CS688/WST665 Student presentation Learning Fine-grained Image Similarity with Deep Ranking CVPR Gayoung Lee ( 이가영 )

Size: px
Start display at page:

Download "CS688/WST665 Student presentation Learning Fine-grained Image Similarity with Deep Ranking CVPR Gayoung Lee ( 이가영 )"

Transcription

1 CS688/WST665 Student presentation Learning Fine-grained Image Similarity with Deep Ranking CVPR 2014 Gayoung Lee ( 이가영 )

2 Contents 1. Background knowledge 2. Proposed method 3. Experimental Result 4. Conclusion 5. Quiz 2

3 Background knowledge This paper use deep learning method to learn finegrained images. What is Deep Learning? Convolutional network 3

4 Common ways to learn Processing Result Apple Cat Dog Human Bike Duck Ball 4 Calculate similarity

5 Common ways to learn Processing Result Apple Cat Dog Human Bike Duck Ball 5 Use Known Filter

6 Common ways to learn Problem : We don t know what processing is the best. Gabor filter, SIFT, HOG Gabor : Really good for human face, but limited. SIFT : Can use generally, but it is hard to use when there are not much distinctive features 6

7 What we want to do Processing? Result Apple Cat Dog Human Bike Duck Ball Learn what to use. 7

8 What we want to do Processing Result Apple?? Cat Dog Human Bike Duck Ball Learn what to use. 8

9 Deep learning Input(raw pixel) Layer 1 Layer 2 E v a l u a t i o n 9

10 Deep learning X X function Neuron(Module) e.g. X = WX X = tanh((x) + b) Layer 1 Layer 2 E v a l u a t i o n Input(raw pixel) 10

11 Deep learning X X W X = WX Initial : W = (1, 3, 9) W = (1, 7, 9) Update module using Feedback from evaluation layer E v a l u a t i o n 11

12 Convolutional Networks Image from 12

13 Convolutional Networks Image from X X W Deal module as filter Which can use every local block 13

14 Convolutional Networks: Result Processing Result Apple Cat Dog Human Bike Duck Ball Learn what to use. 14

15 Convolutional Networks: Result Image from 15

16 Proposed methods They improve ConvNet for Fine-grained Image Similarity They use triplet (ranking between same class) They use low-resolution images They find a way of Triplet Sampling for ranking training 16

17 ConvNet Good Convolutional neural network model for image classification. Label : Cat Label : Airplane Label : Cake 17

18 ConvNet However, it needs more improvement in fine-grained image searching. We can not give label for fine-grained image searching. Label : White Cat? Label : Stripe Cat? 18 Label : Stripe Cat? White Cat?

19 Proposed methods vs. ConvNet Use triplets t = (P, P+, P-) P+ : More similar one P- : Not so much similar one 19 P P+ P-

20 Proposed methods vs. ConvNet 1. Imply learning function (whole modules) to each P, P-, P+ 2. Calculate Goodness of function(ranking Layer) 3. Give feedback to learning function 20

21 Proposed methods vs. ConvNet Low-resolution Shallow part 21 Function f

22 Proposed methods vs. ConvNet ConvNet : Strong invariance & capture the visual appearance Two part : less invariance & capture the visual appearance 22

23 Triplet Sampling To train deep neural network, we need many train sets. So, for this paper, we need many triplet. Our dataset : 12 million images All possible triplets:(1.2x10^7)^3=1.7x10^21 Suggest sampling algorithm which is good enough to train network within 24 million triplet samples. 23

24 Triplet Sampling Relevance score between training data. Hand-made dataset Collect image from google search (use query to generate relevance) Desired relationship in Triplet Difference with sample of negative and positive image should be bigger than threshold 24

25 Triplet Sampling We make buffer table to save image. If we have new image, we calculate value of image. uj : uniformly sampled number (0,1) rj : Total relevance score 25

26 Triplet Sampling If buffer is not full, we put the image. If full, we replace existed image whose value is lower than current image. 26

27 Triplet Sampling After putting sample, we can generate pair images. Image in Different Buffer : Out-class negative image Image in Same Buffer but below threshold : In-class negative image Image in Same Buffer and upper threshold : In-class positive image 27

28 Experimental result The learned filters of the first level convolutional layers of the multi-scale deep ranking model. 28

29 29 Experimental result

30 30 Experimental result

31 Conclusion The proposed methods improve ConvNet for Fine-grained Image Searching They use ranking approach using triplets. They use low resolution shallow learning to prevent too much invariance. The paper suggests new triplet sampling algorithm. It is more efficient. (Need much less triplet to train) It overcomes memory limitation. 31

