یادآوری: خالصه CNN. ConvNet

Size: px
Start display at page:

Download "یادآوری: خالصه CNN. ConvNet"

Transcription

1 1

2 ConvNet یادآوری: خالصه CNN شبکه عصبی کانولوشنال یا Convolutional Neural Networks یا نوعی از شبکههای عصبی عمیق مدل یادگیری آن باناظر.اصالح وزنها با الگوریتم back-propagation مناسب برای داده های حجیم و ماتریسی چرا شبکه عصبی کانولوشنال حذف مرحله استخراج ویژگی از دادگان حجیم مانند عکس مقایسه با شبکه های عصبی غیرعمیق شباهت : اجزا نورونها توابع الگوریتم یادگیری تفاوت: فرض می شود ورودی تصویر است. 2

3 یادآوری: اجزای شبکه عصبی کانولوشنال الیههایشبکهعصبیکانولوشنال ورودی گرفتنمقادیرخامازنقاطتصویر ابعادنمونه 32x32x3 32x32x12 )با 12 فیلتر( 32x32x12 16x16x12 کانولوشن) CONV ( محاسبهضربنقطهایبینوزنهاینورونویکناحیهکوچکازحجمورودی اصالحخطی) RELU ( اعمالیکتابعبهعناصر عدمتغییرابعادحجم POOL کاهشنمونهبرداریدرامتدادابعادمکانی)عرضوارتفاع( 1x1x10 محاسبهامتیازهرکالس FC 3

4 عملکرد شبکه عصبی کانولوشنال کار مراحل 4 سمت چپ تصویر خام و در سمت راست توسط یک تابع امتیاز )Score function( امتیاز تعلق به دسته های مختلف ارائه می شود

5 توسعه های CNN نمونهتوسعههاروی CNN AlexNet ZF Net VGG Net GoogLeNet Microsoft ResNet R-CNN Fast R-CNN Faster R-CNN 3D-CNN GAN... 5

6 AlexNet )2012( شروعشبکههایعصبی CNN ) 1998 (راشروعمیدانند. برخی LeNet ImageNet Classification with Deep Convolutional عنوانمقاله: Networks Alex Krizhevsky, Ilya Sutskever, and Geoffrey نویسندگانمقاله: Hinton * تعدادارجاعات:بیشاز large, deep convolutional neural network was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)- the annual Olympics of computer vision for tasks such as classification, localization, detection *.دشاب یم درآذرماه 96 Google کلیهارجاعاتدراینارائهبرمبنایآمار Scholar 6

7 AlexNet Architecture a relatively simple layout, compared to modern architectures used for classification with 1000 possible categories very similar architecture to LeNet, but was deeper, bigger, and featured Convolutional Layers stacked on top of each other (not a single CONV layer always immediately followed by a POOL layer) 7

8 AlexNet Architecture eight layers first five are convolutional the remaining three are fully-connected last fully-connected layer is produces 1000 class labels 8

9 AlexNet Architecture The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer The kernels of the third convolutional layer are connected to all kernel maps in the second layer Max-pooling layers follow the first, second and fifth convolutional layers The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer 9

10 AlexNet Architecture The first convolutional layer filters the input image with 96 kernels of size with a stride of 4 pixels. The second convolutional layer takes as input the (response-normalized and pooled) output of the first convolutional layer and filters it with 256 kernels of size The third, fourth, and fifth convolutional layers are connected to one another without any intervening pooling or normalization layers. The third convolutional layer has 384 kernels of size connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth convolutional layer has 384 kernels of size The fifth convolutional layer has 256 kernels of size The fully-connected layers have 4096 neurons each 10

11 AlexNet Main Points Trained the network on ImageNet data, which contained over 15 million annotated images from a total of over 22,000 categories. Used ReLU for the nonlinearity functions faster than the conventional tanh function. Used data augmentation techniques that consisted of image translations, horizontal reflections, and patch extractions. Implemented dropout* layers in order to combat the problem of overfitting to the training data. Trained the model using batch stochastic gradient descent, with specific values for momentum and weight decay. Trained on two GTX 580 GPUs for five to six days. * Dropout: setting to zero the output of each hidden neuron with probability 0.5. The neurons which are dropped out in this way do not contribute to the forward pass and do not participate in back-propagation 11

12 AlexNet Why It s Important The first time a model performed so well on a historically difficult ImageNet dataset Utilizing techniques that are still used today, such as data augmentation and dropout It illustrated the benefits of CNNs It breaking performance in the competition 12

13 ZF Net برنده 2013 ILSVRC عنوانمقاله: Visualizing and Understanding Convolutional Neural Networks نویسندگانمقاله: Fergus Matthew Zeiler and Rob تعدادارجاعات:بیشاز 2750 This architecture was more of a fine tuning to the previous AlexNet structure, but still developed some very keys ideas about improving performance the authors spent a good amount of time explaining a lot of the intuition behind ConvNets and showing how to visualize the filters and weights correctly. The main contributions: a slightly modified AlexNet model a very interesting way of visualizing feature maps. 13

