KAF-4301E. 2084(H) x 2084(V) Pixel. Enhanced Response Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

Size: px
Start display at page:

Download "KAF-4301E. 2084(H) x 2084(V) Pixel. Enhanced Response Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company"

Transcription

1 KAF-4301E 2084(H) x 2084(V) Pixel Enhanced Response Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York Revision 2 September 23, 2002

2 TABLE OF CONTENTS 1.0 Device Description Features Functional Description Architecture Image Acquisition Charge Transport Output Structure Pin Description Performance Electro-Optical CCD Parameters CCD Parameters Common To both Outputs CCD Parameters Specific to High Gain Output Amplifier CCD Parameters Specific to Low Gain (high dynamic range) Output Amplifier Cosmetic Specification Operation Absolute Minimum/Maximum Ratings DC Operating Conditions AC Clock Level Conditions AC Timing Chart Storage and Handling Storage Conditions ESD Quality Assurance and Reliability Mechanical Drawings and Specifications Imager Flatness Ordering Information Appendix 1 Revision Changes FIGURES Figure 1 - Functional Block Diagram... 3 Figure 2 - Output Structure... 4 Figure 3 - Pinout Diagram... 7 Figure 4 - Spectral Response... 8 Figure 5 - Dark Current... 9 Figure 6 - Typical Output Structure Load Diagram Figure 7 - Timing Diagrams Figure 8 - Package Mechanical Drawing Figures 9, 10, 11 - Surface Profiles Image Sensor Surface Revision No. 2

3 1.0 Device Description 1.1 Features Front Illuminated Full-Frame Architecture with Blue Plus Transparent Gate True Two Phase Technology 24µm(H) x 24µm(V) Pixel Size 2084(H) x 2084(V) Photosensitive Pixels mm x mm Photo active Area 100% Fill FactorTwo Clock Selectable Outputs High Gain Output (11 µv/e - ) High Dynamic Range Output (2.0 µv/e - ) Low Dark Current (<15 pa/cm T=25 o C). 1.2 Functional Description The KAF-4301E is a high performance silicon chargecoupled device (CCD) designed for a wide range of image sensing applications in the 0.4µm to 1.1µm wavelength band. Common applications include medical, scientific, military, machine and industrial vision. The sensor is built with a true two-phase CCD technology employing a transparent gate. This technology simplifies the support circuits that drive the sensor and reduces the dark current without compromising charge capacity. The transparent gate results in spectral response increased ten times at 400 nm, compared to a front side illuminated standard poly silicon gate technology. The sensitivity is increased 50% over the rest of the visible wavelengths. The clock selectable on-chip output amplifiers have been specially designed to meet two different needs. The first is a high sensitivity 2-stage output with 11µV/e- charge to voltage conversion ratio. The second is a single stage output with 2µV/e- charge to voltage conversion 4 Dark Lines φh22 Sub Vdd2 Vout2 Vss Vdd1 Vout1 φr Vrd Vog φh21 KAF-4301E Usable Active Image 2084 (H) x 2084(V) 24 x 24 µm 2084 Active Pixels/Line 4 Dark 8 Dark 4 Inactive 2 Inactive φv1 φv2 Guard 4 Dark φh1 φh2 Figure 1 - Functional Block Diagram Shaded areas represent 8 non-imaging pixels at the beginning and 10 non-imaging pixels at the end of each line. There are also 4 non-imaging lines at the top and bottom of each frame. 3 Revision No. 2

4 Sub Vdd2 φh22 Vout2 FD1 FD2 φh2 Vlg Vss Vdd1 Vout1 φr φh1 Vrd Vog φh21 Figure 2 - Output Structure 1.3 Architecture Refer to the block diagram in Figure 1 - Functional Block Diagram The KAF-4301E consists of 2092 vertical (parallel) CCD shift registers, one horizontal (serial) CCD shift register and a selectable high or low gain output amplifier. Both registers incorporate two level polysilicon and true two-phase buried channel technology. The vertical registers contain 24 µm x 24 µm photocapacitor sensing elements (pixels) that also serves as the transport mechanism. The pixels are arranged in a 2084(H) x 2084(V) array; an additional 8 columns (4 at the left and 4 at the right) and 8 rows (4 each at top and bottom) of non-imaging pixels are added as dark reference. This device must be synchronized with strobe illumination or shuttered during readout because there is no storage array. 1.4 Image Acquisition An image is acquired when incident light, in the form of photons, falls on the array of pixels in the vertical CCD register and creates electron-hole pairs (or simply electrons) within the silicon substrate. This charge is collected locally by the formation of potential wells created at each pixel site by induced voltages on the vertical register clock lines (φv1, φv2). These same clock lines are used to implement the transport mechanism as well. The amount of charge collected at each pixel is linearly dependent on light level and exposure time and non-linearly dependent on wavelength until the potential well capacity is exceeded. At this point charge will 'bloom' into vertically adjacent pixels. 1.5 Charge Transport Integrated charge is transported to the output in a two-step process. Rows of charge are first shifted line by line into the horizontal CCD. 'Lines' of charge are then shifted to the output pixel by pixel. Referring to the timing diagram, integration of charge is performed with φv1 and φv2 held low. Transfer to horizontal CCD begins when φv1 is brought high causing charge from the φv1 and φv2 gates to combine under the φv1 gate. φv1 and φv2 now reverse their polarity causing the charge packets to 'spill' forward under the φv2 gate of the next pixel. The rising edge of φv2 also transfers the first line of charge into the horizontal CCD. A second phase transition places the charge packets under the φv1 electrode of the next pixel. The sequence completes when φv1 is brought low. Clocking of the vertical register in this way is known as accumulation mode clocking. Next, the horizontal CCD reads out the first line of charge using traditional complementary 4 Revision No. 2

5 clocking (using φh1 and φh2 pins) as shown. The falling edge of φh2 forces a charge packet over the output gate (OG) onto one of the output nodes (floating diffusion) that controls the output amplifier. The cycle repeats until all lines are read. 1.6 Output Structure The final gate of the horizontal register is split into two sections, φh21 and φh22 as shown in Figure 2 - Output Structure The split gate structure allows the user to select either of the two output amplifiers. To use the high dynamic range singlestage output (Vout1), tie φh22 to a negative voltage to block charge transfer, and tie φh21 to φh2 to transfer charge. To use the high sensitivity two-stage output (Vout2), tie φh21 to a negative voltage and φh22 to φh2. The charge packets are then dumped onto the appropriate floating diffusion output node whose potential varies linearly with the quantity of charge in each packet. The amount of potential change is determined by the simple expression Vfd= Q/Cfd. The translation from electrons to voltages is called the output sensitivity or charge-to-voltage conversion. After the output has been sensed offchip, the reset clock (φr) removes the charge from the floating diffusion via the reset drain (VRD). This, in turn, returns the floating diffusion potential to the reference level determined by the reset drain voltage. 5 Revision No. 2

