Convolu'onal Neural Networks. November 17, 2015

Size: px
Start display at page:

Download "Convolu'onal Neural Networks. November 17, 2015"

Transcription

1 Convolu'onal Neural Networks November 17, 2015

2 Ar'ficial Neural Networks Feedforward neural networks

3 Ar'ficial Neural Networks Feedforward, fully-connected neural networks

4 Ar'ficial Neural Networks Feedforward, fully-connected neural networks Large modeling capacity

5 Ar'ficial Neural Networks Feedforward, fully-connected neural networks Large modeling capacity Require large amounts of data

6 Ar'ficial Neural Networks Feedforward, fully-connected neural networks Large modeling capacity Require large amounts of data Work fairly well for handwrihen digits

7

8 Natural images? not so much.

9

10 Natural Images

11 Much more detail Natural Images

12 Natural Images Much more detail Intricate spa'al rela'onships

13 Natural Images Much more detail Intricate spa'al rela'onships More variety within a class of examples

14 Natural Images Much more detail Intricate spa'al rela'onships More variety within a class of examples

15 Natural Images Much more detail Intricate spa'al rela'onships More variety within a class of examples Natural varia'ons Color Viewing angle Ligh'ng Size Posi'on

16 Can we build a beher network?

17 Take inspira'on from neuroscience

18 Biological Vision

19 Biological Vision

20 Biological Vision Hubel & Wiesel (1950s)

21 Biological Vision Hubel & Wiesel (1950s)

22 Biological Vision Hubel & Wiesel (1950s) Record from neurons in V1

23 Biological Vision Hubel & Wiesel (1950s) Record from neurons in V1 Present moving gra'ngs

24 Biological Vision Hubel & Wiesel (1950s) Record from neurons in V1 Present moving gra'ngs

25 Biological Vision

26 Biological Vision Simple and complex cells

27 Biological Vision Simple and complex cells

28 Higher visual areas Biological Vision

29 Biological Vision Higher visual areas Encode complex s'muli

30 Biological Vision Higher visual areas Encode complex s'muli Professor Doris Tsao, Caltech

31 Biological Vision Friewald, 2009 & 2010

32 Biological Vision

33 Biological Vision Hierarchical representa'on

34 Biological Vision Hierarchical representa'on Map of visual space at lower levels

35 Biological Vision Hierarchical representa'on Map of visual space at lower levels Highly connected at upper levels of the hierarchy

36 How do we turn this into a model?

37 Convolu'on & Pooling

38 Convolu'onal Opera'on

39 Convolu'onal Opera'on

40 Pooling Opera'on

41 LeNet LeCun, 1989

42 AI Winter

43 AI Winter

44 AI Winter Convolu'onal neural networks are great, but

45 AI Winter Convolu'onal neural networks are great, but They are hard to train

46 AI Winter Convolu'onal neural networks are great, but They are hard to train They take a long 'me to train

47 AI Winter Convolu'onal neural networks are great, but They are hard to train They take a long 'me to train We don t have enough data to train them

48 GPUs

49 GPU Graphics Processing Unit

50 GPU Graphics Processing Unit Rendering images is computa'onally intensive

51 GPU Graphics Processing Unit Rendering images is computa'onally intensive Parallel processing architecture to handle this task

52 GPU Graphics Processing Unit Rendering images is computa'onally intensive Parallel processing architecture to handle this task Can also handle matrix mul'plica'on opera'ons

53 GPU Graphics Processing Unit Rendering images is computa'onally intensive Parallel processing architecture to handle this task Can also handle matrix mul'plica'on opera'ons

54 Big Data

55 Cameras Big Data

56 Big Data Cameras Digital cameras, smartphones

57 Big Data Cameras Digital cameras, smartphones Internet

58 Big Data Cameras Digital cameras, smartphones Internet Anyone can upload a picture

59 Big Data Cameras Digital cameras, smartphones Internet Anyone can upload a picture Crowdsourcing

60 Big Data Cameras Digital cameras, smartphones Internet Anyone can upload a picture Crowdsourcing ImageNet

61 ImageNet Large Scale Visual Recogni'on Challenge

62 ImageNet Large Scale Visual Recogni'on Challenge Object recogni'on task

63 ImageNet Large Scale Visual Recogni'on Challenge Object recogni'on task 1.2 million images

64 ImageNet Large Scale Visual Recogni'on Challenge Object recogni'on task 1.2 million images 1,000 classes of objects

65 ILSVRC 2012

66 ILSVRC 2012 Krizhevsky, et al. use a deep convolu'onal network

67 ILSVRC 2012 Krizhevsky, et al. use a deep convolu'onal network Nearly halve the best error rate of the previous year

68 ILSVRC 2012 Krizhevsky, et al. use a deep convolu'onal network Nearly halve the best error rate of the previous year Trained using GPUs and a few other tricks

69 Rec'fied Linear Units (ReLUs)

70 Rec'fied Linear Units (ReLUs) Researchers had primarily been using sigmoid non-lineari'es

71 Rec'fied Linear Units (ReLUs) Researchers had primarily been using sigmoid non-lineari'es Vanishing gradient, satura'on

72 Rec'fied Linear Units (ReLUs) Researchers had primarily been using sigmoid non-lineari'es Vanishing gradient, satura'on Instead, use ReLU

73 Rec'fied Linear Units (ReLUs) Researchers had primarily been using sigmoid non-lineari'es Vanishing gradient, satura'on Instead, use ReLU Works much beher!