14 ZF Net architecture 14

15 ZF Net Main Points Very similar architecture to AlexNet, except for a few minor modifications. AlexNet trained on 15 million images, while ZF Net trained on only 1.3 million images. Instead of using 11x11 sized filters in the first layer (same as AlexNet), ZF Net used filters of size 7x7 and a decreased stride value to keep a lot of original pixel information in the input volume. As the network grows, we also see a rise in the number of filters used. Used ReLUs for their activation functions, cross-entropy loss for the error function, and trained using batch stochastic gradient descent. Trained on a GTX 580 GPU for twelve days. Developed a visualization technique named Deconvolutional Network (DeConvNet), which helps to examine different feature activations and their relation to the input space. Called deconvnet because it maps features to pixels. 15

16 ZF Net DeConvNet At every layer of the trained CNN, you attach a deconvnet which has a path back to the image pixels. forward pass: An input image is fed into the CNN and activations are computed at each level This deconvnet has the same filters as the original CNN Steps: store the activations of this one feature map, but set all of the other activations in the layer to 0 pass this feature map as the input into the deconvnet This input then goes through a series of unpool (reverse maxpooling), rectify, and filter operations for each preceding layer until the input space is reached 16

17 ZF Net DeConvNet 17

18 ZF Net DeConvNet The first layer of your ConvNet is always a low level feature detector that will detect simple edges or colors in this particular case. We can see that with the second layer, we have more circular features that are being detected. Let s look at layers 3, 4, and 5. 18

19 ZF Net Why It s Important ZF Net was not only the winner of the competition in 2013, but also provided great intuition as to the workings on CNNs and illustrated more ways to improve performance. The visualization approach described helps not only to explain the inner workings of CNNs, but also provides insight for improvements to network architectures. The fascinating deconv visualization approach and occlusion experiments make this one of my personal favorite papers. 19

20 VGG Net سالانتشار: 2014 عنوانمقاله: Very Deep Convolutional Networks for Large-Scale Image Recognition نویسندگان: Zisserman Karen Simonyan and Andrew Visual Geometry Group تعدادارجاعات:بیشاز 7650 Simplicity and depth. a 19 layer CNN strictly used 3x3 filters with stride and pad of 1 along with 2x2 maxpooling layers with stride 2 20

21 VGG Net Architecture 21

22 VGG Net Main Points The use of only 3x3 sized filters is quite different from AlexNet s and ZF Net s filters. (combination of two 3x3 conv layers has an effective receptive field of 5x5) 3 conv layers back to back have an effective receptive field of 7x7. As the spatial size of the input volumes at each layer decrease (result of the conv and pool layers), the depth of the volumes increase due to the increased number of filters as you go down the network. The number of filters doubles after each maxpool layer. This reinforces the idea of shrinking spatial dimensions, but growing depth. 22

23 VGG Net Main Points Worked well on both image classification and localization tasks. Built model with the Caffe toolbox. Used scale jittering* as one data augmentation technique during training. Used ReLU layers after each conv layer and trained with batch gradient descent. Trained on 4 Nvidia Titan Black GPUs for two to three weeks. * a single model is trained to recognize objects over a wide range of scales 23

24 VGG Net Why It s Important VGG Net is one of the most influential papers because it reinforced the notion that convolutional neural networks have to have a deep network of layers in order for this hierarchical representation of visual data to work. Keep it deep. Keep it simple. 24

25 GoogLeNet برنده 2014 ILSVRC عنوانمقاله: Convolutions Going Deeper with نویسندگان Sermanet, Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich سالانتشارمقاله 2015 تعدادارجاعات:بیشاز 5400 ویژگیاصلی عمقزیادشبکه معرفی module Inception 25

26 GoogLeNet انگیزهتحقیق راحتترینراهبهبودنتایجشبکههایعمیقافزایشاندازهوعمقآنهاست.اماآیا اینبهترینراهاست.تسا مهمترینمشکلاینراهحلافزایشچندبرابری)بامرتبهچندجملهای(پیچیدگیمحاسباتی یکراهدیگربرآوردتوزیعاحتماالتیدادگانتوسطشبکهعمیقخلوتوساخت توپولوژیبهینهشبکهباتحلیلالیهبهالیههمبستگیآمارههایالیهقبلاست. neurons that fire together, wire برمبنایقانونهب: together 26

27 GoogLeNet معماری Inception ایدهاصلیمعماری Inception بررسیآناستکهچگونهمیتوانیکساختارخلوتبهینهاز شبکههایدیداریکانولوشنالیبرآوردکرد. 27

28 GoogLeNet معماری Inception ایدهدومآناستکهکاهشبعدحتماضروریاستهرچندبارمحاسباتیداشتهباشد. ادغاموتولیدماتریسهایبابعدکمهمحاویاطالعاتبسیارزیادیازتکهتصویراست. 28