6 1.7 Pin Description Pin Number Symbol Description Notes 1, 2, 27, 39, 40 φv2 Vertical (Parallel) CCD Clock - Phase 2 1 3, 4, 28, 37, 38 φv1 Vertical (Parallel) CCD Clock - Phase 1 2 5, 10, 20, 21, 29, 36 VSUB Substrate 3 9, 22, 30 VGUARD Guard Ring 4 11 VDD2 High Sensitivity Two-Stage Amplifier Supply 12 VOUT2 Video Output from High Sensitivity Two-Stage Amplifier 13 VLG First Stage Load Transistor Gate for Two-Stage Amplifier 14 VSS High Sensitivity Two-Stage Amplifier Return 15 VRD Reset Drain 16 φr Reset Clock 17 VDD1 High Dynamic Range Single-Stage Amplifier Supply 18 VOUT1 Video Output from High Dynamic Range Single-Stage Amplifier 19 VOG Output Gate 23 φh21 Last Horizontal (Serial) CCD Phase - Split Gate 24 φh22 Last Horizontal (Serial) CCD Phase - Split Gate 25 φh2 Horizontal (Serial) CCD Clock - Phase 1 26 φh1 Horizontal (Serial) CCD Clock - Phase 2 6, 7, 8, 31, 32, 33, 34, 35 N/C No Connect Notes: 1 - Pins 1, 2, 27, 39 and 40 must be connected together - only one Phase 2-clock driver is required 2 - Pins 3, 4, 28, 37 and 38 must be connected together - only one Phase 1-clock driver is required 3 - Pins 5, 10, 20, 21, 29 and 36 should be connected to a common potential 4 - Pins 9, 22 and 30 should be connected to a common potential 6 Revision No. 2

7 φv φv2 φv2 φv1 2 3 Pixel (2084,2084) φv2 φv1 φ V φv1 VSUB 5 36 VSUB N/C 6 35 N/C N/C 7 34 N/C N/C VGUARD SUB VDD2 VOUT2 VLG VSS VRD φr VDD N/C 32 VESD 31 N/C 30 VGUARD 29 VSUB 28 φv1 27 φv2 26 φh1 25 φh2 24 φh22 VOUT1 VOG Pixel (1,1) φh21 VGUARD VSUB VSUB Figure 3 - Pinout Diagram 7 Revision No. 2

8 2.0 Performance All values derived using nominal operating conditions with the recommended timing. Correlated doubling sampling of the output is assumed and recommended. Many units are expressed in electrons - to convert to a voltage, multiply by the amplifier sensitivity, Vout/Ne Electro-Optical Symbol Parameter Min. Nom. Max. Units Condition F F Optical Fill Factor 100 % PRNU Photoresponse Non-uniformity % rms Full Array QE Quantum Efficiency (450, 550, 650 nm) See Figure 4 - Spectral Response KAF-4301E Wavelength (nm) Figure 4 - Spectral Response 8 Revision No. 2

9 2.2 CCD Parameters CCD Parameters Common To both Outputs Symbol Parameter Min. Nom. Max. Units Condition Ne - sat Sat. Signal - Vccd register ke Note 2 Jd Dark Current pa/cm 2 e - pixel/sec 25ºC (mean of all pixels) DCDR Dark Current Doubling Temp o C DSNU Dark Signal Non-uniformity 540 e-/pix/sec Note 4 CTE Charge Transfer Efficiency Note 5 TVH V-H CCD Transfer Time 32 µs Note 6, 7,1 0 Bs Blooming Suppression none 1000 KAF-4301E Dark Current Temperature (C) Figure 5 - Dark current 9 Revision No. 2

10 2.2.2 CCD Parameters Specific to High Gain Output Amplifier Symbol Parameter Min. Nom. Max. Units Condition Vout/Ne- Output Sensitivity uv/electron Ne - sat Sat. Signal ke - Note 1 ne - total Total Sensor Noise e - rms Note 8 FH Horizontal CCD Frequency: MHz Note 6 DR Dynamic Range : db Note CCD Parameters Specific to Low Gain (high dynamic range) Output Amplifier Symbol Parameter Min. Nom. Max. Units Condition Vout/Ne- Output Sensitivity uv/electron Ne - sat Sat. Signal ke - Note 3 ne - total Total Sensor Noise e - rms Note 8 FH Horizontal CCD Frequency: MHz Note 6 DR Dynamic Range : db Note 9 Notes: 1. Point where the output saturates when operated with nominal voltages. 2. Signal level at the onset of blooming in the vertical (parallel) CCD register 3. Maximum signal level at the output of the high dynamic range output. This signal level will only be achieved when binning pixels containing large signals. 4. None of 256 sub arrays (128 x 128) exceed the maximum dark current specification. 5. For 2MHz data rate and T = 30ºC to -40ºC. 6 Using maximum CCD frequency and/or minimum CCD transfer times may compromise performance 7. Time between the rising edge of φ V1 and the first falling edge of φ H1 8. At Tintegration = 0; data rate = 1 MHz; temperature = -30ºC 9. Uses 20LOG(Ne - sat / ne - total) where Ne - sat refers to the appropriate saturation signal. 10. CTE corresponds to a signal level of e - /pix at 25 C and φh1, φh2 of 1MHz 10 Revision No. 2

11 2.3 Cosmetic Specification Grade Point Defects Cluster Defects Column Defects Double Columns C C C C Dark Defect A pixel which deviates by more than 20% from neighboring pixels when illuminated to 70% of saturation Bright Defect A pixel whose dark current exceeds 4500 electrons/pixel/second at 25ºC Cluster Defect Column Defect Neighboring Pixels A grouping of not more than 5 adjacent point defects. 1) A grouping point defects along a single column. (Dark Column) 2) A column that contains a pixel whose dark current exceeds 150,000 electrons/pixel/second at 25 C. (Bright Column) 3) A column that does not exhibit the minimum charge capacity specification. (Low charge capacity) 4) A column that loses >500 electrons when the array is illuminated to a signal level of 2000 electrons/pix. (Trap like defects) The surrounding 128 x 128 pixels of ± 64 columns/rows Cluster defects are separated by no less than 2 pixels from other column and cluster defects. Column defects are separated by no less than 5 pixels from other column defects. 1, ,2084 1,1 2084,1 11 Revision No. 2

12 3.0 Operation 3.1 Absolute Minimum/Maximum Ratings Min. Max. Units Conditions Temperature Storage C At Device Operating All Clocks Voltage VOG, VLG 0 +8 V VSUB = OV VRD, VSS, VDD, GUARD Current Output Bias Current (IDD) 10 ma Capacitance Output Load Capacitance (CLOAD) 10 pf φv1, φv2 Pulse Width 70 µs Frequency/Time φh1, φh2 2.5 MHz φr Pulse Width 20 ns Warning: For maximum performance, built-in gate protection has been added only to the VOG and VLG pin. These devices require extreme care during handling to prevent electrostatic discharge (ESD) induced damage. 3.2 DC Operating Conditions Min. Nom. Max. Units Pin Impedance VSUB Substrate V Common VDD Output Amplifier Supply V 5 pf, 2KΩ VSS Output Amplifier Return V 5 pf, 2KΩ VRD Reset Drain V 5 pf, 1MΩ VOG Output Gate V 5 pf, 10MΩ VGUARD Guard Ring V 350 pf, 10MΩ VLG Load Gate Vss-1.0 Vss Vss+1.0 V Notes: 1. An output load sink must be applied to Vout to activate output amplifier - see Figure below. +15V 0.1uF Vout ~5ma 2N3904 or equivalent R1 Ω 1k Ω Buffered Output The value of R1 depends on the desired output current according the following formula: R1 = 0.7 / Iout The optimal output current depends on the capacitance that needs to be driven by the amplifier and the bandwidth required. 5 ma is recommended for capacitance of 12 pf and pixel rates up to 20 MHz. Figure 6 - Typical Output Structure Load Diagram (For operation of up to 10 MHz) 12 Revision No. 2