74 Dropout

75 Dropout Unreliable connec'ons between layers

76 Dropout Unreliable connec'ons between layers Randomly have connec'ons drop out

77 Dropout Unreliable connec'ons between layers Randomly have connec'ons drop out Acts as a regularizer

78 Dropout Unreliable connec'ons between layers Randomly have connec'ons drop out Acts as a regularizer Forces the network to learn general features

79 AlexNet Image Convolu'on and Max Pooling Layers Fully Connected Layers

80 Features

81 Conv1 Features

82 Top Image Patches Features

83

84

85

86

87

88

89

90

91

92 2014

93 GoogLeNet 2014

94 GoogLeNet 2014

95 GoogLeNet 2014

96 GoogLeNet 2014

97 GoogLeNet 2014

98 GoogLeNet 2014

99 2014 GoogLeNet 7% top-5 error

100 Microsoh 2015

101 2015 Microsoh 5% top-5 accuracy

102 2015 Microsoh 5% top-5 accuracy Surpassed human level performance

103 Issues

104 Adversarial examples Issues

105 Issues Adversarial examples Lacking a theore'cal understanding of these models

106 Issues Adversarial examples Lacking a theore'cal understanding of these models Learning is dependent on class labels. Unsupervised deep learning is less developed.

107 Sohware Packages Caffe - hhps://github.com/bvlc/caffe Torch - hhps://github.com/torch/torch7 Theano - hhps://github.com/theano/theano Neon - hhps://github.com/nervanasystems/neon TensorFlow - hhps://github.com/tensorflow/tensorflow

108 Resources LeNet: Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. HandwriHen digit recogni'on with a back-propaga'on network. Advances in Neural Informa6on Processing Systems ImageNet: Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribu'on) ImageNet Large Scale Visual Recogni'on Challenge. arxiv: , AlexNet: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classifica'on with deep convolu'onal neural networks." Advances in neural informa6on processing systems Network Visualiza7on: Zeiler, MaHhew D., and Rob Fergus. "Visualizing and understanding convolu'onal networks." Computer Vision ECCV Springer Interna'onal Publishing, GoogLeNet: Szegedy, Chris'an, et al. "Going deeper with convolu'ons." arxiv preprint arxiv: (2014). Microso< Network: He, Kaiming, et al. "Delving deep into rec'fiers: Surpassing human-level performance on imagenet classifica'on." arxiv preprint arxiv: (2015). Adversarial Examples: Szegedy, Chris'an, et al. "Intriguing proper'es of neural networks." arxiv preprint arxiv: (2013).

Biologically Inspired Computation

Biologically Inspired Computation Biologically Inspired Computation Deep Learning & Convolutional Neural Networks Joe Marino biologically inspired computation biological intelligence flexible capable of detecting/ executing/reasoning about

More information

Lecture 11-1 CNN introduction. Sung Kim

Lecture 11-1 CNN introduction. Sung Kim Lecture 11-1 CNN introduction Sung Kim 'The only limit is your imagination' http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html Lecture 7: Convolutional

More information

arxiv: v2 [cs.cv] 11 Oct 2016

arxiv: v2 [cs.cv] 11 Oct 2016 Xception: Deep Learning with Depthwise Separable Convolutions arxiv:1610.02357v2 [cs.cv] 11 Oct 2016 François Chollet Google, Inc. fchollet@google.com Monday 10 th October, 2016 Abstract We present an

More information

Xception: Deep Learning with Depthwise Separable Convolutions

Xception: Deep Learning with Depthwise Separable Convolutions Xception: Deep Learning with Depthwise Separable Convolutions François Chollet Google, Inc. fchollet@google.com 1 A variant of the process is to independently look at width-wise correarxiv:1610.02357v3

More information

ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS. Yiren Zhou, Sibo Song, Ngai-Man Cheung

ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS. Yiren Zhou, Sibo Song, Ngai-Man Cheung ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS Yiren Zhou, Sibo Song, Ngai-Man Cheung Singapore University of Technology and Design In this section, we briefly introduce

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2

More information

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1 Lecture 5: Convolutional Neural Networks Lecture 5-1 Administrative Assignment 1 due Thursday April 20, 11:59pm on Canvas Assignment 2 will be released Thursday Lecture 5-2 Last time: Neural Networks Linear