29 GoogLeNet افزودنکانولوشن 1*1 برایکاهشبعد مثالاگرحجمورودی باشد با 20 فیلتر 1 1 حجمخروجیخواهدشد

30 GoogLeNet یکشبکه Inception یکشبکهازماژولهاییازانواعباالستکهپشتسرهم انباشتهشدهوگاهگاهیالیههایادغامبیشینهباگام 2 براینصفکردنگرید استفادهشدهاست. ISSVRC خاصاستکهبرایمسابقات نامیکمعماری Inception GoogLeNet 2014 انتخابشدهاست. نویسندگاننسخهعمیقتروبا Inception بدستآوردهاست. پهنترهمارائهشدهکهنتایجبهتری براساسمشاهداتمقادیردقیقپارامترهایمعماریتاثیرچندانینداشتهاست....: 30

31 رایج ترین نمونه Inception 31

32 32

33 GoogLeNet Architecture A 22 layer CNN Sequential or Parallel Inception module 33

34 GoogLeNet Architecture 34

35 GoogLeNet Main Points Used 9 Inception modules in the whole architecture, with over 100 layers in total! No use of fully connected layers! They use an average pool instead, to go from a 7x7x1024 volume to a 1x1x1024 volume. This saves a huge number of parameters. Uses 12x fewer parameters than AlexNet. There are updated versions to the Inception module (Versions 6 and 7). Trained on GPU within a week. 35

36 Microsoft ResNet عنوانمقاله: Recognition Deep Residual Learning for Image نویسندگان: Sun Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian سالانتشار: 2015 تعدادارجاع:بیشاز 5100 ویژگیاصلی بسیارعمیقترازآنچهتاکنوندیدهاید معرفی block residual 36

37 Microsoft ResNet سوال: آیایادگیریبهترشبکهبهسادگیباافزودنپشتسرهمالیههابدستمیآید باافزودنعمقشبکهمشکل degradation پیشمیآید اینخطابعلتبیشبرازشنیستبلکهباافزودنالیههابهشبکهایکهخوبکارمیکند خطایآموزشافزایشمییابد. راهحل: الیههایاضافهشدهنگاشتهمانی) identity (هستند. سایرالیهها کپیمدلکوتاهترآموزشدیدهاند. وجوداینراهحلنشانمیدهدکهیکمدلعمیقترنشاندهندهآناستیکمدلعمیق ترنبایدخطاییبیشترازمشابهکوتاهترداشتهباشد. 37

38 Microsoft ResNet Residual Block راهحلاینمقالهمعرفیقابکارییادگیریباقیماندهعمیق) learning )deep residual است. بجایآنکهانتظارداشتهباشیمچندالیهپشتسرهمیکتابعرابرازشکنند باقیماندهرا برازشکنند. تابعموردنظر( H(x الیههایپشسرهمنگاشتزیررابرازشمیکنند F(x):=H(x)-x درنتیجهنگاشتاصلیخواهدشد F(x)+x بهینهسازینگاشتباقیماندهراحتتراستچون اگرنگاشتهمانیبهینهشود کافیاستباقیماندهراصفردرنظرگرفت. 38

39 معماری 39

40 Microsoft ResNet Main Points Ultra-deep, up to 152 layers. Authors claim that a naïve increase of layers in plain nets result in higher training and test error Trained on an 8 GPU machine for two to three weeks. 40

41 41

Biologically Inspired Computation

Biologically Inspired Computation Biologically Inspired Computation Deep Learning & Convolutional Neural Networks Joe Marino biologically inspired computation biological intelligence flexible capable of detecting/ executing/reasoning about

More information

Camera Model Identification With The Use of Deep Convolutional Neural Networks

Camera Model Identification With The Use of Deep Convolutional Neural Networks Camera Model Identification With The Use of Deep Convolutional Neural Networks Amel TUAMA 2,3, Frédéric COMBY 2,3, and Marc CHAUMONT 1,2,3 (1) University of Nîmes, France (2) University Montpellier, France

More information

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Emeric Stéphane Boigné eboigne@stanford.edu Jan Felix Heyse heyse@stanford.edu Abstract Scaling

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2

More information

Deep Learning. Dr. Johan Hagelbäck.

Deep Learning. Dr. Johan Hagelbäck. Deep Learning Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Image Classification Image classification can be a difficult task Some of the challenges we have to face are: Viewpoint variation:

More information

Lecture 11-1 CNN introduction. Sung Kim

Lecture 11-1 CNN introduction. Sung Kim Lecture 11-1 CNN introduction Sung Kim 'The only limit is your imagination' http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html Lecture 7: Convolutional

More information

Impact of Automatic Feature Extraction in Deep Learning Architecture

Impact of Automatic Feature Extraction in Deep Learning Architecture Impact of Automatic Feature Extraction in Deep Learning Architecture Fatma Shaheen, Brijesh Verma and Md Asafuddoula Centre for Intelligent Systems Central Queensland University, Brisbane, Australia {f.shaheen,

More information

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS Bulletin of the Transilvania University of Braşov Vol. 10 (59) No. 2-2017 Series I: Engineering Sciences ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS E. HORVÁTH 1 C. POZNA 2 Á. BALLAGI 3

More information

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions Hongyang Gao Texas A&M University College Station, TX hongyang.gao@tamu.edu Zhengyang Wang Texas A&M University

More information

arxiv: v2 [cs.cv] 11 Oct 2016

arxiv: v2 [cs.cv] 11 Oct 2016 Xception: Deep Learning with Depthwise Separable Convolutions arxiv:1610.02357v2 [cs.cv] 11 Oct 2016 François Chollet Google, Inc. fchollet@google.com Monday 10 th October, 2016 Abstract We present an