13 3.3 AC Clock Level Conditions Min. Nom. Max. Units Pin Impedance φv1 Vertical Clock - Phase 1 Low V 700 nf, 10MΩ High V φv2 Vertical Clock - Phase 2 Low V 800 nf, 10MΩ High V φh1 Horizontal Clock - Phase 1 Low V 1200 pf, 10MΩ High V φh2 Horizontal Clock - Phase 2 Low V 1200 pf, 10MΩ High V φr Reset Clock Low V 10 pf, 10MΩ φh21 Horizontal Clock - Phase 1 φh22 Horizontal Clock - Phase 2 High V Using the High Gain Output (Vout 2) Using the High Dynamic Range Output (Vout1) Min. Nom. Max. Min. Nom. Max. Units Pin Impedance Low -4 φh2 φh2 φh2 V 10 pf, 10MΩ low low High -4 φh2 low φh2 low φh2 V Low φh2-4 φh2 φh2 V 10 pf, 10MΩ low low High φh2-4 φh2 φh2 V low low Note: When using Vout1 φh21 is clocked identically with φh2 while φh22 is held at a static level. When using Vout2 φh21 and φh22 are exchanged so that φh22 is identical to φh2 and φh21 is held at a static level. The static level should be the same voltage as φh2 low. Note: The AC and DC operating levels are for room temperature operation. Operation at other temperatures may require adjustments of these voltages. Pins shown with impedances greater than 1 MOhm are expected resistances. These pins are only verified to 1 MOhm. Note: φv1,2 and φh 1,2 capacitances are accumulated gate oxide capacitance, and so are an over-estimate of the capacitance. Note: This device is suitable for a wide range of applications requiring a variety of different operating conditions. Consult Eastman Kodak in those situations in which operating conditions meet or exceed minimum or maximum levels. 13 Revision No. 2

14 3.4 AC Timing Chart Description Symbol Min. Nom. Max. Units Notes fh1, fh2 Clock Frequency f H MHz 1, 2, 3 Pixel Period t pix ns fh1, fh2 Setup Time t φhs µs fv1 Clock Pulse Width t φv1 100 µs 2 fv2 Clock Pulse Width t φv2 150 µs 2 fv2, V1 Clock Pulse Overlap t φv2 150 µs 2 Reset Clock Pulse Width t φr ns 4 Readout Time t readout ms 5 Notes: 1. 50% duty cycle values. 2. CTE may degrade above the nominal frequency. 3. Rise and fall times (10/90% levels) should be limited to 5-10% of clock period. Crossover of register clocks should be between 40-60% of amplitude. 4. φr should be clocked continuously 5. t readout = (2092 * t line ) 6. Integration time (t int ) is user specified. Longer integration times will degrade noise performance due to dark signal fixed pattern and shot noise 7. t line = (3 * t φv ) + t φhs * t pix + t pix 14 Revision No. 2

15 Line Timing Detail Pixel Timing Detail φv1 tφv 1 1 line φr tφr φv2 tφv 2 φh1 te 1 count tφv- tφhs t e φh2 φh1 Vpix φh2 φr 2102 counts Vout Vsat Vdark Vodc Vsub Vertical Clock Timing Detail tφv1 = 100 µsec φv1 50 µsec φv2 t V-ovrlap = 50 µsec tφv2 = 150 µsec t V-ovrlap = 50 µsec Line Content Vsat Vdark Vpix Vodc Vsub Saturated pixel video output signal Video output signal in no light situation, not zero due to Jdark Pixel video output signal level, more electrons =more Video level offset with respect to vsub Analog Ground Photoactive Pixels Dummy Pixels * See Image Aquisition section Dark Reference Pixels Figure 7 - Timing diagrams 15 Revision No. 2

16 4.0 Storage and Handling 4.1 Storage Conditions Image sensors with temporary cover glass should be stored at room temperature (nominally 25ºC.) in dry nitrogen. 4.2 ESD CAUTION: This device contains limited protection against Electrostatic Discharge (ESD). This device is rated as Class 0 (<250V per JESD22 Human Body Model test), or Class A (<200V JESD22 Machine Model test.) Devices should be handled in accordance with strict ESD protection procedures. For more information see Application Note MTD/PS-0224, Electrostatic Discharge Control. 16 Revision No. 2

17 5.0 Quality Assurance and Reliability 5.1 Quality Strategy: All image sensors will conform to the specifications stated in this document. This will be accomplished through a combination of statistical process control and inspection at key points of the production process. Typical specification limits are not guaranteed but provided as a design target. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability. 5.2 Replacement: All devices are warranted against failure in accordance with the terms of Terms of Sale. This does not include failure due to mechanical and electrical causes defined as the liability of the customer below. 5.3 Liability of the Supplier: A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the customer 5.4 Liability of the Customer: Damage from mechanical (scratches or breakage), electrical (ESD), or other electrical misuse of the device beyond the stated absolute maximum ratings, which occurred after receipt of the sensor by the customer, shall be the responsibility of the customer. 5.5 Cleanliness: Devices are shipped free of mobile contamination inside the package cavity. Immovable particles and scratches that are within the imager pixel area and the corresponding cover glass region directly above the pixel sites are also not allowed. The cover glass is highly susceptible to particles and other contamination. Touching the cover glass must be avoided. See ISS Application Note DS , Cover Glass Cleaning, for further information. 5.6 ESD Precautions: Devices are shipped in static-safe containers and should only be handled at static-safe workstations. See ISS Application Note MTD/PS-0224 for handling recommendations. 5.7 Reliability: Information concerning the quality assurance and reliability testing procedures and results are available from the Image Sensor Solutions and can be supplied upon request. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability. 5.8 Test Data Retention: Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2 years after date of delivery. 5.9 Mechanical: The device assembly drawing is provided as a reference. The device will conform to the published package tolerances. 17 Revision No. 2

18 6.0 Mechanical Drawings and Specifications. Figure 8 - Package Mechanical Drawing - Page 1 18 Revision No. 2

19 Figure 8 - Package Mechanical Drawing - Page 2 19 Revision No. 2

20 6.1 Imager Flatness The flatness of the die is defined as a peak-to-peak distortion in the image sensor surface. The parallelism between the image sensor surface and any of the package components is not specified or guaranteed. The non-parallelism is removed when measuring the distortion in the image sensor surface. Minimum Nominal Maximum Unit Die Flatness Peak-to-Peak distortion microns Some examples of profiles from typical image sensors surfaces are shown below. Figure 9 - Surface Profile of Image Sensor Surface 20 Revision No. 2

21 Figure 10 - Surface Profile of Image Sensor Surface Figure 11 - Surface Profile of Image Sensor Surface 21 Revision No. 2