More information

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes Using Deep Learning to Classify Malignancy Associated Changes Hakan Wieslander, Gustav Forslid Project in Computational Science: Report January 2017 PROJECT REPORT Department of Information Technology

More information

یادآوری: خالصه CNN. ConvNet

یادآوری: خالصه CNN. ConvNet 1 ConvNet یادآوری: خالصه CNN شبکه عصبی کانولوشنال یا Convolutional Neural Networks یا نوعی از شبکههای عصبی عمیق مدل یادگیری آن باناظر.اصالح وزنها با الگوریتم back-propagation مناسب برای داده های حجیم و

More information

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1

Convolutional Neural Networks. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 5-1 Lecture 5: Convolutional Neural Networks Lecture 5-1 Administrative Assignment 1 due Wednesday April 17, 11:59pm - Important: tag your solutions with the corresponding hw question in gradescope! - Some

More information

Camera Model Identification With The Use of Deep Convolutional Neural Networks

Camera Model Identification With The Use of Deep Convolutional Neural Networks Camera Model Identification With The Use of Deep Convolutional Neural Networks Amel TUAMA 2,3, Frédéric COMBY 2,3, and Marc CHAUMONT 1,2,3 (1) University of Nîmes, France (2) University Montpellier, France

More information

Impact of Automatic Feature Extraction in Deep Learning Architecture

Impact of Automatic Feature Extraction in Deep Learning Architecture Impact of Automatic Feature Extraction in Deep Learning Architecture Fatma Shaheen, Brijesh Verma and Md Asafuddoula Centre for Intelligent Systems Central Queensland University, Brisbane, Australia {f.shaheen,

More information

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition ECE 289G: Paper Presentation #3 Philipp Gysel Autonomous Car ECE 289G Paper Presentation, Philipp Gysel Slide 2 Source: maps.google.com

More information

Teaching icub to recognize. objects. Giulia Pasquale. PhD student

Teaching icub to recognize. objects. Giulia Pasquale. PhD student Teaching icub to recognize RobotCub Consortium. All rights reservted. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. objects

More information

Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition

Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition Modeling the Contribution of Central Versus Peripheral Vision in Scene, Object, and Face Recognition Panqu Wang (pawang@ucsd.edu) Department of Electrical and Engineering, University of California San

More information

TRANSFORMING PHOTOS TO COMICS USING CONVOLUTIONAL NEURAL NETWORKS. Tsinghua University, China Cardiff University, UK

TRANSFORMING PHOTOS TO COMICS USING CONVOLUTIONAL NEURAL NETWORKS. Tsinghua University, China Cardiff University, UK TRANSFORMING PHOTOS TO COMICS USING CONVOUTIONA NEURA NETWORKS Yang Chen Yu-Kun ai Yong-Jin iu Tsinghua University, China Cardiff University, UK ABSTRACT In this paper, inspired by Gatys s recent work,

More information

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING 2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION AUGUST 8-10, 2017 - NOVI, MICHIGAN GESTURE RECOGNITION FOR ROBOTIC CONTROL USING

More information

Deep Learning. Dr. Johan Hagelbäck.

Deep Learning. Dr. Johan Hagelbäck. Deep Learning Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Image Classification Image classification can be a difficult task Some of the challenges we have to face are: Viewpoint variation:

More information

Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks

Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks Jo rg Wagner1,2, Volker Fischer1, Michael Herman1 and Sven Behnke2 1- Robert Bosch GmbH - 70442 Stuttgart - Germany 2-

More information

EE-559 Deep learning 7.2. Networks for image classification

EE-559 Deep learning 7.2. Networks for image classification EE-559 Deep learning 7.2. Networks for image classification François Fleuret https://fleuret.org/ee559/ Fri Nov 16 22:58:34 UTC 2018 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Image classification, standard

More information

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions Hongyang Gao Texas A&M University College Station, TX hongyang.gao@tamu.edu Zhengyang Wang Texas A&M University

More information

Compact Deep Convolutional Neural Networks for Image Classification

Compact Deep Convolutional Neural Networks for Image Classification 1 Compact Deep Convolutional Neural Networks for Image Classification Zejia Zheng, Zhu Li, Abhishek Nagar 1 and Woosung Kang 2 Abstract Convolutional Neural Network is efficient in learning hierarchical

More information

ECS 289G UC Davis Paper Presenta6on #1

ECS 289G UC Davis Paper Presenta6on #1 ECS 289G UC Davis Paper Presenta6on #1 ImageNet Classifica6on with Deep Convolu6onal Neural Networks Mohammad Motamedi Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 1 Convolu6onal Neural Networks

More information

Can you tell a face from a HEVC bitstream?