More information

Xception: Deep Learning with Depthwise Separable Convolutions

Xception: Deep Learning with Depthwise Separable Convolutions Xception: Deep Learning with Depthwise Separable Convolutions François Chollet Google, Inc. fchollet@google.com 1 A variant of the process is to independently look at width-wise correarxiv:1610.02357v3

More information

EE-559 Deep learning 7.2. Networks for image classification

EE-559 Deep learning 7.2. Networks for image classification EE-559 Deep learning 7.2. Networks for image classification François Fleuret https://fleuret.org/ee559/ Fri Nov 16 22:58:34 UTC 2018 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Image classification, standard

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Convolution, LeNet, AlexNet, VGGNet, GoogleNet, Resnet, DenseNet, CAM, Deconvolution Sept 17, 2018 Aaditya Prakash Convolution Convolution Demo Convolution Convolution in

More information

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Peng Liu University of Florida pliu1@ufl.edu Ruogu Fang University of Florida ruogu.fang@bme.ufl.edu arxiv:177.9135v1 [cs.cv]

More information

LANDMARK recognition is an important feature for

LANDMARK recognition is an important feature for 1 NU-LiteNet: Mobile Landmark Recognition using Convolutional Neural Networks Chakkrit Termritthikun, Surachet Kanprachar, Paisarn Muneesawang arxiv:1810.01074v1 [cs.cv] 2 Oct 2018 Abstract The growth

More information

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1 Lecture 5: Convolutional Neural Networks Lecture 5-1 Administrative Assignment 1 due Thursday April 20, 11:59pm on Canvas Assignment 2 will be released Thursday Lecture 5-2 Last time: Neural Networks Linear

More information

Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material

Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material Pulak Purkait 1 pulak.cv@gmail.com Cheng Zhao 2 irobotcheng@gmail.com Christopher Zach 1 christopher.m.zach@gmail.com

More information

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni.

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni. Lesson 08 Convolutional Neural Network Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 08 Convolution we will consider 2D convolution the result

More information

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1 Lecture 5: Convolutional Neural Networks Lecture 5-1 Administrative Assignment 1 due Wednesday April 17, 11:59pm - Important: tag your solutions with the corresponding hw question in gradescope! - Some

More information

Pelee: A Real-Time Object Detection System on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices Pelee: A Real-Time Object Detection System on Mobile Devices Robert J. Wang, Xiang Li, Shuang Ao & Charles X. Ling Department of Computer Science University of Western Ontario London, Ontario, Canada,

More information

Convolu'onal Neural Networks. November 17, 2015

Convolu'onal Neural Networks. November 17, 2015 Convolu'onal Neural Networks November 17, 2015 Ar'ficial Neural Networks Feedforward neural networks Ar'ficial Neural Networks Feedforward, fully-connected neural networks Ar'ficial Neural Networks Feedforward,

More information

Research on Hand Gesture Recognition Using Convolutional Neural Network

Research on Hand Gesture Recognition Using Convolutional Neural Network Research on Hand Gesture Recognition Using Convolutional Neural Network Tian Zhaoyang a, Cheng Lee Lung b a Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China E-mail address:

More information

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring Mathilde Ørstavik og Terje Midtbø Mathilde Ørstavik and Terje Midtbø, A New Era for Feature Extraction in Remotely Sensed

More information

Understanding Neural Networks : Part II

Understanding Neural Networks : Part II TensorFlow Workshop 2018 Understanding Neural Networks Part II : Convolutional Layers and Collaborative Filters Nick Winovich Department of Mathematics Purdue University July 2018 Outline 1 Convolutional

More information

Semantic Segmentation on Resource Constrained Devices

Semantic Segmentation on Resource Constrained Devices Semantic Segmentation on Resource Constrained Devices Sachin Mehta University of Washington, Seattle In collaboration with Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi Project

More information

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET MOTIVATION Fully connected neural network Example 1000x1000 image 1M hidden units 10 12 (= 10 6 10 6 ) parameters! Observation

More information

Deep Neural Network Architectures for Modulation Classification

Deep Neural Network Architectures for Modulation Classification Deep Neural Network Architectures for Modulation Classification Xiaoyu Liu, Diyu Yang, and Aly El Gamal School of Electrical and Computer Engineering Purdue University Email: {liu1962, yang1467, elgamala}@purdue.edu

More information

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition ECE 289G: Paper Presentation #3 Philipp Gysel Autonomous Car ECE 289G Paper Presentation, Philipp Gysel Slide 2 Source: maps.google.com

More information

Colorful Image Colorizations Supplementary Material

Colorful Image Colorizations Supplementary Material Colorful Image Colorizations Supplementary Material Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang, isola, efros}@eecs.berkeley.edu University of California, Berkeley 1 Overview This document