22 7.0 Ordering Information Address all inquiries and purchase orders to: Image Sensor Solutions Eastman Kodak Company Rochester, New York Phone: (716) Fax: (716) Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate. WARNING: LIFE SUPPORT APPLICATIONS POLICY Image Sensor Solutions, Eastman Kodak Company products are not authorized for and should not be used within Life Support Systems without the specific written consent of the Eastman Kodak Company. Product warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages. Appendix 1: Revision Changes: Revision No. Date Changes 1 3/12/02 Initial formal version 2 9/19/02 Added Section 6.1 Imager Flatness 22 Revision No. 2

KAF E. 512(H) x 512(V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

KAF E. 512(H) x 512(V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company KAF - 0261E 512(H) x 512(V) Pixel Enhanced Response Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650 Revision 2 December 21,

More information

KAF -0402E/ME. 768 (H) x 512 (V) Enhanced Response Full-Frame CCD DEVICE PERFORMANCE SPECIFICATION IMAGE SENSOR SOLUTIONS. January 29, 2003 Revision 1

KAF -0402E/ME. 768 (H) x 512 (V) Enhanced Response Full-Frame CCD DEVICE PERFORMANCE SPECIFICATION IMAGE SENSOR SOLUTIONS. January 29, 2003 Revision 1 DEVICE PERFORMANCE SPECIFICATION KAF -0402E/ME 768 (H) x 512 (V) Enhanced Response Full-Frame CCD January 29, 2003 Revision 1 TABLE OF CONTENTS DEVICE DESCRIPTION...4 ARCHITECTURE...4 MICRO LENSES...4

More information

KAF- 1602E (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions

KAF- 1602E (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions KAF- 1602E 1536 (H) x 1024 (V) Pixel Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650-2010 Revision 1 April 3, 2001 TABLE OF

More information

KAF- 1401E (H) x 1035 (V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

KAF- 1401E (H) x 1035 (V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company KAF- 1401E 1320 (H) x 1035 (V) Pixel Enhanced Response Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Microelectronics Technology Division Rochester, New York 14650-2010 Revision

More information

KAF- 6302LE (H) x 2034 (V) Pixel. Enhanced Response Full-Frame CCD Image Sensor With Anti-Blooming Protection. Performance Specification

KAF- 6302LE (H) x 2034 (V) Pixel. Enhanced Response Full-Frame CCD Image Sensor With Anti-Blooming Protection. Performance Specification KAF- 6302LE 3072 (H) x 2034 (V) Pixel Enhanced Response Full-Frame CCD Image Sensor With Anti-Blooming Protection Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York

More information

KAF (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

KAF (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company KAF - 1600 1536 (H) x 1024 (V) Pixel Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Microelectronics Technology Division Rochester, New York 14650-2010 Revision 3 August 12,

More information

KAF-3200E / KAF-3200ME

KAF-3200E / KAF-3200ME KAF- 3200E KAF- 3200ME 2184 (H) x 1472 () Pixel Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650-2010 Revision 1 September 26,

More information

KAF-3200E / KAF-3200ME

KAF-3200E / KAF-3200ME KAF- 3200E KAF- 3200ME 2184 (H) x 1472 () Pixel Full-Frame CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650-2010 Revision No. 2 May 16,

More information

KAF-6303 IMAGE SENSOR 3072 (H) X 2048 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.

KAF-6303 IMAGE SENSOR 3072 (H) X 2048 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1. KAF-6303 IMAGE SENSOR 3072 (H) X 2048 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.0 PS-0039 TABLE OF CONTENTS Summary Specification... 4 Description... 4 Features...

More information

KAF-3200 IMAGE SENSOR 2184 (H) X 1472 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.

KAF-3200 IMAGE SENSOR 2184 (H) X 1472 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1. KAF-3200 IMAGE SENSOR 2184 (H) X 1472 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.0 PS-0037 TABLE OF CONTENTS Summary Specification... 4 Description... 4 Features...

More information

PRELIMINARY KODAK KAF IMAGE SENSOR. PRELIMINARY DEVICE PERFORMANCE SPECIFICATION Revision 0.2. March 2, 2006

PRELIMINARY KODAK KAF IMAGE SENSOR. PRELIMINARY DEVICE PERFORMANCE SPECIFICATION Revision 0.2. March 2, 2006 DEVICE PERFORMANCE SPECIFICATION Revision 0.2 March 2, 2006 KODAK KAF-09000 IMAGE SENSOR 3056 (H) X 3056 (V) FULL-FRAME CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...4 Description...4 Applications...4

More information

KODAK KAF-5101CE Image Sensor

KODAK KAF-5101CE Image Sensor DEVICE PERFORMANCE SPECIFICATION KODAK KAF-5101CE Image Sensor 2614 (H) x 1966 (V) Full-Frame CCD Color Image Sensor With Square Pixels for Color Cameras June 23, 2003 Revision 1.0 1 TABLE OF CONTENTS

More information

KAF (H) x 2085 (V) Full Frame CCD Image Sensor

KAF (H) x 2085 (V) Full Frame CCD Image Sensor KAF-4320 2084 (H) x 2085 (V) Full Frame CCD Image Sensor Description The KAF 4320 Image Sensor is a high performance monochrome area CCD (charge-coupled device) image sensor designed for a wide range of

More information

KLI-5001G Element Linear CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions

KLI-5001G Element Linear CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions KLI-5001G 5000 Element Linear CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650-2010 Revision 8 May 21, 2002 TABLE OF CONTENTS Features...

More information

KODAK KAF-10010CE Image Sensor

KODAK KAF-10010CE Image Sensor DEVICE PERFORMANCE SPECIFICATION KODAK KAF-10010CE Image Sensor 3876 (H) x 2584 (V) Full-Frame CCD Color Image Sensor With Square Pixels for Color Cameras March 24, 2004 Revision F 1 TABLE OF CONTENTS

More information

PRELIMINARY. CCD 3041 Back-Illuminated 2K x 2K Full Frame CCD Image Sensor FEATURES

PRELIMINARY. CCD 3041 Back-Illuminated 2K x 2K Full Frame CCD Image Sensor FEATURES CCD 3041 Back-Illuminated 2K x 2K Full Frame CCD Image Sensor FEATURES 2048 x 2048 Full Frame CCD 15 µm x 15 µm Pixel 30.72 mm x 30.72 mm Image Area 100% Fill Factor Back Illuminated Multi-Pinned Phase

More information

CCD1600A Full Frame CCD Image Sensor x Element Image Area

CCD1600A Full Frame CCD Image Sensor x Element Image Area - 1 - General Description CCD1600A Full Frame CCD Image Sensor 10560 x 10560 Element Image Area General Description The CCD1600 is a 10560 x 10560 image element solid state Charge Coupled Device (CCD)

More information

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0856 March 28, 2007 KODAK KAF IMAGE SENSOR 7216 (H) X 5412 (V) FULL-FRAME CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0856 March 28, 2007 KODAK KAF IMAGE SENSOR 7216 (H) X 5412 (V) FULL-FRAME CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0856 March 28, 2007 KODAK KAF-39000 IMAGE SENSOR 7216 (H) X 5412 (V) FULL-FRAME CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...4 Description...4

More information

KLI x 3 Tri-Linear CCD Image Sensor. Performance Specification

KLI x 3 Tri-Linear CCD Image Sensor. Performance Specification KLI-2113 2098 x 3 Tri-Linear CCD Image Sensor Performance Specification Eastman Kodak Company Image Sensor Solutions Rochester, New York 14650-2010 Revision 4 July 17, 2001 TABLE OF CONTENTS 1.1 Features...