32 Thank you! Any Question? 32

6. Convolutional Neural Networks

6. Convolutional Neural Networks 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Zsolt Kira Quiz coming up Next Tuesday (1/26) 15 minutes Topics: Optimization Basic neural networks No Convolutional

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Convolution, LeNet, AlexNet, VGGNet, GoogleNet, Resnet, DenseNet, CAM, Deconvolution Sept 17, 2018 Aaditya Prakash Convolution Convolution Demo Convolution Convolution in

More information

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition ECE 289G: Paper Presentation #3 Philipp Gysel Autonomous Car ECE 289G Paper Presentation, Philipp Gysel Slide 2 Source: maps.google.com

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Presented by: Gordon Christie 1 Overview Reinterpret standard classification convnets as

More information

SketchNet: Sketch Classification with Web Images[CVPR `16]

SketchNet: Sketch Classification with Web Images[CVPR `16] SketchNet: Sketch Classification with Web Images[CVPR `16] CS688 Paper Presentation 1 Doheon Lee 20183398 2018. 10. 23 Table of Contents Introduction Background SketchNet Result 2 Introduction Properties

More information

Deep Learning. Dr. Johan Hagelbäck.

Deep Learning. Dr. Johan Hagelbäck. Deep Learning Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Image Classification Image classification can be a difficult task Some of the challenges we have to face are: Viewpoint variation:

More information

To Infinity And Beyond. Computer Vision for Astronomy

To Infinity And Beyond. Computer Vision for Astronomy To Infinity And Beyond Computer Vision for Astronomy Ryan Fox ryan@foxrow.com @ryan_fox foxrow.com 1. Image Processing 2. Computer Vision 3. To Infinity and Beyond How computers see How computers see 006

More information

CS 7643: Deep Learning

CS 7643: Deep Learning CS 7643: Deep Learning Topics: Toeplitz matrices and convolutions = matrix-mult Dilated/a-trous convolutions Backprop in conv layers Transposed convolutions Dhruv Batra Georgia Tech HW1 extension 09/22

More information

Sketch-a-Net that Beats Humans

Sketch-a-Net that Beats Humans Sketch-a-Net that Beats Humans Qian Yu SketchLab@QMUL Queen Mary University of London 1 Authors Qian Yu Yongxin Yang Yi-Zhe Song Tao Xiang Timothy Hospedales 2 Let s play a game! Round 1 Easy fish face

More information

Semantic Localization of Indoor Places. Lukas Kuster

Semantic Localization of Indoor Places. Lukas Kuster Semantic Localization of Indoor Places Lukas Kuster Motivation GPS for localization [7] 2 Motivation Indoor navigation [8] 3 Motivation Crowd sensing [9] 4 Motivation Targeted Advertisement [10] 5 Motivation

More information

Autocomplete Sketch Tool

Autocomplete Sketch Tool Autocomplete Sketch Tool Sam Seifert, Georgia Institute of Technology Advanced Computer Vision Spring 2016 I. ABSTRACT This work details an application that can be used for sketch auto-completion. Sketch

More information

Deformable Convolutional Networks

Deformable Convolutional Networks Deformable Convolutional Networks Jifeng Dai^ With Haozhi Qi*^, Yuwen Xiong*^, Yi Li*^, Guodong Zhang*^, Han Hu, Yichen Wei Visual Computing Group Microsoft Research Asia (* interns at MSRA, ^ equal contribution)

More information

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland An Introduction to Convolutional Neural Networks Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland Sources & Resources - Andrej Karpathy, CS231n http://cs231n.github.io/convolutional-networks/

More information

A Fuller Understanding of Fully Convolutional Networks. Evan Shelhamer* Jonathan Long* Trevor Darrell UC Berkeley in CVPR'15, PAMI'16

A Fuller Understanding of Fully Convolutional Networks. Evan Shelhamer* Jonathan Long* Trevor Darrell UC Berkeley in CVPR'15, PAMI'16 A Fuller Understanding of Fully Convolutional Networks Evan Shelhamer* Jonathan Long* Trevor Darrell UC Berkeley in CVPR'15, PAMI'16 1 pixels in, pixels out colorization Zhang et al.2016 monocular depth

More information

Face Recognition in Low Resolution Images. Trey Amador Scott Matsumura Matt Yiyang Yan

Face Recognition in Low Resolution Images. Trey Amador Scott Matsumura Matt Yiyang Yan Face Recognition in Low Resolution Images Trey Amador Scott Matsumura Matt Yiyang Yan Introduction Purpose: low resolution facial recognition Extract image/video from source Identify the person in real