More information

arxiv: v1 [cs.ce] 9 Jan 2018

arxiv: v1 [cs.ce] 9 Jan 2018 Predict Forex Trend via Convolutional Neural Networks Yun-Cheng Tsai, 1 Jun-Hao Chen, 2 Jun-Jie Wang 3 arxiv:1801.03018v1 [cs.ce] 9 Jan 2018 1 Center for General Education 2,3 Department of Computer Science

More information

Wide Residual Networks

Wide Residual Networks SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1 Wide Residual Networks Sergey Zagoruyko sergey.zagoruyko@enpc.fr Nikos Komodakis nikos.komodakis@enpc.fr Université Paris-Est, École des Ponts

More information

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland An Introduction to Convolutional Neural Networks Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland Sources & Resources - Andrej Karpathy, CS231n http://cs231n.github.io/convolutional-networks/

More information

arxiv: v2 [cs.sd] 22 May 2017

arxiv: v2 [cs.sd] 22 May 2017 SAMPLE-LEVEL DEEP CONVOLUTIONAL NEURAL NETWORKS FOR MUSIC AUTO-TAGGING USING RAW WAVEFORMS Jongpil Lee Jiyoung Park Keunhyoung Luke Kim Juhan Nam Korea Advanced Institute of Science and Technology (KAIST)

More information

Vehicle Color Recognition using Convolutional Neural Network

Vehicle Color Recognition using Convolutional Neural Network Vehicle Color Recognition using Convolutional Neural Network Reza Fuad Rachmadi and I Ketut Eddy Purnama Multimedia and Network Engineering Department, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo,

More information

6. Convolutional Neural Networks

6. Convolutional Neural Networks 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Zsolt Kira Quiz coming up Next Tuesday (1/26) 15 minutes Topics: Optimization Basic neural networks No Convolutional

More information

Free-hand Sketch Recognition Classification

Free-hand Sketch Recognition Classification Free-hand Sketch Recognition Classification Wayne Lu Stanford University waynelu@stanford.edu Elizabeth Tran Stanford University eliztran@stanford.edu Abstract People use sketches to express and record

More information

arxiv: v1 [cs.cv] 23 May 2016

arxiv: v1 [cs.cv] 23 May 2016 arxiv:1605.07146v1 [cs.cv] 23 May 2016 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1 Wide Residual Networks Sergey Zagoruyko sergey.zagoruyko@enpc.fr Nikos Komodakis nikos.komodakis@enpc.fr

More information

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING 2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION AUGUST 8-10, 2017 - NOVI, MICHIGAN GESTURE RECOGNITION FOR ROBOTIC CONTROL USING

More information

ECS 289G UC Davis Paper Presenta6on #1

ECS 289G UC Davis Paper Presenta6on #1 ECS 289G UC Davis Paper Presenta6on #1 ImageNet Classifica6on with Deep Convolu6onal Neural Networks Mohammad Motamedi Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 1 Convolu6onal Neural Networks

More information

NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation

NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation Mohamed Samy 1 Karim Amer 1 Kareem Eissa Mahmoud Shaker Mohamed ElHelw Center for Informatics Science Nile

More information

CS 7643: Deep Learning

CS 7643: Deep Learning CS 7643: Deep Learning Topics: Toeplitz matrices and convolutions = matrix-mult Dilated/a-trous convolutions Backprop in conv layers Transposed convolutions Dhruv Batra Georgia Tech HW1 extension 09/22

More information

arxiv: v1 [cs.cv] 15 Apr 2016

arxiv: v1 [cs.cv] 15 Apr 2016 High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks arxiv:1604.04339v1 [cs.cv] 15 Apr 2016 Zifeng Wu, Chunhua Shen, Anton van den Hengel The University of Adelaide, SA 5005,

More information

arxiv: v1 [cs.sd] 1 Oct 2016

arxiv: v1 [cs.sd] 1 Oct 2016 VERY DEEP CONVOLUTIONAL NEURAL NETWORKS FOR RAW WAVEFORMS Wei Dai*, Chia Dai*, Shuhui Qu, Juncheng Li, Samarjit Das {wdai,chiad}@cs.cmu.edu, shuhuiq@stanford.edu, {billy.li,samarjit.das}@us.bosch.com arxiv:1610.00087v1

More information

Lecture 23 Deep Learning: Segmentation

Lecture 23 Deep Learning: Segmentation Lecture 23 Deep Learning: Segmentation COS 429: Computer Vision Thanks: most of these slides shamelessly adapted from Stanford CS231n: Convolutional Neural Networks for Visual Recognition Fei-Fei Li, Andrej

More information

Automatic point-of-interest image cropping via ensembled convolutionalization

Automatic point-of-interest image cropping via ensembled convolutionalization 1 Automatic point-of-interest image cropping via ensembled convolutionalization Andrea Asperti and Pietro Battilana University of Bologna Department of informatics: Science and Engineering (DISI) Abstract

More information

arxiv: v4 [cs.cv] 14 Jun 2017

arxiv: v4 [cs.cv] 14 Jun 2017 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1 arxiv:1605.07146v4 [cs.cv] 14 Jun 2017 Wide Residual Networks Sergey Zagoruyko sergey.zagoruyko@enpc.fr Nikos Komodakis nikos.komodakis@enpc.fr