More information

STA1600LN x Element Image Area CCD Image Sensor

STA1600LN x Element Image Area CCD Image Sensor ST600LN 10560 x 10560 Element Image Area CCD Image Sensor FEATURES 10560 x 10560 Photosite Full Frame CCD Array 9 m x 9 m Pixel 95.04mm x 95.04mm Image Area 100% Fill Factor Readout Noise 2e- at 50kHz

More information

CCD525 Time Delay Integration Line Scan Sensor

CCD525 Time Delay Integration Line Scan Sensor CCD525 Time Delay Integration Line Scan Sensor FEATURES 248 Active Pixels Per Line 96 TDI Lines 13µm x13 µm Pixels 4 Speed Output Ports TDI Stages Selectable Between 96, 64, 48, 32, or 24 1 MHz Data Rate

More information

KAI-1003 IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR JUNE 11, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1.

KAI-1003 IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR JUNE 11, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1. KAI-1003 IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR JUNE 11, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1.1 PS-0025 TABLE OF CONTENTS Summary Specification... 4 Description... 4 Features...

More information

KAI-0373 IMAGE SENSOR 768 (H) X 484 (V) INTERLINE CCD IMAGE SENSOR MAY 20, 2013 DEVICE PERFORMANCE SPECIFICATION REVISION 2.

KAI-0373 IMAGE SENSOR 768 (H) X 484 (V) INTERLINE CCD IMAGE SENSOR MAY 20, 2013 DEVICE PERFORMANCE SPECIFICATION REVISION 2. KAI-0373 IMAGE SENSOR 768 (H) X 484 (V) INTERLINE CCD IMAGE SENSOR MAY 20, 2013 DEVICE PERFORMANCE SPECIFICATION REVISION 2.0 PS-0020 TABLE OF CONTENTS Summary Specification... 5 Description... 5 Features...

More information

KODAK KAF IMAGE SENSOR

KODAK KAF IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 4.0 MTD/PS-0962 December 1, 2006 KODAK KAF-10500 IMAGE SENSOR 3970 (H) X 2646 (V) FULL-FRAME CCD COLOR IMAGE SENSOR TABLE OF CONTENTS Summary Specification...4

More information

STA3600A 2064 x 2064 Element Image Area CCD Image Sensor

STA3600A 2064 x 2064 Element Image Area CCD Image Sensor ST600A 2064 x 2064 Element Image Area CCD Image Sensor FEATURES 2064 x 2064 CCD Image Array 15 m x 15 m Pixel 30.96 mm x 30.96 mm Image Area Near 100% Fill Factor Readout Noise Less Than 3 Electrons at

More information

KODAK KAI-1010 KAI-1011 IMAGE SENSOR

KODAK KAI-1010 KAI-1011 IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 11 MTD/PS-0502 October 17, 2006 KODAK KAI-1010 KAI-1011 IMAGE SENSOR 1008 (H) X 1018 (V) INTERLINE TRANSFER PROGRESSIVE SCAN CCD CONTENTS Summary Specification...4

More information

CCD42-10 Back Illuminated High Performance AIMO CCD Sensor

CCD42-10 Back Illuminated High Performance AIMO CCD Sensor CCD42-10 Back Illuminated High Performance AIMO CCD Sensor FEATURES 2048 by 512 pixel format 13.5 µm square pixels Image area 27.6 x 6.9 mm Wide Dynamic Range Symmetrical anti-static gate protection Back

More information

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor FEATURES 1024 by 1024 Nominal (1056 by 1027 Usable Pixels) Image area 13.3 x 13.3mm Back Illuminated format for high quantum efficiency

More information

A large format, high-performance CCD sensor for medical x-ray applications

A large format, high-performance CCD sensor for medical x-ray applications A large format, high-performance CCD sensor for medical x-ray applications William Des Jardin, Chris Parks, Hung Doan, Neal Kurfiss, and Keith Wetzel Eastman Kodak Company, Rochester, NY, 14650-2008 USA

More information

DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-0718 January 25, 2006 KODAK KAI-4011 IMAGE SENSOR 2048(H) X 2048(V) INTERLINE CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-0718 January 25, 2006 KODAK KAI-4011 IMAGE SENSOR 2048(H) X 2048(V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-0718 January 25, 2006 KODAK KAI-4011 IMAGE SENSOR 2048(H) X 2048(V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...5 Device Description...6

More information

CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor

CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor FEATURES 1024 by 256 Pixel Format 26µm Square Pixels Image area 26.6 x 6.7mm Back Illuminated format for high quantum efficiency

More information

CCD30-11 Front Illuminated Advanced Inverted Mode High Performance CCD Sensor

CCD30-11 Front Illuminated Advanced Inverted Mode High Performance CCD Sensor CCD30-11 Front Illuminated Advanced Inverted Mode High Performance CCD Sensor FEATURES 1024 by 256 Pixel Format 26 µm Square Pixels Image Area 26.6 x 6.7 mm Wide Dynamic Range Symmetrical Anti-static Gate

More information

KODAK KAI-2001 KODAK KAI-2001M KODAK KAI-2001CM Image Sensor

KODAK KAI-2001 KODAK KAI-2001M KODAK KAI-2001CM Image Sensor DEVICE PERFORMANCE SPECIFICATION KODAK KAI-2001 KODAK KAI-2001M KODAK KAI-2001CM Image Sensor 1600 (H) x 1200 (V) Interline Transfer Progressive Scan CCD June 16 2003 Revision 1.0 TABLE OF CONTENTS TABLE

More information

CCD1600LN x Element Image Area Full Frame CCD Image Sensor

CCD1600LN x Element Image Area Full Frame CCD Image Sensor CCD00LN 00 x 00 Element Image Area Full Frame CCD Image Sensor - Data Sheet Va dtd. 0.0.0 CCD00LN 00 x 00 Element Image Area Full Frame CCD Image Sensor FEATURES 00 x 00 Photosite Full Frame CCD Array

More information

KODAK KAI-11000M KODAK KAI-11000CM Image Sensor

KODAK KAI-11000M KODAK KAI-11000CM Image Sensor DEVICE PERFORMANCE SPECIFICATION KODAK KAI-11000M KODAK KAI-11000CM Image Sensor 4008 (H) x 2672 (V) Interline Transfer Progressive Scan CCD March 14, 2005 Revision 4.0 TABLE OF CONTENTS TABLE OF FIGURES...4

More information

CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD97 is part of the L3Vision TM range of products from e2v technologies. This device uses a novel output amplifier

More information

E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor

E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor FEATURES * 2048 by 4096 Pixel Format * 1.5 mm Square Pixels * Image Area 27.6 x 55. mm * Wide Dynamic Range * Symmetrical Anti-static