More information

Colorful Image Colorizations Supplementary Material

Colorful Image Colorizations Supplementary Material Colorful Image Colorizations Supplementary Material Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang, isola, efros}@eecs.berkeley.edu University of California, Berkeley 1 Overview This document

More information

Quick, Draw! Doodle Recognition

Quick, Draw! Doodle Recognition Quick, Draw! Doodle Recognition Kristine Guo Stanford University kguo98@stanford.edu James WoMa Stanford University jaywoma@stanford.edu Eric Xu Stanford University ericxu0@stanford.edu Abstract Doodle

More information

Study Impact of Architectural Style and Partial View on Landmark Recognition

Study Impact of Architectural Style and Partial View on Landmark Recognition Study Impact of Architectural Style and Partial View on Landmark Recognition Ying Chen smileyc@stanford.edu 1. Introduction Landmark recognition in image processing is one of the important object recognition

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2

More information

Deep Learning for Infrastructure Assessment in Africa using Remote Sensing Data

Deep Learning for Infrastructure Assessment in Africa using Remote Sensing Data Deep Learning for Infrastructure Assessment in Africa using Remote Sensing Data Pascaline Dupas Department of Economics, Stanford University Data for Development Initiative @ Stanford Center on Global

More information

Name that sculpture. Relja Arandjelovid and Andrew Zisserman. Visual Geometry Group Department of Engineering Science University of Oxford

Name that sculpture. Relja Arandjelovid and Andrew Zisserman. Visual Geometry Group Department of Engineering Science University of Oxford Name that sculpture Relja Arandjelovid and Andrew Zisserman Visual Geometry Group Department of Engineering Science University of Oxford University of Oxford 7 th June 2012 Problem statement Identify the

More information

Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices

Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices Daniele Ravì, Charence Wong, Benny Lo and Guang-Zhong Yang To appear in the proceedings of the IEEE

More information

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS Kuan-Chuan Peng and Tsuhan Chen Cornell University School of Electrical and Computer Engineering Ithaca, NY 14850

More information

tsushi Sasaki Fig. Flow diagram of panel structure recognition by specifying peripheral regions of each component in rectangles, and 3 types of detect

tsushi Sasaki Fig. Flow diagram of panel structure recognition by specifying peripheral regions of each component in rectangles, and 3 types of detect RECOGNITION OF NEL STRUCTURE IN COMIC IMGES USING FSTER R-CNN Hideaki Yanagisawa Hiroshi Watanabe Graduate School of Fundamental Science and Engineering, Waseda University BSTRCT For efficient e-comics

More information

Coursework 2. MLP Lecture 7 Convolutional Networks 1

Coursework 2. MLP Lecture 7 Convolutional Networks 1 Coursework 2 MLP Lecture 7 Convolutional Networks 1 Coursework 2 - Overview and Objectives Overview: Use a selection of the techniques covered in the course so far to train accurate multi-layer networks

More information

Evaluation of Image Segmentation Based on Histograms

Evaluation of Image Segmentation Based on Histograms Evaluation of Image Segmentation Based on Histograms Andrej FOGELTON Slovak University of Technology in Bratislava Faculty of Informatics and Information Technologies Ilkovičova 3, 842 16 Bratislava, Slovakia

More information

Liangliang Cao *, Jiebo Luo +, Thomas S. Huang *

Liangliang Cao *, Jiebo Luo +, Thomas S. Huang * Annotating ti Photo Collections by Label Propagation Liangliang Cao *, Jiebo Luo +, Thomas S. Huang * + Kodak Research Laboratories *University of Illinois at Urbana-Champaign (UIUC) ACM Multimedia 2008

More information

Tracking transmission of details in paintings

Tracking transmission of details in paintings Tracking transmission of details in paintings Benoit Seguin benoit.seguin@epfl.ch Isabella di Lenardo isabella.dilenardo@epfl.ch Frédéric Kaplan frederic.kaplan@epfl.ch Introduction In previous articles

More information

3D-Assisted Image Feature Synthesis for Novel Views of an Object

3D-Assisted Image Feature Synthesis for Novel Views of an Object 3D-Assisted Image Feature Synthesis for Novel Views of an Object Hao Su* Fan Wang* Li Yi Leonidas Guibas * Equal contribution View-agnostic Image Retrieval Retrieval using AlexNet features Query Cross-view

More information

COMP 776 Computer Vision Project Final Report Distinguishing cartoon image and paintings from photographs

COMP 776 Computer Vision Project Final Report Distinguishing cartoon image and paintings from photographs COMP 776 Computer Vision Project Final Report Distinguishing cartoon image and paintings from photographs Sang Woo Lee 1. Introduction With overwhelming large scale images on the web, we need to classify

