40CSP, IR1H40CSPPBF By Hazel Schofield and Philip

More information

Testing an off-axis parabola with a CGH and a spherical mirror as null lens

Testing an off-axis parabola with a CGH and a spherical mirror as null lens Testing an off-axis parabola with a CGH and a spherical mirror as null lens Chunyu Zhao a, Rene Zehnder a, James H. Burge a, Hubert M. Martin a,b a College of Optical Sciences, University of Arizona 1630

More information

Geltech Aspheric Lenses

Geltech Aspheric Lenses High quality optical glass lenses Custom designs available Numerical aperture up to 0.83 Diameters from 0.250 mm to 25.0 mm Diffraction-limited performance Available in standard and custom housings For

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit

Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit Development of Vertical Spot Size Converter (SSC) with Low Coupling Loss Using 2.5%Δ Silica-Based Planar Lightwave Circuit Yasuyoshi Uchida *, Hiroshi Kawashima *, and Kazutaka Nara * Recently, new planar

More information

Fabrication of micro structures on curve surface by X-ray lithography

Fabrication of micro structures on curve surface by X-ray lithography Fabrication of micro structures on curve surface by X-ray lithography Yigui Li 1, Susumu Sugiyama 2 Abstract We demonstrate experimentally the x-ray lithography techniques to fabricate micro structures

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of

OPAC 202 Optical Design and Instrumentation. Topic 3 Review Of Geometrical and Wave Optics. Department of OPAC 202 Optical Design and Instrumentation Topic 3 Review Of Geometrical and Wave Optics Department of http://www.gantep.edu.tr/~bingul/opac202 Optical & Acustical Engineering Gaziantep University Feb

More information

Visible Improvements to Non-Visible Imaging Systems: Improving Efficiency with Precision Molded Chalcogenide Glass Components

Visible Improvements to Non-Visible Imaging Systems: Improving Efficiency with Precision Molded Chalcogenide Glass Components Visible Improvements to Non-Visible Imaging Systems: Improving Efficiency with Precision Molded Chalcogenide Glass Components Infrared (IR) imaging systems are seeing increasing demand for surveillance,

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Developments in Precision Asphere Manufacturing Jay Tierson, Ed Fess, Greg Mathews OptiPro Systems LLC, 6368 Dean Parkway, Ontario NY 14519

Developments in Precision Asphere Manufacturing Jay Tierson, Ed Fess, Greg Mathews OptiPro Systems LLC, 6368 Dean Parkway, Ontario NY 14519 Developments in Precision Asphere Manufacturing Jay Tierson, Ed Fess, Greg Mathews OptiPro Systems LLC, 6368 Dean Parkway, Ontario NY 14519 ABSTRACT The increased use of aspheres in today s optical systems

More information

Uniformly Illuminated Efficient Daylighting System

Uniformly Illuminated Efficient Daylighting System Smart Grid and Renewable Energy, 013, 4, 161-166 http://dx.doi.org/10.436/sgre.013.400 Published Online May 013 (http://www.scirp.org/journal/sgre) 161 Irfan Ullah, Seoyong Shin Department of Information

More information

Two-component Injection Molding of Molded Interconnect Devices

Two-component Injection Molding of Molded Interconnect Devices Two-component Injection Molding of Molded Interconnect Devices Jyun-yi Chen, Wen-Bin Young *1 Department of Aeronautics and Astronautics, National Cheng Kung University Tainan, 70101, Taiwan, ROC *1 youngwb@mail.ncku.edu.tw

More information

You won t be able to measure the incident power precisely. The readout of the power would be lower than the real incident power.

You won t be able to measure the incident power precisely. The readout of the power would be lower than the real incident power. 1. a) Given the transfer function of a detector (below), label and describe these terms: i. dynamic range ii. linear dynamic range iii. sensitivity iv. responsivity b) Imagine you are using an optical

More information

Why Using Fiber for transmission

Why Using Fiber for transmission Why Using Fiber for transmission Why Using Fiber for transmission Optical fibers are widely used in fiber-optic communications, where they permit transmission over long distances and at very high bandwidths.