More information

CCD Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD201-20 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD201 is a large format sensor (41k 2 ) in the L3Vision TM range of products from e2v technologies. This

More information

Ultra-high resolution 14,400 pixel trilinear color image sensor

Ultra-high resolution 14,400 pixel trilinear color image sensor Ultra-high resolution 14,400 pixel trilinear color image sensor Thomas Carducci, Antonio Ciccarelli, Brent Kecskemety Microelectronics Technology Division Eastman Kodak Company, Rochester, New York 14650-2008

More information

Marconi Applied Technologies CCD30-11 Inverted Mode Sensor High Performance CCD Sensor

Marconi Applied Technologies CCD30-11 Inverted Mode Sensor High Performance CCD Sensor Marconi Applied Technologies CCD30-11 Inverted Mode Sensor High Performance CCD Sensor FEATURES * 1024 by 256 Pixel Format * 26 mm Square Pixels * Image Area 26.6 x 6.7 mm * Wide Dynamic Range * Symmetrical

More information

E2V Technologies CCD42-10 Inverted Mode Sensor High Performance AIMO CCD Sensor

E2V Technologies CCD42-10 Inverted Mode Sensor High Performance AIMO CCD Sensor E2V Technologies CCD42-1 Inverted Mode Sensor High Performance AIMO CCD Sensor FEATURES * 248 by 512 Pixel Format * 13.5 mm Square Pixels * Image Area 27.6 x 6.9 mm * Wide Dynamic Range * Symmetrical Anti-static

More information

CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD97 is part of the new L3Vision 2 range of products from e2v technologies. This device uses a novel output

More information

CCD42-80 Back Illuminated High Performance CCD Sensor

CCD42-80 Back Illuminated High Performance CCD Sensor CCD42-80 Back Illuminated High Performance CCD Sensor FEATURES * 2048 by 4096 Pixel Format * 13.5 mm Square Pixels * Image Area 27.6 x 55.3 mm * Wide Dynamic Range * Symmetrical Anti-static Gate Protection

More information

CCD55-30 Inverted Mode Sensor High Performance CCD Sensor

CCD55-30 Inverted Mode Sensor High Performance CCD Sensor CCD55-3 Inverted Mode Sensor High Performance CCD Sensor FEATURES * 1252 (H) by 1152 (V) Pixel Format * 28 by 26 mm Active Area * Visible Light and X-Ray Sensitive * New Improved Very Low Noise Amplifier

More information

KODAK KAI-2001 IMAGE SENSOR 1600(H) X 1200(V) INTERLINE CCD IMAGE SENSOR

KODAK KAI-2001 IMAGE SENSOR 1600(H) X 1200(V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-0609 February 27, 2006 KODAK KAI-2001 IMAGE SENSOR 1600(H) X 1200(V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...5 Device Description...6

More information

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor CCD42-40 NIMO Back Illuminated High Performance CCD Sensor FEATURES 2048 by 2048 pixel format 13.5 mm square pixels Image area 27.6 x 27.6 mm Back Illuminated format for high quantum efficiency Full-frame

More information

FEATURES GENERAL DESCRIPTION. CCD Element Linear Image Sensor CCD Element Linear Image Sensor

FEATURES GENERAL DESCRIPTION. CCD Element Linear Image Sensor CCD Element Linear Image Sensor CCD 191 6000 Element Linear Image Sensor FEATURES 6000 x 1 photosite array 10µm x 10µm photosites on 10µm pitch Anti-blooming and integration control Enhanced spectral response (particularly in the blue

More information

DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-1027 July 24, 2007 KODAK KAI IMAGE SENSOR 4872(H) X 3248(V) INTERLINE CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-1027 July 24, 2007 KODAK KAI IMAGE SENSOR 4872(H) X 3248(V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 2.0 MTD/PS-1027 July 24, 2007 KODAK KAI-16000 IMAGE SENSOR 4872(H) X 3248(V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...4 Description...4

More information

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0692 March 16, 2007 KODAK KAI-2020 IMAGE SENSOR 1600 (H) X 1200 (V) INTERLINE CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0692 March 16, 2007 KODAK KAI-2020 IMAGE SENSOR 1600 (H) X 1200 (V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-0692 March 16, 2007 KODAK KAI-2020 IMAGE SENSOR 1600 (H) X 1200 (V) INTERLINE CCD IMAGE SENSOR CONTENTS Summary Specification...5 Description...5 Features...5

More information

MAIN FEATURES OVERVIEW GENERAL DATA ORDERING INFORMATION

MAIN FEATURES OVERVIEW GENERAL DATA ORDERING INFORMATION CCD201-20 Datasheet Electron Multiplying CCD Sensor Back Illuminated, 1024 x 1024 Pixels 2-Phase IMO MAIN FEATURES 1024 x 1024 active pixels 13µm square pixels Variable multiplicative gain Additional conventional

More information

ams AG TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information:

ams AG TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information: TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information: Headquarters: Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-mail: ams_sales@ams.com

More information

Marconi Applied Technologies CCD47-20 High Performance CCD Sensor

Marconi Applied Technologies CCD47-20 High Performance CCD Sensor Marconi Applied Technologies CCD47-20 High Performance CCD Sensor FEATURES * 1024 by 1024 1:1 Image Format * Image Area 13.3 x 13.3 mm * Frame Transfer Operation * 13 mm Square Pixels * Symmetrical Anti-static

More information

CCD30 11 Back Illuminated High Performance CCD Sensor

CCD30 11 Back Illuminated High Performance CCD Sensor CCD30 11 Back Illuminated High Performance CCD Sensor FEATURES * 1024 by 256 Pixel Format * 26 mm Square Pixels * Image Area 26.6 x 6.7 mm * Wide Dynamic Range * Symmetrical Anti-static Gate Protection

More information

IT FR R TDI CCD Image Sensor

IT FR R TDI CCD Image Sensor 4k x 4k CCD sensor 4150 User manual v1.0 dtd. August 31, 2015 IT FR 08192 00 R TDI CCD Image Sensor Description: With the IT FR 08192 00 R sensor ANDANTA GmbH builds on and expands its line of proprietary

More information

CCD47-20 Back Illuminated NIMO High Performance NIMO Back Illuminated CCD Sensor

CCD47-20 Back Illuminated NIMO High Performance NIMO Back Illuminated CCD Sensor CCD47-20 Back Illuminated NIMO High Performance NIMO Back Illuminated CCD Sensor FEATURES * 1024 by 1024 1:1 Image Format * Image Area 13.3 x 13.3 mm * Back Illuminated Format * Frame Transfer Operation

More information

TSL LINEAR SENSOR ARRAY

TSL LINEAR SENSOR ARRAY 896 1 Sensor-Element Organization 200 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range...2000:1 (66 db) Output Referenced to Ground Low Image Lag... 0.5% Typ Operation

More information

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor CCD4240 NIMO Back Illuminated High Performance CCD Sensor FEATURES 2048 by 2048 pixel format 13.5 mm square pixels Image area 27.6 x 27.6 mm Back Illuminated format for high quantum efficiency Fullframe

More information

Marconi Applied Technologies CCD39-01 Back Illuminated High Performance CCD Sensor

Marconi Applied Technologies CCD39-01 Back Illuminated High Performance CCD Sensor Marconi Applied Technologies CCD39-01 Back Illuminated High Performance CCD Sensor FEATURES * 80 by 80 1:1 Image Format * Image Area 1.92 x 1.92 mm * Split-frame Transfer Operation * 24 mm Square Pixels

More information

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-1033 June 9, 2010 KODAK KAI IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-1033 June 9, 2010 KODAK KAI IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 3.0 MTD/PS-1033 June 9, 2010 KODAK KAI-01050 IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification... 4 Description...