More information

CS 4501: Introduction to Computer Vision. Filtering and Edge Detection

CS 4501: Introduction to Computer Vision. Filtering and Edge Detection CS 451: Introduction to Computer Vision Filtering and Edge Detection Connelly Barnes Slides from Jason Lawrence, Fei Fei Li, Juan Carlos Niebles, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein,

More information

Image features: Histograms, Aliasing, Filters, Orientation and HOG. D.A. Forsyth

Image features: Histograms, Aliasing, Filters, Orientation and HOG. D.A. Forsyth Image features: Histograms, Aliasing, Filters, Orientation and HOG D.A. Forsyth Simple color features Histogram of image colors in a window Opponent color representations R-G B-Y=B-(R+G)/2 Intensity=(R+G+B)/3

More information

Convolutional neural networks

Convolutional neural networks Convolutional neural networks Themes Curriculum: Ch 9.1, 9.2 and http://cs231n.github.io/convolutionalnetworks/ The simple motivation and idea How it s done Receptive field Pooling Dilated convolutions

More information

INTRODUCTION TO DEEP LEARNING. Steve Tjoa June 2013

INTRODUCTION TO DEEP LEARNING. Steve Tjoa June 2013 INTRODUCTION TO DEEP LEARNING Steve Tjoa kiemyang@gmail.com June 2013 Acknowledgements http://ufldl.stanford.edu/wiki/index.php/ UFLDL_Tutorial http://youtu.be/ayzoubkuf3m http://youtu.be/zmnoatzigik 2

More information

CS50 Machine Learning. Week 7

CS50 Machine Learning. Week 7 CS5 Machine Learning Week 7 *pythonprogramming.net Machine Learning? Machine Learning? Search Engines Image Recognition Voice Recognition Natural Language Processing inputs outputs Image Recognition horse

More information

The Art of Neural Nets

The Art of Neural Nets The Art of Neural Nets Marco Tavora marcotav65@gmail.com Preamble The challenge of recognizing artists given their paintings has been, for a long time, far beyond the capability of algorithms. Recent advances

More information

Hardware-based Image Retrieval and Classifier System

Hardware-based Image Retrieval and Classifier System Hardware-based Image Retrieval and Classifier System Jason Isaacs, Joe Petrone, Geoffrey Wall, Faizal Iqbal, Xiuwen Liu, and Simon Foo Department of Electrical and Computer Engineering Florida A&M - Florida

More information

Face detection, face alignment, and face image parsing

Face detection, face alignment, and face image parsing Lecture overview Face detection, face alignment, and face image parsing Brandon M. Smith Guest Lecturer, CS 534 Monday, October 21, 2013 Brief introduction to local features Face detection Face alignment

More information

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement What Is And How Will Machine Learning Change Our Lives Raymond Ptucha, Rochester Institute of Technology 2018 Engineering Symposium April 24, 2018, 9:45am Ptucha 18 1 Fair Use Agreement This agreement

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document Hepburn, A., McConville, R., & Santos-Rodriguez, R. (2017). Album cover generation from genre tags. Paper presented at 10th International Workshop on Machine Learning and Music, Barcelona, Spain. Peer

More information

ConvNets and Forward Modeling for StarCraft AI

ConvNets and Forward Modeling for StarCraft AI ConvNets and Forward Modeling for StarCraft AI Alex Auvolat September 15, 2016 ConvNets and Forward Modeling for StarCraft AI 1 / 20 Overview ConvNets and Forward Modeling for StarCraft AI 2 / 20 Section

More information

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Yuhang Dong, Zhuocheng Jiang, Hongda Shen, W. David Pan Dept. of Electrical & Computer

More information

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 83

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 83 Recognition: Overview Sanja Fidler CSC420: Intro to Image Understanding 1/ 83 Textbook This book has a lot of material: K. Grauman and B. Leibe Visual Object Recognition Synthesis Lectures On Computer

More information

Book Cover Recognition Project

Book Cover Recognition Project Book Cover Recognition Project Carolina Galleguillos Department of Computer Science University of California San Diego La Jolla, CA 92093-0404 cgallegu@cs.ucsd.edu Abstract The purpose of this project

More information

CAT Training CNNs for Image Classification with Noisy Labels

CAT Training CNNs for Image Classification with Noisy Labels yclic Annealing Training (AT) NNs for Image lassification with Noisy Labels JiaWei Li, Tao Dai, QingTao Tang, YeLi Xing, Shu-Tao Xia Tsinghua University li-jw15@mailstsinghuaeducn October 8, 2018 AT Training