More information

The Art of Neural Nets

The Art of Neural Nets The Art of Neural Nets Marco Tavora marcotav65@gmail.com Preamble The challenge of recognizing artists given their paintings has been, for a long time, far beyond the capability of algorithms. Recent advances

More information

GPU ACCELERATED DEEP LEARNING WITH CUDNN

GPU ACCELERATED DEEP LEARNING WITH CUDNN GPU ACCELERATED DEEP LEARNING WITH CUDNN Larry Brown Ph.D. March 2015 AGENDA 1 Introducing cudnn and GPUs 2 Deep Learning Context 3 cudnn V2 4 Using cudnn 2 Introducing cudnn and GPUs 3 HOW GPU ACCELERATION

More information

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 -

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 - Lecture 11: Detection and Segmentation Lecture 11-1 May 10, 2017 Administrative Midterms being graded Please don t discuss midterms until next week - some students not yet taken A2 being graded Project

More information

Computer Vision Seminar

Computer Vision Seminar Computer Vision Seminar 236815 Spring 2017 Instructor: Micha Lindenbaum (Taub 600, Tel: 4331, email: mic@cs) Student in this seminar should be those interested in high level, learning based, computer vision.

More information

Image Manipulation Detection using Convolutional Neural Network

Image Manipulation Detection using Convolutional Neural Network Image Manipulation Detection using Convolutional Neural Network Dong-Hyun Kim 1 and Hae-Yeoun Lee 2,* 1 Graduate Student, 2 PhD, Professor 1,2 Department of Computer Software Engineering, Kumoh National

More information

Compact Deep Convolutional Neural Networks for Image Classification

Compact Deep Convolutional Neural Networks for Image Classification 1 Compact Deep Convolutional Neural Networks for Image Classification Zejia Zheng, Zhu Li, Abhishek Nagar 1 and Woosung Kang 2 Abstract Convolutional Neural Network is efficient in learning hierarchical

More information

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer ABSTRACT Belhassen Bayar Drexel University Dept. of ECE Philadelphia, PA, USA bb632@drexel.edu When creating

More information

arxiv: v5 [cs.cv] 23 Aug 2017

arxiv: v5 [cs.cv] 23 Aug 2017 DelugeNets: Deep Networks with Efficient and Flexible Cross-layer Information Inflows arxiv:111.555v5 [cs.cv] 3 Aug 17 Jason Kuen 1 jkuen1@ntu.edu.sg Xiangfei Kong 1 xfkong@ntu.edu.sg Gang Wang gangwang@gmail.com

More information

Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition

Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition Panqu Wang (pawang@ucsd.edu) Department of Electrical and Engineering, University of California San

More information

ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS. Yiren Zhou, Sibo Song, Ngai-Man Cheung

ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS. Yiren Zhou, Sibo Song, Ngai-Man Cheung ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS Yiren Zhou, Sibo Song, Ngai-Man Cheung Singapore University of Technology and Design In this section, we briefly introduce

More information

Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning

Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning Shi Bai, Fanfei Chen and Brendan Englot Abstract We consider an autonomous mapping and exploration problem in

More information

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Undergraduate Honors Theses Computer Science and Computer Engineering 5-2018 Comparison of Google Image

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Presented by: Gordon Christie 1 Overview Reinterpret standard classification convnets as

More information

Sketch-a-Net that Beats Humans

Sketch-a-Net that Beats Humans Sketch-a-Net that Beats Humans Qian Yu SketchLab@QMUL Queen Mary University of London 1 Authors Qian Yu Yongxin Yang Yi-Zhe Song Tao Xiang Timothy Hospedales 2 Let s play a game! Round 1 Easy fish face

More information

CSC321 Lecture 11: Convolutional Networks

CSC321 Lecture 11: Convolutional Networks CSC321 Lecture 11: Convolutional Networks Roger Grosse Roger Grosse CSC321 Lecture 11: Convolutional Networks 1 / 35 Overview What makes vision hard? Vison needs to be robust to a lot of transformations

More information

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement What Is And How Will Machine Learning Change Our Lives Raymond Ptucha, Rochester Institute of Technology 2018 Engineering Symposium April 24, 2018, 9:45am Ptucha 18 1 Fair Use Agreement This agreement

More information

SPL 2017 Team Description Paper

SPL 2017 Team Description Paper Hibikino-Musashi@Home SPL 2017 Team Description Paper Sansei Hori, Yutaro Ishida, Yuta Kiyama, Yuichiro Tanaka, Yuki Kuroda, Masataka Hisano, Yuto Imamura, Tomotaka Himaki, Yuma Yoshimoto, Yoshiya Aratani,

More information

Convolutional neural networks

Convolutional neural networks Convolutional neural networks Themes Curriculum: Ch 9.1, 9.2 and http://cs231n.github.io/convolutionalnetworks/ The simple motivation and idea How it s done Receptive field Pooling Dilated convolutions

More information

Visualizing and Understanding. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 12 -

Visualizing and Understanding. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 12 - Lecture 12: Visualizing and Understanding Lecture 12-1 May 16, 2017 Administrative Milestones due tonight on Canvas, 11:59pm Midterm grades released on Gradescope this week A3 due next Friday, 5/26 HyperQuest

More information

Residual Conv-Deconv Grid Network for Semantic Segmentation

Residual Conv-Deconv Grid Network for Semantic Segmentation FOURURE ET AL.: RESIDUAL CONV-DECONV GRIDNET 1 Residual Conv-Deconv Grid Network for Semantic Segmentation Damien Fourure 1 damien.fourure@univ-st-etienne.fr Rémi Emonet 1 remi.emonet@univ-st-etienne.fr

More information

Does Haze Removal Help CNN-based Image Classification?