Can you tell a face from a HEVC bitstream? Can you tell a face from a HEVC bitstream? Saeed Ranjbar Alvar, Hyomin Choi and Ivan V. Bajić School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada Email: {saeedr,chyomin, ibajic}@sfu.ca

More information

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring Mathilde Ørstavik og Terje Midtbø Mathilde Ørstavik and Terje Midtbø, A New Era for Feature Extraction in Remotely Sensed

More information

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS Bulletin of the Transilvania University of Braşov Vol. 10 (59) No. 2-2017 Series I: Engineering Sciences ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS E. HORVÁTH 1 C. POZNA 2 Á. BALLAGI 3

More information

arxiv: v1 [cs.ce] 9 Jan 2018

arxiv: v1 [cs.ce] 9 Jan 2018 Predict Forex Trend via Convolutional Neural Networks Yun-Cheng Tsai, 1 Jun-Hao Chen, 2 Jun-Jie Wang 3 arxiv:1801.03018v1 [cs.ce] 9 Jan 2018 1 Center for General Education 2,3 Department of Computer Science

More information

clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions

clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions clcnet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions Dong-Qing Zhang ImaginationAI LLC dongqing@gmail.com Abstract Depthwise convolution and grouped convolution

More information

arxiv: v1 [cs.cv] 15 Apr 2016

arxiv: v1 [cs.cv] 15 Apr 2016 High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks arxiv:1604.04339v1 [cs.cv] 15 Apr 2016 Zifeng Wu, Chunhua Shen, Anton van den Hengel The University of Adelaide, SA 5005,

More information

ECE 599/692 Deep Learning Lecture 19 Beyond BP and CNN

ECE 599/692 Deep Learning Lecture 19 Beyond BP and CNN ECE 599/692 Deep Learning Lecture 19 Beyond BP and CNN Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi

More information

Introduction to Computer Engineering

Introduction to Computer Engineering Introduction to Computer Engineering Mohammad Hossein Manshaei manshaei@gmail.com Textbook Computer Science an Overview J.Glenn Brooksher, 11 th Edition Pearson 2011 2 Contents 1. Computer science vs computer

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Convolution, LeNet, AlexNet, VGGNet, GoogleNet, Resnet, DenseNet, CAM, Deconvolution Sept 17, 2018 Aaditya Prakash Convolution Convolution Demo Convolution Convolution in

More information

Object Recognition with and without Objects

Object Recognition with and without Objects Object Recognition with and without Objects Zhuotun Zhu, Lingxi Xie, Alan Yuille Johns Hopkins University, Baltimore, MD, USA {zhuotun, 198808xc, alan.l.yuille}@gmail.com Abstract While recent deep neural

More information

Research on Hand Gesture Recognition Using Convolutional Neural Network

Research on Hand Gesture Recognition Using Convolutional Neural Network Research on Hand Gesture Recognition Using Convolutional Neural Network Tian Zhaoyang a, Cheng Lee Lung b a Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China E-mail address:

More information

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Peng Liu University of Florida pliu1@ufl.edu Ruogu Fang University of Florida ruogu.fang@bme.ufl.edu arxiv:177.9135v1 [cs.cv]

More information

Colorful Image Colorizations Supplementary Material

Colorful Image Colorizations Supplementary Material Colorful Image Colorizations Supplementary Material Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang, isola, efros}@eecs.berkeley.edu University of California, Berkeley 1 Overview This document

More information

Visualizing and Understanding. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 12 -

Visualizing and Understanding. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 12 - Lecture 12: Visualizing and Understanding Lecture 12-1 May 16, 2017 Administrative Milestones due tonight on Canvas, 11:59pm Midterm grades released on Gradescope this week A3 due next Friday, 5/26 HyperQuest

More information

Hand Gesture Recognition by Means of Region- Based Convolutional Neural Networks

Hand Gesture Recognition by Means of Region- Based Convolutional Neural Networks Contemporary Engineering Sciences, Vol. 10, 2017, no. 27, 1329-1342 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2017.710154 Hand Gesture Recognition by Means of Region- Based Convolutional

More information

arxiv: v1 [cs.ne] 16 Nov 2016

arxiv: v1 [cs.ne] 16 Nov 2016 Training Spiking Deep Networks for Neuromorphic Hardware arxiv:1611.5141v1 [cs.ne] 16 Nov 16 Eric Hunsberger Centre for Theoretical Neuroscience University of Waterloo Waterloo, ON N2L 3G1 ehunsber@uwaterloo.ca

More information

Computer Vision Seminar

Computer Vision Seminar Computer Vision Seminar 236815 Spring 2017 Instructor: Micha Lindenbaum (Taub 600, Tel: 4331, email: mic@cs) Student in this seminar should be those interested in high level, learning based, computer vision.