More information

Multiple Kernels for Object Detection. Andrea Vedaldi Varun Gulshan Manik Varma Andrew Zisserman

Multiple Kernels for Object Detection. Andrea Vedaldi Varun Gulshan Manik Varma Andrew Zisserman Multiple Kernels for Object Detection Andrea Vedaldi Varun Gulshan Manik Varma Andrew Zisserman MK classification PHOW Gray MK SVM PHOW Color combine one kernel per histogram PHOG PHOG Sym Feature vector

More information

Lesson 1.1 Skills Practice

Lesson 1.1 Skills Practice Lesson 1.1 Skills Practice Collection Connections Factors and Multiples Vocabulary Match each definition to its corresponding term. 1. a rectangular arrangement that has an equal a. factor pair number

More information

Lecture 23 Deep Learning: Segmentation

Lecture 23 Deep Learning: Segmentation Lecture 23 Deep Learning: Segmentation COS 429: Computer Vision Thanks: most of these slides shamelessly adapted from Stanford CS231n: Convolutional Neural Networks for Visual Recognition Fei-Fei Li, Andrej

More information

CPSC 340: Machine Learning and Data Mining. Convolutional Neural Networks Fall 2018

CPSC 340: Machine Learning and Data Mining. Convolutional Neural Networks Fall 2018 CPSC 340: Machine Learning and Data Mining Convolutional Neural Networks Fall 2018 Admin Mike and I finish CNNs on Wednesday. After that, we will cover different topics: Mike will do a demo of training

More information

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET MOTIVATION Fully connected neural network Example 1000x1000 image 1M hidden units 10 12 (= 10 6 10 6 ) parameters! Observation

More information

Image Searches, Abstraction, Invariance : Data Mining 8 September 2008

Image Searches, Abstraction, Invariance : Data Mining 8 September 2008 Image Searches, Abstraction, Invariance 36-350: Data Mining 8 September 2008 1 Medical: x-rays, brain imaging, histology ( do these look like cancerous cells? ) Satellite imagery Fingerprints Finding illustrations

More information

Interframe Coding of Global Image Signatures for Mobile Augmented Reality

Interframe Coding of Global Image Signatures for Mobile Augmented Reality Interframe Coding of Global Image Signatures for Mobile Augmented Reality David Chen 1, Mina Makar 1,2, Andre Araujo 1, Bernd Girod 1 1 Department of Electrical Engineering, Stanford University 2 Qualcomm

More information

Image Manipulation Detection using Convolutional Neural Network

Image Manipulation Detection using Convolutional Neural Network Image Manipulation Detection using Convolutional Neural Network Dong-Hyun Kim 1 and Hae-Yeoun Lee 2,* 1 Graduate Student, 2 PhD, Professor 1,2 Department of Computer Software Engineering, Kumoh National

More information

Chess Recognition Using Computer Vision

Chess Recognition Using Computer Vision Chess Recognition Using Computer Vision May 30, 2017 Ramani Varun (U6004067, contribution 50%) Sukrit Gupta (U5900600, contribution 50%) College of Engineering & Computer Science he Australian National

More information

Creating an Agent of Doom: A Visual Reinforcement Learning Approach

Creating an Agent of Doom: A Visual Reinforcement Learning Approach Creating an Agent of Doom: A Visual Reinforcement Learning Approach Michael Lowney Department of Electrical Engineering Stanford University mlowney@stanford.edu Robert Mahieu Department of Electrical Engineering

More information

ANALYSIS OF PARTIAL IRIS RECOGNITION

ANALYSIS OF PARTIAL IRIS RECOGNITION ANALYSIS OF PARTIAL IRIS RECOGNITION Yingzi Du, Robert Ives, Bradford Bonney, Delores Etter Electrical Engineering Department, U.S. Naval Academy, Annapolis, MD, USA 21402 ABSTRACT In this paper, we investigate

More information

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 -

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 - Lecture 11: Detection and Segmentation Lecture 11-1 May 10, 2017 Administrative Midterms being graded Please don t discuss midterms until next week - some students not yet taken A2 being graded Project

More information

Image Searches, Abstraction, Invariance : Data Mining 2 September 2009

Image Searches, Abstraction, Invariance : Data Mining 2 September 2009 Image Searches, Abstraction, Invariance 36-350: Data Mining 2 September 2009 1 Medical: x-rays, brain imaging, histology ( do these look like cancerous cells? ) Satellite imagery Fingerprints Finding illustrations

More information

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Undergraduate Honors Theses Computer Science and Computer Engineering 5-2018 Comparison of Google Image