More information

Preliminary TCD2704D. Features. Pin Connections (top view) Maximum Ratings (Note 1)

Preliminary TCD2704D. Features. Pin Connections (top view) Maximum Ratings (Note 1) Preliminary TOSHIBA CCD Linear Image Sensor CCD (charge coupled device) T C D 2 7 0 4 D The TCD2704D is a high sensitive and low dark current 7500 elements 4 line CCD color image sensor which includes

More information

RA1133J Full Frame CCD Image Sensor

RA1133J Full Frame CCD Image Sensor Imaging Imaging Product Line RA1133J Full Frame CCD Image Seor 24 µm square pitch, 10 x 330 pixel configuration D A T A S H E E T Description The RA1133J is a full frame CCD seor with reset capabilities

More information

Pixel. Pixel 3. The LUMENOLOGY Company Texas Advanced Optoelectronic Solutions Inc. 800 Jupiter Road, Suite 205 Plano, TX (972)

Pixel. Pixel 3. The LUMENOLOGY Company Texas Advanced Optoelectronic Solutions Inc. 800 Jupiter Road, Suite 205 Plano, TX (972) 64 1 Sensor-Element Organization 200 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range...2000:1 (66 db) Output Referenced to Ground Low Image Lag... 0.5% Typ Operation to

More information

TOSHIBA CCD Linear Image Sensor CCD (charge coupled device) TCD2561D

TOSHIBA CCD Linear Image Sensor CCD (charge coupled device) TCD2561D TOSHIBA CCD Linear Image Sensor CCD (charge coupled device) TCD2561D The TCD2561D is a high sensitive and low dark current 5340 elements 4 line CCD color image sensor which includes CCD drive circuit,

More information

KODAK KAI IMAGE SENSOR

KODAK KAI IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1134 October 12, 2009 KODAK KAI-08050 IMAGE SENSOR 3296 (H) X 2472 (V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification... 5 Description...

More information

CCD77-00 Front Illuminated High Performance IMO Device

CCD77-00 Front Illuminated High Performance IMO Device CCD77- Front Illuminated High Performance IMO Device FEATURES * 512 by 512 Image Format * Image Area 12.3 x 12.3 mm * Full-Frame Operation * 24 mm Square Pixels * Low Noise Output Amplifiers * 1% Active

More information

CCD42-40 Ceramic AIMO Back Illuminated Compact Package High Performance CCD Sensor

CCD42-40 Ceramic AIMO Back Illuminated Compact Package High Performance CCD Sensor CCD42-40 Ceramic AIMO Back Illuminated Compact Package High Performance CCD Sensor FEATURES * 2048 by 2048 pixel format * 1.5 mm square pixels * Image area 27.6 x 27.6 mm * Back Illuminated format for

More information

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor FEATURES * 256 x 256 Pixel Image Area. * 26 mm Square Pixels. * Low Noise, High Responsivity Output Amplifier. * 1% Active Area. * Gated

More information

ONE TE C H N O L O G Y PLACE HOMER, NEW YORK TEL: FAX: /

ONE TE C H N O L O G Y PLACE HOMER, NEW YORK TEL: FAX: / ONE TE C H N O L O G Y PLACE HOMER, NEW YORK 13077 TEL: +1 607 749 2000 FAX: +1 607 749 3295 www.panavisionimaging.com / sales@panavisionimaging.com High Performance Linear Image Sensors ELIS-1024 IMAGER

More information

TCD2557D TCD2557D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

TCD2557D TCD2557D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TCD2557D TCD2557D The TCD2557D is a high sensitive and low dark current 5340 elements 3 line CCD color image sensor which includes CCD drive

More information

TSL1406R, TSL1406RS LINEAR SENSOR ARRAY WITH HOLD

TSL1406R, TSL1406RS LINEAR SENSOR ARRAY WITH HOLD 768 Sensor-Element Organization 400 Dot-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range...4000: (7 db) Output Referenced to Ground Low Image Lag... 0.5% Typ Operation to 8

More information

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD TSL40R LF 28 Sensor-Element Organization 400 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range... 4000: (72 db) Output Referenced to Ground Low Image Lag... 0.5% Typ Operation

More information

DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1196 June 28, 2011 KODAK KAI IMAGE SENSOR 6576 (H) X 4384 (V) INTERLINE CCD IMAGE SENSOR

DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1196 June 28, 2011 KODAK KAI IMAGE SENSOR 6576 (H) X 4384 (V) INTERLINE CCD IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1196 June 28, 2011 KODAK KAI-29050 IMAGE SENSOR 6576 (H) X 4384 (V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification... 5 Description...

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

TSL201R LF 64 1 LINEAR SENSOR ARRAY

TSL201R LF 64 1 LINEAR SENSOR ARRAY TSL201R LF 64 1 LINEAR SENSOR ARRAY 64 1 Sensor-Element Organization 200 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range... 2000:1 (66 db) Output Referenced to Ground

More information

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K

AD9300 SPECIFICATIONS ELECTRICAL CHARACTERISTICS ( V S = 12 V 5%; C L = 10 pf; R L = 2 k, unless otherwise noted) COMMERCIAL 0 C to +70 C Test AD9300K a FEATURES 34 MHz Full Power Bandwidth 0.1 db Gain Flatness to 8 MHz 72 db Crosstalk Rejection @ 10 MHz 0.03 /0.01% Differential Phase/Gain Cascadable for Switch Matrices MIL-STD-883 Compliant Versions

More information

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1208AP

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1208AP TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1208AP TCD1208AP The TCD1208AP is a high sensitive and low dark current 2160 element image sensor. The sensor can be used for facsimile, imagescanner

More information

LZ2423H. 1/4-type Color CCD Area Sensor with 320 k Pixels. Back

LZ2423H. 1/4-type Color CCD Area Sensor with 320 k Pixels. Back Back LZH LZH DESCRIPTION The LZH is a /-type (. mm) solid-state image sensor that consists of PN photo-diodes and CCDs (charge-coupled devices). With approximately 0 000 pixels ( horizontal x 8 vertical),

More information

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD TSL40R LF 8 Sensor-Element Organization 400 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Uniformity Wide Dynamic Range... 4000: (7 db) Output Referenced to Ground Low Image Lag... 0.5% Typ Operation

More information

KODAK KAI IMAGE SENSOR

KODAK KAI IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1066 October 27, 2008 KODAK KAI-02150 IMAGE SENSOR 1920 (H) X 1080 (V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...5 Description...5