More information

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen

CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS. Kuan-Chuan Peng and Tsuhan Chen CROSS-LAYER FEATURES IN CONVOLUTIONAL NEURAL NETWORKS FOR GENERIC CLASSIFICATION TASKS Kuan-Chuan Peng and Tsuhan Chen Cornell University School of Electrical and Computer Engineering Ithaca, NY 14850

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial

More information

arxiv: v1 [cs.sd] 1 Oct 2016

arxiv: v1 [cs.sd] 1 Oct 2016 VERY DEEP CONVOLUTIONAL NEURAL NETWORKS FOR RAW WAVEFORMS Wei Dai*, Chia Dai*, Shuhui Qu, Juncheng Li, Samarjit Das {wdai,chiad}@cs.cmu.edu, shuhuiq@stanford.edu, {billy.li,samarjit.das}@us.bosch.com arxiv:1610.00087v1

More information

Pelee: A Real-Time Object Detection System on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices Pelee: A Real-Time Object Detection System on Mobile Devices Robert J. Wang, Xiang Li, Shuang Ao & Charles X. Ling Department of Computer Science University of Western Ontario London, Ontario, Canada,

More information

TripNet: Detecting Trip Hazards on Construction Sites

TripNet: Detecting Trip Hazards on Construction Sites TripNet: Detecting Trip Hazards on Construction Sites Sean McMahon, Niko Sünderhauf, Michael Milford, Ben Upcroft ARC Centre of Excellence for Robotic Vision Queensland University of Technology (QUT),

More information

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer ABSTRACT Belhassen Bayar Drexel University Dept. of ECE Philadelphia, PA, USA bb632@drexel.edu When creating

More information

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement

What Is And How Will Machine Learning Change Our Lives. Fair Use Agreement What Is And How Will Machine Learning Change Our Lives Raymond Ptucha, Rochester Institute of Technology 2018 Engineering Symposium April 24, 2018, 9:45am Ptucha 18 1 Fair Use Agreement This agreement

More information

A Fast Method for Estimating Transient Scene Attributes

A Fast Method for Estimating Transient Scene Attributes A Fast Method for Estimating Transient Scene Attributes Ryan Baltenberger, Menghua Zhai, Connor Greenwell, Scott Workman, Nathan Jacobs Department of Computer Science, University of Kentucky {rbalten,

More information

Automatic understanding of the visual world

Automatic understanding of the visual world Automatic understanding of the visual world 1 Machine visual perception Artificial capacity to see, understand the visual world Object recognition Image or sequence of images Action recognition 2 Machine

More information

Learning Deep Networks from Noisy Labels with Dropout Regularization

Learning Deep Networks from Noisy Labels with Dropout Regularization Learning Deep Networks from Noisy Labels with Dropout Regularization Ishan Jindal, Matthew Nokleby Electrical and Computer Engineering Wayne State University, MI, USA Email: {ishan.jindal, matthew.nokleby}@wayne.edu

More information

arxiv: v5 [cs.cv] 23 Aug 2017

arxiv: v5 [cs.cv] 23 Aug 2017 DelugeNets: Deep Networks with Efficient and Flexible Cross-layer Information Inflows arxiv:111.555v5 [cs.cv] 3 Aug 17 Jason Kuen 1 jkuen1@ntu.edu.sg Xiangfei Kong 1 xfkong@ntu.edu.sg Gang Wang gangwang@gmail.com

More information

LANDMARK recognition is an important feature for

LANDMARK recognition is an important feature for 1 NU-LiteNet: Mobile Landmark Recognition using Convolutional Neural Networks Chakkrit Termritthikun, Surachet Kanprachar, Paisarn Muneesawang arxiv:1810.01074v1 [cs.cv] 2 Oct 2018 Abstract The growth

More information

Correlating Filter Diversity with Convolutional Neural Network Accuracy

Correlating Filter Diversity with Convolutional Neural Network Accuracy Correlating Filter Diversity with Convolutional Neural Network Accuracy Casey A. Graff School of Computer Science and Engineering University of California San Diego La Jolla, CA 92023 Email: cagraff@ucsd.edu

More information

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 83

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 83 Recognition: Overview Sanja Fidler CSC420: Intro to Image Understanding 1/ 83 Textbook This book has a lot of material: K. Grauman and B. Leibe Visual Object Recognition Synthesis Lectures On Computer

More information

Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning

Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning Toward Autonomous Mapping and Exploration for Mobile Robots through Deep Supervised Learning Shi Bai, Fanfei Chen and Brendan Englot Abstract We consider an autonomous mapping and exploration problem in

More information

arxiv: v1 [cs.lg] 2 Jan 2018

arxiv: v1 [cs.lg] 2 Jan 2018 Deep Learning for Identifying Potential Conceptual Shifts for Co-creative Drawing arxiv:1801.00723v1 [cs.lg] 2 Jan 2018 Pegah Karimi pkarimi@uncc.edu Kazjon Grace The University of Sydney Sydney, NSW 2006

More information

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 78

Recognition: Overview. Sanja Fidler CSC420: Intro to Image Understanding 1/ 78 Recognition: Overview Sanja Fidler CSC420: Intro to Image Understanding 1/ 78 Textbook This book has a lot of material: K. Grauman and B. Leibe Visual Object Recognition Synthesis Lectures On Computer