More information

Target detection in side-scan sonar images: expert fusion reduces false alarms

Target detection in side-scan sonar images: expert fusion reduces false alarms Target detection in side-scan sonar images: expert fusion reduces false alarms Nicola Neretti, Nathan Intrator and Quyen Huynh Abstract We integrate several key components of a pattern recognition system

More information

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Open Source Dataset and Deep Learning Models

More information

Convolutional Neural Networks for Small-footprint Keyword Spotting

Convolutional Neural Networks for Small-footprint Keyword Spotting INTERSPEECH 2015 Convolutional Neural Networks for Small-footprint Keyword Spotting Tara N. Sainath, Carolina Parada Google, Inc. New York, NY, U.S.A {tsainath, carolinap}@google.com Abstract We explore

More information

Locating the Query Block in a Source Document Image

Locating the Query Block in a Source Document Image Locating the Query Block in a Source Document Image Naveena M and G Hemanth Kumar Department of Studies in Computer Science, University of Mysore, Manasagangotri-570006, Mysore, INDIA. Abstract: - In automatic

More information

Face Recognition: Beyond the Limit of Accuracy

Face Recognition: Beyond the Limit of Accuracy IJCB2014 Face Recognition: Beyond the Limit of Accuracy NEC Corporation Information and Media Processing Laboratories Hitoshi Imaoka Page 1 h-imaoka@cb.jp.nec.com What is the hurdle in face recognition?

More information

Artwork Recognition for Panorama Images Based on Optimized ASIFT and Cubic Projection

Artwork Recognition for Panorama Images Based on Optimized ASIFT and Cubic Projection Artwork Recognition for Panorama Images Based on Optimized ASIFT and Cubic Projection Dayou Jiang and Jongweon Kim Abstract Few studies have been published on the object recognition for panorama images.

More information

Journal of Asian Scientific Research IMPROVEMENT OF PEST DETECTION USING HISTOGRAM ADJUSTMENT METHOD AND GABOR WAVELET

Journal of Asian Scientific Research IMPROVEMENT OF PEST DETECTION USING HISTOGRAM ADJUSTMENT METHOD AND GABOR WAVELET Journal of Asian Scientific Research ISSN(e): 2223-1331/ISSN(p): 2226-5724 URL: www.aessweb.com IMPROVEMENT OF PEST DETECTION USING HISTOGRAM ADJUSTMENT METHOD AND GABOR WAVELET Mostafa Bayat 1 --- Mahdi

More information

Aja Huang Cho Chikun David Silver Demis Hassabis. Fan Hui Geoff Hinton Lee Sedol Michael Redmond

Aja Huang Cho Chikun David Silver Demis Hassabis. Fan Hui Geoff Hinton Lee Sedol Michael Redmond CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 1 1. [3 marks] For each person or program, give the label of its description. Aja Huang Cho Chikun David Silver Demis Hassabis Fan Hui Geoff Hinton

More information

The Threshold Between Human and Computational Creativity. Pindar Van Arman

The Threshold Between Human and Computational Creativity. Pindar Van Arman The Threshold Between Human and Computational Creativity Pindar Van Arman cloudpainter.com @vanarman One of Them is Human #1 Photo by Maiji Tammi that was recently shortlisted for the Taylor Wessing Prize.

More information

Semantic Segmentation in Red Relief Image Map by UX-Net

Semantic Segmentation in Red Relief Image Map by UX-Net Semantic Segmentation in Red Relief Image Map by UX-Net Tomoya Komiyama 1, Kazuhiro Hotta 1, Kazuo Oda 2, Satomi Kakuta 2 and Mikako Sano 2 1 Meijo University, Shiogamaguchi, 468-0073, Nagoya, Japan 2

More information

Photo Selection for Family Album using Deep Neural Networks

Photo Selection for Family Album using Deep Neural Networks Photo Selection for Family Album using Deep Neural Networks ABSTRACT Sijie Shen The University of Tokyo shensijie@hal.t.u-tokyo.ac.jp Michi Sato Chikaku Inc. michisato@chikaku.co.jp The development of

More information

Radio Deep Learning Efforts Showcase Presentation

Radio Deep Learning Efforts Showcase Presentation Radio Deep Learning Efforts Showcase Presentation November 2016 hume@vt.edu www.hume.vt.edu Tim O Shea Senior Research Associate Program Overview Program Objective: Rethink fundamental approaches to how

More information

Value-added Applications with Deep Learning. src:

Value-added Applications with Deep Learning. src: SMART TOURISM Value-added Applications with Deep Learning src: https://www.wttc.org/-/media/files/reports/economic-impact-research/countries-2017/thailand2017.pdf Somnuk Phon-Amnuaisuk, Minh-Son Dao, CIE,