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Pitch Reducing Optical Fiber Array Two-Dimensional (2D)

Pitch Reducing Optical Fiber Array Two-Dimensional (2D) PROFA Pitch Reducing Optical Fiber Array Two-Dimensional (2D) Pitch Reducing Optical Fiber Arrays (PROFAs) provide low loss coupling between standard optical fibers and photonic integrated circuits. Unlike

More information

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions Difrotec Product & Services Ultra high accuracy interferometry & custom optical solutions Content 1. Overview 2. Interferometer D7 3. Benefits 4. Measurements 5. Specifications 6. Applications 7. Cases

More information

Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling

Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling liquid crystal layer You-Jin Lee, 1,3 Chang-Jae Yu, 1,2,3 and Jae-Hoon Kim 1,2,* 1 Department of Electronic

More information

Efficiency of an Ideal Solar Cell (Henry, C. H. J. Appl. Phys. 51, 4494) No absorption radiative recombination loss Thermalization loss Efficiencies of multi-band-gap Solar Cell (Henry, C. H. J. Appl.

More information

Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee. Lecture - 04 Salient features of optical fiber II

Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee. Lecture - 04 Salient features of optical fiber II Fiber Optics Dr. Vipul Rastogi Department of Physics Indian Institute of Technology, Roorkee Lecture - 04 Salient features of optical fiber II In the last lecture we had understood the propagation characteristics

More information

Light Guide Overview

Light Guide Overview Light Guide Overview 2 Fiber-Optic Basics Light guides are an important component in optimizing an optical system as they connect the various functional units such as the light source to a probe or a probe

More information

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY Prepared by Benjamin Mell 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's

More information

Pulsed Laser Ablation of Polymers for Display Applications

Pulsed Laser Ablation of Polymers for Display Applications Pulsed Laser Ablation of Polymers for Display Applications James E.A Pedder 1, Andrew S. Holmes 2, Heather J. Booth 1 1 Oerlikon Optics UK Ltd, Oxford Industrial Estate, Yarnton, Oxford, OX5 1QU, UK 2

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects 2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects JaeHyun Ahn a, Harish Subbaraman b, Liang Zhu a, Swapnajit Chakravarty b, Emanuel

More information

Microlens formation using heavily dyed photoresist in a single step

Microlens formation using heavily dyed photoresist in a single step Microlens formation using heavily dyed photoresist in a single step Chris Cox, Curtis Planje, Nick Brakensiek, Zhimin Zhu, Jonathan Mayo Brewer Science, Inc., 2401 Brewer Drive, Rolla, MO 65401, USA ABSTRACT

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator Figure 4 Advantage of having smaller focal spot on CCD with super-fine pixels: Larger focal point compromises the sensitivity, spatial resolution, and accuracy. Figure 1 Typical microlens array for Shack-Hartmann

More information

High Resolution Detection of Synchronously Determining Tilt Angle and Displacement of Test Plane by Blu-Ray Pickup Head

High Resolution Detection of Synchronously Determining Tilt Angle and Displacement of Test Plane by Blu-Ray Pickup Head Available online at www.sciencedirect.com Physics Procedia 19 (2011) 296 300 International Conference on Optics in Precision Engineering and Narotechnology 2011 High Resolution Detection of Synchronously

More information

Use of Computer Generated Holograms for Testing Aspheric Optics

Use of Computer Generated Holograms for Testing Aspheric Optics Use of Computer Generated Holograms for Testing Aspheric Optics James H. Burge and James C. Wyant Optical Sciences Center, University of Arizona, Tucson, AZ 85721 http://www.optics.arizona.edu/jcwyant,

More information

Optical planar multimode 1x2Y splitters

Optical planar multimode 1x2Y splitters POSTER 017, PRAGUE MAY 3 1 Optical planar multimode 1xY splitters Marian KNIETEL 1 1 Dept. o Microelectronics, Czech Technical University, Technická, 166 7 Prague, Czech Republic knietmar@el.cvut.cz Abstract.

More information