More information

CCD44-82 Back Illuminated High Performance CCD Sensor

CCD44-82 Back Illuminated High Performance CCD Sensor CCD44-82 Back Illuminated High Performance CCD Sensor FEATURES * 2048 by 4096 Pixel Format * 15.0 mm Square Pixels * Image Area 30.7 x 61.4 mm * Back Illuminated Format for High Quantum Efficiency * Low

More information

KODAK KAI IMAGE SENSOR

KODAK KAI IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION Revision 1.0 MTD/PS-1033 January 23, 2008 KODAK KAI-01050 IMAGE SENSOR 1024 (H) X 1024 (V) INTERLINE CCD IMAGE SENSOR TABLE OF CONTENTS Summary Specification...4 Description...4

More information

CCD42-90 Back Illuminated High Performance CCD Sensor

CCD42-90 Back Illuminated High Performance CCD Sensor CCD42-90 Back Illuminated High Performance CCD Sensor FEATURES * 2048 by 4608 Pixel Format * 1.5 mm Square Pixels * Image Area 27.6 x 62.2 mm * Back Illuminated Format for High Quantum Efficiency * Low

More information

TCD1711DG TCD1711DG. Features. Pin Connection (top view) Maximum Ratings (Note 1)

TCD1711DG TCD1711DG. Features. Pin Connection (top view) Maximum Ratings (Note 1) TOSHIBA CCD Linear Image Sensor CCD (Charge Coupled Device) TCD7DG TCD7DG The TCD7DG is a high sensitive and low dark current 7450 elements CCD image sensor. The sensor is designed for facsimile, imagescanner

More information

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1205DG

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1205DG Preliminary TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1205DG The TCD1205DG is a high sensitive and low dark current 2048 elements linear image sensor. The sensor can be used for POS

More information

Description. TC247SPD-B0 680 x 500 PIXEL IMPACTRON TM MONOCHROME CCD IMAGE SENSOR SOCS091 - DECEMBER REVISED MARCH 2005

Description. TC247SPD-B0 680 x 500 PIXEL IMPACTRON TM MONOCHROME CCD IMAGE SENSOR SOCS091 - DECEMBER REVISED MARCH 2005 Very Low Noise, Very High Sensitivity, Electronically Variable Charge Domain Gain 1/2-in Format, Solid State Charge-Coupled Device (CCD) Frame Interline Transfer Monochrome Image Sensor for Low Light Level

More information

TCD1209DG TCD1209DG FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW)

TCD1209DG TCD1209DG FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TCD1209DG TCD1209DG The TCD1209DG is a high speed and low dark current 2048 elements CCD image sensor. The sensor is designed for facsimile,

More information

MN39160FH. 4.5 mm (type-1/4) 680k-pixel CCD Area Image Sensor. CCD Area Image Sensor. Features. Applications

MN39160FH. 4.5 mm (type-1/4) 680k-pixel CCD Area Image Sensor. CCD Area Image Sensor. Features. Applications CCD Area Image Sensor MN39160FH 4.5 mm (type-1/4) 60k-pixel CCD Area Image Sensor Overview The MN39160FH is a 4.5 mm (type-1/4) interline transfer CCD (IT-CCD) solid state image sensor device. This device

More information

functional block diagram (each section pin numbers apply to section 1)

functional block diagram (each section pin numbers apply to section 1) Sensor-Element Organization 00 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Low Noise for Gray-Scale Applications Output Referenced to Ground Low Image Lag... 0.% Typ Operation to MHz Single -V

More information

CCD Back Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation

CCD Back Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation CCD230-42 Back Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation INTRODUCTION This device extends e2v s family of scientific CCD sensors. The CCD230 has been

More information

An Introduction to CCDs. The basic principles of CCD Imaging is explained.

An Introduction to CCDs. The basic principles of CCD Imaging is explained. An Introduction to CCDs. The basic principles of CCD Imaging is explained. Morning Brain Teaser What is a CCD? Charge Coupled Devices (CCDs), invented in the 1970s as memory devices. They improved the

More information

The Charge-Coupled Device. Many overheads courtesy of Simon Tulloch

The Charge-Coupled Device. Many overheads courtesy of Simon Tulloch The Charge-Coupled Device Astronomy 1263 Many overheads courtesy of Simon Tulloch smt@ing.iac.es Jan 24, 2013 What does a CCD Look Like? The fine surface electrode structure of a thick CCD is clearly visible

More information

Charged Coupled Device (CCD) S.Vidhya

Charged Coupled Device (CCD) S.Vidhya Charged Coupled Device (CCD) S.Vidhya 02.04.2016 Sensor Physical phenomenon Sensor Measurement Output A sensor is a device that measures a physical quantity and converts it into a signal which can be read

More information

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP TCD1304AP The TCD1304AP is a high sensitive and low dark current 3648 elements linear image sensor. The sensor can be used for POS scanner.

More information

TCD1501D TCD1501D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

TCD1501D TCD1501D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device) TCD1501D TCD1501D The TCD1501D which includes sample and hold circuit is a high sensitive and low dark current 5000 elements CCD image sensor.

More information

KAI (H) x 2672 (V) Interline CCD Image Sensor

KAI (H) x 2672 (V) Interline CCD Image Sensor KAI-11002 4008 (H) x 2672 (V) Interline CCD Image Sensor Description The KAI 11002 Image Sensor is a high-performance 11-million pixel sensor designed for professional digital still camera applications.

More information

KAI (H) x 3248 (V) Interline CCD Image Sensor

KAI (H) x 3248 (V) Interline CCD Image Sensor KAI-16000 4872 (H) x 3248 (V) Interline CCD Image Sensor Description The KAI 16000 is an interline transfer CCD offering 16 million pixels at up to 3 frames per second through 2 outputs. This image sensor

More information

Two-phase full-frame CCD with double ITO gate structure for increased sensitivity

Two-phase full-frame CCD with double ITO gate structure for increased sensitivity Two-phase full-frame CCD with double ITO gate structure for increased sensitivity William Des Jardin, Steve Kosman, Neal Kurfiss, James Johnson, David Losee, Gloria Putnam *, Anthony Tanbakuchi (Eastman

More information

An Introduction to Scientific Imaging C h a r g e - C o u p l e d D e v i c e s

An Introduction to Scientific Imaging C h a r g e - C o u p l e d D e v i c e s p a g e 2 S C I E N T I F I C I M A G I N G T E C H N O L O G I E S, I N C. Introduction to the CCD F u n d a m e n t a l s The CCD Imaging A r r a y An Introduction to Scientific Imaging C h a r g e -

More information

ILX pixel CCD Linear Image Sensor (B/W)

ILX pixel CCD Linear Image Sensor (B/W) VOUT VGG 8 Internal Structure Output amplifier S/H circuit 22 2 2 7 6 4 3 2 D3 D4 D32 S S2 S3 S246 S247 S248 D33 D34 D3 D36 D37 D38 Clock plse generator/ Sample-and-hold pulse generator Readout gate CCD

More information

CCD Front Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation

CCD Front Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation CCD230-42 Front Illuminated Scientific CCD Sensor 2048 x 2048 Pixels, Four Outputs and Inverted Mode Operation INTRODUCTION This device extends e2v s family of scientific CCD sensors. The CCD230 has been

More information