More information

arxiv: v1 [cs.cv] 27 Nov 2016

arxiv: v1 [cs.cv] 27 Nov 2016 Real-Time Video Highlights for Yahoo Esports arxiv:1611.08780v1 [cs.cv] 27 Nov 2016 Yale Song Yahoo Research New York, USA yalesong@yahoo-inc.com Abstract Esports has gained global popularity in recent

More information

Radio Deep Learning Efforts Showcase Presentation

Radio Deep Learning Efforts Showcase Presentation Radio Deep Learning Efforts Showcase Presentation November 2016 hume@vt.edu www.hume.vt.edu Tim O Shea Senior Research Associate Program Overview Program Objective: Rethink fundamental approaches to how

More information

Artistic Image Colorization with Visual Generative Networks

Artistic Image Colorization with Visual Generative Networks Artistic Image Colorization with Visual Generative Networks Final report Yuting Sun ytsun@stanford.edu Yue Zhang zoezhang@stanford.edu Qingyang Liu qnliu@stanford.edu 1 Motivation Visual generative models,

More information

Image Manipulation Detection using Convolutional Neural Network

Image Manipulation Detection using Convolutional Neural Network Image Manipulation Detection using Convolutional Neural Network Dong-Hyun Kim 1 and Hae-Yeoun Lee 2,* 1 Graduate Student, 2 PhD, Professor 1,2 Department of Computer Software Engineering, Kumoh National

More information

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Emeric Stéphane Boigné eboigne@stanford.edu Jan Felix Heyse heyse@stanford.edu Abstract Scaling

More information

arxiv: v2 [cs.sd] 22 May 2017

arxiv: v2 [cs.sd] 22 May 2017 SAMPLE-LEVEL DEEP CONVOLUTIONAL NEURAL NETWORKS FOR MUSIC AUTO-TAGGING USING RAW WAVEFORMS Jongpil Lee Jiyoung Park Keunhyoung Luke Kim Juhan Nam Korea Advanced Institute of Science and Technology (KAIST)

More information

Sketch-a-Net that Beats Humans

Sketch-a-Net that Beats Humans Sketch-a-Net that Beats Humans Qian Yu SketchLab@QMUL Queen Mary University of London 1 Authors Qian Yu Yongxin Yang Yi-Zhe Song Tao Xiang Timothy Hospedales 2 Let s play a game! Round 1 Easy fish face

More information

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland An Introduction to Convolutional Neural Networks Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland Sources & Resources - Andrej Karpathy, CS231n http://cs231n.github.io/convolutional-networks/

More information

Value-added Applications with Deep Learning. src:

Value-added Applications with Deep Learning. src: SMART TOURISM Value-added Applications with Deep Learning src: https://www.wttc.org/-/media/files/reports/economic-impact-research/countries-2017/thailand2017.pdf Somnuk Phon-Amnuaisuk, Minh-Son Dao, CIE,

More information

arxiv: v1 [cs.lg] 17 Jan 2019

arxiv: v1 [cs.lg] 17 Jan 2019 Virtual-to-Real-World Transfer Learning for Robots on Wilderness Trails Michael L. Iuzzolino 1 and Michael E. Walker 2 and Daniel Szafir 3 arxiv:1901.05599v1 [cs.lg] 17 Jan 2019 Abstract Robots hold promise

More information

Free-hand Sketch Recognition Classification

Free-hand Sketch Recognition Classification Free-hand Sketch Recognition Classification Wayne Lu Stanford University waynelu@stanford.edu Elizabeth Tran Stanford University eliztran@stanford.edu Abstract People use sketches to express and record

More information

CS 7643: Deep Learning

CS 7643: Deep Learning CS 7643: Deep Learning Topics: Toeplitz matrices and convolutions = matrix-mult Dilated/a-trous convolutions Backprop in conv layers Transposed convolutions Dhruv Batra Georgia Tech HW1 extension 09/22

More information

GPU ACCELERATED DEEP LEARNING WITH CUDNN

GPU ACCELERATED DEEP LEARNING WITH CUDNN GPU ACCELERATED DEEP LEARNING WITH CUDNN Larry Brown Ph.D. March 2015 AGENDA 1 Introducing cudnn and GPUs 2 Deep Learning Context 3 cudnn V2 4 Using cudnn 2 Introducing cudnn and GPUs 3 HOW GPU ACCELERATION

More information

Automated Image Timestamp Inference Using Convolutional Neural Networks

Automated Image Timestamp Inference Using Convolutional Neural Networks Automated Image Timestamp Inference Using Convolutional Neural Networks Prafull Sharma prafull7@stanford.edu Michel Schoemaker michel92@stanford.edu Stanford University David Pan napdivad@stanford.edu

More information

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 -

Detection and Segmentation. Fei-Fei Li & Justin Johnson & Serena Yeung. Lecture 11 - Lecture 11: Detection and Segmentation Lecture 11-1 May 10, 2017 Administrative Midterms being graded Please don t discuss midterms until next week - some students not yet taken A2 being graded Project