Does Haze Removal Help CNN-based Image Classification? Does Haze Removal Help CNN-based Image Classification? Yanting Pei 1,2, Yaping Huang 1,, Qi Zou 1, Yuhang Lu 2, and Song Wang 2,3, 1 Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing

More information

arxiv: v1 [cs.cv] 28 Nov 2017 Abstract

arxiv: v1 [cs.cv] 28 Nov 2017 Abstract Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks Zhaofan Qiu, Ting Yao, and Tao Mei University of Science and Technology of China, Hefei, China Microsoft Research, Beijing, China

More information

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes Using Deep Learning to Classify Malignancy Associated Changes Hakan Wieslander, Gustav Forslid Project in Computational Science: Report January 2017 PROJECT REPORT Department of Information Technology

More information

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Yuhang Dong, Zhuocheng Jiang, Hongda Shen, W. David Pan Dept. of Electrical & Computer

More information

Generating an appropriate sound for a video using WaveNet.

Generating an appropriate sound for a video using WaveNet. Australian National University College of Engineering and Computer Science Master of Computing Generating an appropriate sound for a video using WaveNet. COMP 8715 Individual Computing Project Taku Ueki

More information

Park Smart. D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1. Abstract. 1. Introduction

Park Smart. D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1. Abstract. 1. Introduction Park Smart D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1 1 Department of Mathematics and Computer Science University of Catania {dimauro,battiato,gfarinella}@dmi.unict.it

More information

arxiv: v1 [cs.cv] 18 Aug 2016

arxiv: v1 [cs.cv] 18 Aug 2016 How Image Degradations Affect Deep CNN-based Face Recognition? arxiv:1608.05246v1 [cs.cv] 18 Aug 2016 Şamil Karahan 1 Merve Kılınç Yıldırım 1 Kadir Kırtaç 1 Ferhat Şükrü Rende 1 Gültekin Bütün 1 Hazım

More information

clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions

clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions Dong-Qing Zhang ImaginationAI LLC dongqing@gmail.com Abstract Depthwise convolution and grouped convolution

More information

To Post or Not To Post: Using CNNs to Classify Social Media Worthy Images

To Post or Not To Post: Using CNNs to Classify Social Media Worthy Images To Post or Not To Post: Using CNNs to Classify Social Media Worthy Images Lauren Blake Stanford University lblake@stanford.edu Abstract This project considers the feasibility for CNN models to classify

More information

Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3

Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3 Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3 1 Olaf Ronneberger, Philipp Fischer, Thomas Brox (Freiburg, Germany) 2 Hyeonwoo Noh, Seunghoon Hong, Bohyung Han (POSTECH,

More information

Automated Image Timestamp Inference Using Convolutional Neural Networks

Automated Image Timestamp Inference Using Convolutional Neural Networks Automated Image Timestamp Inference Using Convolutional Neural Networks Prafull Sharma prafull7@stanford.edu Michel Schoemaker michel92@stanford.edu Stanford University David Pan napdivad@stanford.edu

More information

Coursework 2. MLP Lecture 7 Convolutional Networks 1

Coursework 2. MLP Lecture 7 Convolutional Networks 1 Coursework 2 MLP Lecture 7 Convolutional Networks 1 Coursework 2 - Overview and Objectives Overview: Use a selection of the techniques covered in the course so far to train accurate multi-layer networks

More information

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS Kuan-Chuan Peng and Tsuhan Chen Cornell University School of Electrical and Computer Engineering Ithaca, NY 14850

More information

A Neural Algorithm of Artistic Style (2015)

A Neural Algorithm of Artistic Style (2015) A Neural Algorithm of Artistic Style (2015) Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Nancy Iskander (niskander@dgp.toronto.edu) Overview of Method Content: Global structure. Style: Colours; local

More information

arxiv: v1 [cs.cv] 3 May 2018

arxiv: v1 [cs.cv] 3 May 2018 Semantic segmentation of mfish images using convolutional networks Esteban Pardo a, José Mário T Morgado b, Norberto Malpica a a Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Móstoles,

More information

Driving Using End-to-End Deep Learning

Driving Using End-to-End Deep Learning Driving Using End-to-End Deep Learning Farzain Majeed farza@knights.ucf.edu Kishan Athrey kishan.athrey@knights.ucf.edu Dr. Mubarak Shah shah@crcv.ucf.edu Abstract This work explores the problem of autonomously