More information

Lecture 7: Scene Text Detection and Recognition. Dr. Cong Yao Megvii (Face++) Researcher

Lecture 7: Scene Text Detection and Recognition. Dr. Cong Yao Megvii (Face++) Researcher Lecture 7: Scene Text Detection and Recognition Dr. Cong Yao Megvii (Face++) Researcher yaocong@megvii.com Outline Background and Introduction Conventional Methods Deep Learning Methods Datasets and Competitions

More information

Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm

Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm Mastering Chess and Shogi by Self- Play with a General Reinforcement Learning Algorithm by Silver et al Published by Google Deepmind Presented by Kira Selby Background u In March 2016, Deepmind s AlphaGo

More information

Session 124TS, A Practical Guide to Machine Learning for Actuaries. Presenters: Dave M. Liner, FSA, MAAA, CERA

Session 124TS, A Practical Guide to Machine Learning for Actuaries. Presenters: Dave M. Liner, FSA, MAAA, CERA Session 124TS, A Practical Guide to Machine Learning for Actuaries Presenters: Dave M. Liner, FSA, MAAA, CERA SOA Antitrust Disclaimer SOA Presentation Disclaimer A practical guide to machine learning

More information

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Emeric Stéphane Boigné eboigne@stanford.edu Jan Felix Heyse heyse@stanford.edu Abstract Scaling

More information

Image Classification using Convolutional Neural Networks

Image Classification using Convolutional Neural Networks Volume 119 No. 17 2018, 1307-1319 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ Image Classification using Convolutional Neural Networks Abstract: Muthukrishnan

More information

AVA: A Large-Scale Database for Aesthetic Visual Analysis

AVA: A Large-Scale Database for Aesthetic Visual Analysis 1 AVA: A Large-Scale Database for Aesthetic Visual Analysis Wei-Ta Chu National Chung Cheng University N. Murray, L. Marchesotti, and F. Perronnin, AVA: A Large-Scale Database for Aesthetic Visual Analysis,

More information

Derek Allman a, Austin Reiter b, and Muyinatu Bell a,c

Derek Allman a, Austin Reiter b, and Muyinatu Bell a,c Exploring the effects of transducer models when training convolutional neural networks to eliminate reflection artifacts in experimental photoacoustic images Derek Allman a, Austin Reiter b, and Muyinatu

More information

Poker AI: Equilibrium, Online Resolving, Deep Learning and Reinforcement Learning

Poker AI: Equilibrium, Online Resolving, Deep Learning and Reinforcement Learning Poker AI: Equilibrium, Online Resolving, Deep Learning and Reinforcement Learning Nikolai Yakovenko NVidia ADLR Group -- Santa Clara CA Columbia University Deep Learning Seminar April 2017 Poker is a Turn-Based

More information

MetaXpress Software: Cell Scoring Module

MetaXpress Software: Cell Scoring Module MetaXpress Software: Cell Scoring Module Cell Scoring Module Overview The Cell Scoring module can be used to analyze cells imaged in 2 wavelengths W1 should be a stain for all nuclei (e.g. DAPI, Hoechst,

More information

Use of Big Data in Environmental Evaluation

Use of Big Data in Environmental Evaluation FOCUS SESSION ON USE OF NEW TECHNOLOGIES IN M&E AND IMPLICATIONS FOR EVALUATION Use of Big Data in Environmental Evaluation World Bank 19th Meeting of the DAC Network on Development Evaluation 26-27 April

More information

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror Image analysis CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror 1 Outline Images in molecular and cellular biology Reducing image noise Mean and Gaussian filters Frequency domain interpretation

More information

GPU ACCELERATED DEEP LEARNING WITH CUDNN

GPU ACCELERATED DEEP LEARNING WITH CUDNN GPU ACCELERATED DEEP LEARNING WITH CUDNN Larry Brown Ph.D. March 2015 AGENDA 1 Introducing cudnn and GPUs 2 Deep Learning Context 3 cudnn V2 4 Using cudnn 2 Introducing cudnn and GPUs 3 HOW GPU ACCELERATION

More information

arxiv: v1 [cs.lg] 2 Jan 2018

arxiv: v1 [cs.lg] 2 Jan 2018 Deep Learning for Identifying Potential Conceptual Shifts for Co-creative Drawing arxiv:1801.00723v1 [cs.lg] 2 Jan 2018 Pegah Karimi pkarimi@uncc.edu Kazjon Grace The University of Sydney Sydney, NSW 2006

More information

Artificial Intelligence Machine learning and Deep Learning: Trends and Tools. Dr. Shaona