More information

Split-Complex Convolutional Neural Networks

Split-Complex Convolutional Neural Networks Split-Complex Convolutional Neural Networks Timothy Anderson, 27 Timothy Anderson Department of Electrical Engineering Stanford University Stanford, CA 9435 timothy.anderson@stanford.edu Introduction Beginning

More information

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET MOTIVATION Fully connected neural network Example 1000x1000 image 1M hidden units 10 12 (= 10 6 10 6 ) parameters! Observation

More information

Spectral Detection and Localization of Radio Events with Learned Convolutional Neural Features

Spectral Detection and Localization of Radio Events with Learned Convolutional Neural Features Spectral Detection and Localization of Radio Events with Learned Convolutional Neural Features Timothy J. O Shea Arlington, VA oshea@vt.edu Tamoghna Roy Blacksburg, VA tamoghna@vt.edu Tugba Erpek Arlington,

More information

Wide Residual Networks

Wide Residual Networks SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1 Wide Residual Networks Sergey Zagoruyko sergey.zagoruyko@enpc.fr Nikos Komodakis nikos.komodakis@enpc.fr Université Paris-Est, École des Ponts

More information

arxiv: v1 [cs.ne] 11 Jun 2018

arxiv: v1 [cs.ne] 11 Jun 2018 When and where do feed-forward neural networks learn localist representations? arxiv:1806.03934v1 [cs.ne] 11 Jun 2018 Ella M. Gale, Nicolas Martin & Jeffrey S. Bowers School of Experimental Psychology

More information

REAL TIME EMULATION OF PARAMETRIC GUITAR TUBE AMPLIFIER WITH LONG SHORT TERM MEMORY NEURAL NETWORK

REAL TIME EMULATION OF PARAMETRIC GUITAR TUBE AMPLIFIER WITH LONG SHORT TERM MEMORY NEURAL NETWORK REAL TIME EMULATION OF PARAMETRIC GUITAR TUBE AMPLIFIER WITH LONG SHORT TERM MEMORY NEURAL NETWORK Thomas Schmitz and Jean-Jacques Embrechts 1 1 Department of Electrical Engineering and Computer Science,

More information

MS-Celeb-1M: Challenge of Recognizing One Million Celebrities in the Real World

MS-Celeb-1M: Challenge of Recognizing One Million Celebrities in the Real World MS-Celeb-1M: Challenge of Recognizing One Million Celebrities in the Real World Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao Microsoft; Redmond, WA 98052 Abstract Face recognition,

More information

Draw and Tell: Multimodal Descriptions Outperform Verbal- or Sketch-Only Descriptions in an Image Retrieval Task

Draw and Tell: Multimodal Descriptions Outperform Verbal- or Sketch-Only Descriptions in an Image Retrieval Task Draw and Tell: Multimodal Descriptions Outperform Verbal- or Sketch-Only Descriptions in an Image Retrieval Task Ting Han and David Schlangen Dialogue Systems Group // CITEC // Faculty of Linguistics and

More information

A Deep Learning Approach for Wi-Fi based People Localization

A Deep Learning Approach for Wi-Fi based People Localization A Deep Learning Approach for Wi-Fi based People Localization A. M. Khalili 1,*, Abdel-Hamid Soliman 1 and Md Asaduzzaman 1 1 School of Creative Arts and Engineering, Staffordshire University, United Kingdom;

More information

Vehicle Color Recognition using Convolutional Neural Network

Vehicle Color Recognition using Convolutional Neural Network Vehicle Color Recognition using Convolutional Neural Network Reza Fuad Rachmadi and I Ketut Eddy Purnama Multimedia and Network Engineering Department, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo,

More information

arxiv: v1 [cs.cv] 30 Mar 2017

arxiv: v1 [cs.cv] 30 Mar 2017 A Paradigm Shift: Detecting Human Rights Violations Through Web Images Grigorios Kalliatakis, Shoaib Ehsan, and Klaus D. McDonald-Maier arxiv:1703.10501v1 [cs.cv] 30 Mar 2017 School of Computer Science

More information

Special Topics in Mechano InformaticsⅡ 2017/5/31

Special Topics in Mechano InformaticsⅡ 2017/5/31 Special Topics in Mechano InformaticsⅡ 2017/5/31 Object class recognition Object detection Sports car Sports car Image caption generation A yellow train on the tracks near a train station. Semantic segmentation

More information

Deep Learning Features at Scale for Visual Place Recognition

Deep Learning Features at Scale for Visual Place Recognition Deep Learning Features at Scale for Visual Place Recognition Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben Upcroft, Lingqiao Liu, Chunhua Shen, Ian Reid and Michael Milford 1 Figure 1 (a) We have developed

More information

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni.