More information

DSNet: An Efficient CNN for Road Scene Segmentation

DSNet: An Efficient CNN for Road Scene Segmentation DSNet: An Efficient CNN for Road Scene Segmentation Ping-Rong Chen 1 Hsueh-Ming Hang 1 1 National Chiao Tung University {james50120.ee05g, hmhang}@nctu.edu.tw Sheng-Wei Chan 2 Jing-Jhih Lin 2 2 Industrial

More information

On the Robustness of Deep Neural Networks

On the Robustness of Deep Neural Networks On the Robustness of Deep Neural Networks Manuel Günther, Andras Rozsa, and Terrance E. Boult Vision and Security Technology Lab, University of Colorado Colorado Springs {mgunther,arozsa,tboult}@vast.uccs.edu

More information

arxiv: v1 [cs.lg] 2 Jan 2018

arxiv: v1 [cs.lg] 2 Jan 2018 Deep Learning for Identifying Potential Conceptual Shifts for Co-creative Drawing arxiv:1801.00723v1 [cs.lg] 2 Jan 2018 Pegah Karimi pkarimi@uncc.edu Kazjon Grace The University of Sydney Sydney, NSW 2006

More information

INFORMATION about image authenticity can be used in

INFORMATION about image authenticity can be used in 1 Constrained Convolutional Neural Networs: A New Approach Towards General Purpose Image Manipulation Detection Belhassen Bayar, Student Member, IEEE, and Matthew C. Stamm, Member, IEEE Abstract Identifying

More information

Camera Model Identification With The Use of Deep Convolutional Neural Networks

Camera Model Identification With The Use of Deep Convolutional Neural Networks Camera Model Identification With The Use of Deep Convolutional Neural Networks Amel Tuama, Frédéric Comby, Marc Chaumont To cite this version: Amel Tuama, Frédéric Comby, Marc Chaumont. Camera Model Identification

More information

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks Zhaofan Qiu, Ting Yao, and Tao Mei University of Science and Technology of China, Hefei, China Microsoft Research, Beijing, China

More information

An energy-efficient coarse grained spatial architecture for convolutional neural networks AlexNet

An energy-efficient coarse grained spatial architecture for convolutional neural networks AlexNet LETTER IEICE Electronics Express, Vol.14, No.15, 1 12 An energy-efficient coarse grained spatial architecture for convolutional neural networks AlexNet Boya Zhao a), Mingjiang Wang b), and Ming Liu Harbin

More information

MOVE EVALUATION IN GO USING DEEP CONVOLUTIONAL NEURAL NETWORKS

MOVE EVALUATION IN GO USING DEEP CONVOLUTIONAL NEURAL NETWORKS MOVE EVALUATION IN GO USING DEEP CONVOLUTIONAL NEURAL NETWORKS Chris J. Maddison University of Toronto cmaddis@cs.toronto.edu Aja Huang 1, Ilya Sutskever 2, David Silver 1 Google DeepMind 1, Google Brain

More information

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model Yuzhou Hu Departmentof Electronic Engineering, Fudan University,

More information

Analyzing features learned for Offline Signature Verification using Deep CNNs

Analyzing features learned for Offline Signature Verification using Deep CNNs Accepted as a conference paper for ICPR 2016 Analyzing features learned for Offline Signature Verification using Deep CNNs Luiz G. Hafemann, Robert Sabourin Lab. d imagerie, de vision et d intelligence

More information

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Open Source Dataset and Deep Learning Models

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial

More information

Can you tell a face from a HEVC bitstream?

Can you tell a face from a HEVC bitstream? Can you tell a face from a HEVC bitstream? Saeed Ranjbar Alvar, Hyomin Choi and Ivan V. Bajić School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada Email: {saeedr,chyomin, ibajic}@sfu.ca

More information

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Lars Hertel, Huy Phan and Alfred Mertins Institute for Signal Processing, University of Luebeck, Germany Graduate School

More information

INTRODUCTION TO DEEP LEARNING. Steve Tjoa June 2013

INTRODUCTION TO DEEP LEARNING. Steve Tjoa June 2013 INTRODUCTION TO DEEP LEARNING Steve Tjoa kiemyang@gmail.com June 2013 Acknowledgements http://ufldl.stanford.edu/wiki/index.php/ UFLDL_Tutorial http://youtu.be/ayzoubkuf3m http://youtu.be/zmnoatzigik 2

More information

Special Topics in Mechano InformaticsⅡ 2017/5/31

Special Topics in Mechano InformaticsⅡ 2017/5/31 Special Topics in Mechano InformaticsⅡ 2017/5/31 Object class recognition Object detection Sports car Sports car Image caption generation A yellow train on the tracks near a train station. Semantic segmentation

More information

Object Recognition with and without Objects

Object Recognition with and without Objects Object Recognition with and without Objects Zhuotun Zhu, Lingxi Xie, Alan Yuille Johns Hopkins University, Baltimore, MD, USA {zhuotun, 198808xc, alan.l.yuille}@gmail.com Abstract While recent deep neural

More information

Split-Complex Convolutional Neural Networks

Split-Complex Convolutional Neural Networks Split-Complex Convolutional Neural Networks Timothy Anderson, 27 Timothy Anderson Department of Electrical Engineering Stanford University Stanford, CA 9435 timothy.anderson@stanford.edu Introduction Beginning

More information