Artificial Intelligence Machine learning and Deep Learning: Trends and Tools. Dr. Shaona Artificial Intelligence Machine learning and Deep Learning: Trends and Tools Dr. Shaona Ghosh @shaonaghosh What is Machine Learning? Computer algorithms that learn patterns in data automatically from large

More information

Machine Learning for Antenna Array Failure Analysis

Machine Learning for Antenna Array Failure Analysis Machine Learning for Antenna Array Failure Analysis Lydia de Lange Under Dr DJ Ludick and Dr TL Grobler Dept. Electrical and Electronic Engineering, Stellenbosch University MML 2019 Outline 15/03/2019

More information

DETECTION AND RECOGNITION OF HAND GESTURES TO CONTROL THE SYSTEM APPLICATIONS BY NEURAL NETWORKS. P.Suganya, R.Sathya, K.

DETECTION AND RECOGNITION OF HAND GESTURES TO CONTROL THE SYSTEM APPLICATIONS BY NEURAL NETWORKS. P.Suganya, R.Sathya, K. Volume 118 No. 10 2018, 399-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v118i10.40 ijpam.eu DETECTION AND RECOGNITION OF HAND GESTURES

More information

Computer Go: from the Beginnings to AlphaGo. Martin Müller, University of Alberta

Computer Go: from the Beginnings to AlphaGo. Martin Müller, University of Alberta Computer Go: from the Beginnings to AlphaGo Martin Müller, University of Alberta 2017 Outline of the Talk Game of Go Short history - Computer Go from the beginnings to AlphaGo The science behind AlphaGo

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 6. Convolutional Neural Networks (Some figures adapted from NNDL book) 1 Convolution Neural Networks 1. Convolutional Neural Networks Convolution,

More information

SpringerBriefs in Applied Sciences and Technology

SpringerBriefs in Applied Sciences and Technology SpringerBriefs in Applied Sciences and Technology Forensic and Medical Bioinformatics Series editors Amit Kumar, Hyderabad, India Allam Appa Rao, Hyderabad, India More information about this series at

More information

A Neural Algorithm of Artistic Style (2015)

A Neural Algorithm of Artistic Style (2015) A Neural Algorithm of Artistic Style (2015) Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Nancy Iskander (niskander@dgp.toronto.edu) Overview of Method Content: Global structure. Style: Colours; local

More information

LANDMARK recognition is an important feature for

LANDMARK recognition is an important feature for 1 NU-LiteNet: Mobile Landmark Recognition using Convolutional Neural Networks Chakkrit Termritthikun, Surachet Kanprachar, Paisarn Muneesawang arxiv:1810.01074v1 [cs.cv] 2 Oct 2018 Abstract The growth

More information

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni.

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni. Lesson 08 Convolutional Neural Network Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 08 Convolution we will consider 2D convolution the result

More information

Learning Log Title: CHAPTER 2: ARITHMETIC STRATEGIES AND AREA. Date: Lesson: Chapter 2: Arithmetic Strategies and Area

Learning Log Title: CHAPTER 2: ARITHMETIC STRATEGIES AND AREA. Date: Lesson: Chapter 2: Arithmetic Strategies and Area Chapter 2: Arithmetic Strategies and Area CHAPTER 2: ARITHMETIC STRATEGIES AND AREA Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 2: Arithmetic Strategies and Area Date: Lesson:

More information

ES 492: SCIENCE IN THE MOVIES

ES 492: SCIENCE IN THE MOVIES UNIVERSITY OF SOUTH ALABAMA ES 492: SCIENCE IN THE MOVIES LECTURE 5: ROBOTICS AND AI PRESENTER: HANNAH BECTON TODAY'S AGENDA 1. Robotics and Real-Time Systems 2. Reacting to the environment around them

More information

Andrei Behel AC-43И 1

Andrei Behel AC-43И 1 Andrei Behel AC-43И 1 History The game of Go originated in China more than 2,500 years ago. The rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture

More information

Imaging Process (review)

Imaging Process (review) Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays, infrared,

More information

Thermal Image Enhancement Using Convolutional Neural Network

Thermal Image Enhancement Using Convolutional Neural Network SEOUL Oct.7, 2016 Thermal Image Enhancement Using Convolutional Neural Network Visual Perception for Autonomous Driving During Day and Night Yukyung Choi Soonmin Hwang Namil Kim Jongchan Park In So Kweon

More information

Semantic Segmentation on Resource Constrained Devices

Semantic Segmentation on Resource Constrained Devices Semantic Segmentation on Resource Constrained Devices Sachin Mehta University of Washington, Seattle In collaboration with Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi Project

More information