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni. Lesson 08 Convolutional Neural Network Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 08 Convolution we will consider 2D convolution the result

More information

arxiv: v1 [cs.cv] 23 May 2016

arxiv: v1 [cs.cv] 23 May 2016 arxiv:1605.07146v1 [cs.cv] 23 May 2016 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1 Wide Residual Networks Sergey Zagoruyko sergey.zagoruyko@enpc.fr Nikos Komodakis nikos.komodakis@enpc.fr

More information

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Lars Hertel, Huy Phan and Alfred Mertins Institute for Signal Processing, University of Luebeck, Germany Graduate School

More information

Adversarial examples in Deep Neural Networks. Luiz Gustavo Hafemann Le Thanh Nguyen-Meidine

Adversarial examples in Deep Neural Networks. Luiz Gustavo Hafemann Le Thanh Nguyen-Meidine Adversarial examples in Deep Neural Networks Luiz Gustavo Hafemann Le Thanh Nguyen-Meidine Agenda Introduction Attacks and Defenses NIPS 2017 adversarial attacks competition Demo Discussion 2 Introduction

More information

Does Haze Removal Help CNN-based Image Classification?

Does Haze Removal Help CNN-based Image Classification? Does Haze Removal Help CNN-based Image Classification? Yanting Pei 1,2, Yaping Huang 1,, Qi Zou 1, Yuhang Lu 2, and Song Wang 2,3, 1 Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing

More information

Park Smart. D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1. Abstract. 1. Introduction

Park Smart. D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1. Abstract. 1. Introduction Park Smart D. Di Mauro 1, M. Moltisanti 2, G. Patanè 2, S. Battiato 1, G. M. Farinella 1 1 Department of Mathematics and Computer Science University of Catania {dimauro,battiato,gfarinella}@dmi.unict.it

More information

arxiv: v1 [cs.cv] 9 Nov 2015 Abstract

arxiv: v1 [cs.cv] 9 Nov 2015 Abstract Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding Alex Kendall Vijay Badrinarayanan University of Cambridge agk34, vb292, rc10001 @cam.ac.uk

More information

Sketch-a-Net: a Deep Neural Network that Beats Humans

Sketch-a-Net: a Deep Neural Network that Beats Humans Sketch-a-Net: a Deep Neural Network that Beats Humans Yu, Q; Yang, Y; Liu, F; SONG, Y; Xiang, T; Hospedales, T DOI: 0.00/s-0-0- For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle//

More information

Lecture 23 Deep Learning: Segmentation

Lecture 23 Deep Learning: Segmentation Lecture 23 Deep Learning: Segmentation COS 429: Computer Vision Thanks: most of these slides shamelessly adapted from Stanford CS231n: Convolutional Neural Networks for Visual Recognition Fei-Fei Li, Andrej

More information

Food Image Recognition Using Deep Convolutional Network with Pre-training and Fine-tuning

Food Image Recognition Using Deep Convolutional Network with Pre-training and Fine-tuning Food Image Recognition Using Deep Convolutional Network with Pre-training and Fine-tuning ICME Workshop on Multimedia for Cooking and Eating Activities (CEA) July 3 th 2015 Keiji Yanai and Yoshiyuki Kawano

More information

A Neural Algorithm of Artistic Style (2015)

A Neural Algorithm of Artistic Style (2015) A Neural Algorithm of Artistic Style (2015) Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Nancy Iskander (niskander@dgp.toronto.edu) Overview of Method Content: Global structure. Style: Colours; local

More information

Analyzing features learned for Offline Signature Verification using Deep CNNs

Analyzing features learned for Offline Signature Verification using Deep CNNs Accepted as a conference paper for ICPR 2016 Analyzing features learned for Offline Signature Verification using Deep CNNs Luiz G. Hafemann, Robert Sabourin Lab. d imagerie, de vision et d intelligence

More information

Generating an appropriate sound for a video using WaveNet.

Generating an appropriate sound for a video using WaveNet. Australian National University College of Engineering and Computer Science Master of Computing Generating an appropriate sound for a video using WaveNet. COMP 8715 Individual Computing Project Taku Ueki

More information

Project Title: Sparse Image Reconstruction with Trainable Image priors

Project Title: Sparse Image Reconstruction with Trainable Image priors Project Title: Sparse Image Reconstruction with Trainable Image priors Project Supervisor(s) and affiliation(s): Stamatis Lefkimmiatis, Skolkovo Institute of Science and Technology (Email: s.lefkimmiatis@skoltech.ru)

More information

Adversarial Examples and Adversarial Training. Ian Goodfellow, OpenAI Research Scientist Presentation at HORSE 2016 London,

Adversarial Examples and Adversarial Training. Ian Goodfellow, OpenAI Research Scientist Presentation at HORSE 2016 London, Adversarial Examples and Adversarial Training Ian Goodfellow, OpenAI Research Scientist Presentation at HORSE 2016 London, 2016-09-19 In this presentation Intriguing Properties of Neural Networks Szegedy

More information