Cosc VR Interaction. Interaction in Virtual Environments

Size: px
Start display at page:

Download "Cosc VR Interaction. Interaction in Virtual Environments"

Transcription

1 Cosc 4471 Interaction in Virtual Environments VR Interaction In traditional interfaces we need to use interaction metaphors Windows, Mouse, Pointer (WIMP) Limited input degrees of freedom imply modality in the interface Abstractions of behaviours (sliders, dialog boxes, ) Requires a cognitive model of user interface and mapping of goals to user actions Norman (1986) Gulf of execution - the psychological gap that must be crossed to manipulate a user interface appropriately: goals -> plans -> action specification -> operate interface * Gulf of evaluation - the psychological gap that must be crossed to interpret a user interface display: interface -> interpretation -> evaluation. * * ( 1

2 VR Interaction Metaphor In a VE we present immersive displays that user perceives track and represent the participant s actions in the VE model environments with a natural behaviour and reaction to participant actions VR Interaction Metaphor Natural and intuitive user interaction believed to promote presence Generalization of WYSIWYG concept More effective? Direct, ideally narrow gulf of execution and gulf of evaluation Can take advantage of natural, everyday skills and immediate and natural feedback 2

3 VE s enable direct manipulation and interaction with environment as opposed to abstract metaphors In an immersive VE we can have a different interaction model Interactions centered on the user s body ( Egocentric ) Natural interactions possible using the affordances provided by real environments Need for modality reduced constraints of the VE (gravity, collision detection) flexibility of the interface (i.e. no need to separate selection from manipulation) 3

4 Limitations in VR interaction metaphor Direct metaphor limited Limitations on 3D tracking, models, display Little API support (standards, tools) Physical effort and fatigue Restricted by same constraints as real world Conversely, poor support for real world constraints Increased effort, difficulty with precision, unnatural Poor fit or inefficiency performing some tasks with direct interaction (control and configuration tasks) Most fielded VE s have little interactivity or are difficult to use Can explicitly model and use real world constraints in interaction MIVE (Stuerzlinger) models physical constraints and natural grouping behaviour Surfaces of support Push together metaphors Limitations in VR interaction metaphor Often need magic interaction as well as natural Allows interactions not possible in real world Longer range interaction Teleporting Allows compensation for limited tracking ability and ability of displays to support real world constraints Requires training on metaphor Use in high-fidelity training situations must be limited In non-realistic VE consider the effectiveness of interaction 4

5 Representing humans in VE interaction Representation of participant s body and actions in the VE Feedback for interaction (egocentric representation of hands, limbs) especially manipulation and selection Improved immersion and presence Automatic with see-through HMD and CAVE Need virtual (graphical) representation in HMD Representation of other s avatars in a collaborative VE Representing humans in VE interaction Direct interaction relies on correspondence between body and its VE representation Temporal and spatial mapping from human sensors and displays, human effectors and system input devices more straightforward in naturalistic VE s Need to track user s head (hand, body ) in real time in order to respond to head (hand, body ) motion in real time Current tracking does not measure degrees of freedom possible in human motion Burns (2005) IEEE VR2005 5

6 Visually Coupled Systems Most fundamental representation is participant s view (camera control) A special case of locomotion 3D graphics are rendered from the point of view and pose of a virtual camera Full 6-DOF motion possible Complicated mapping to 2D devices such as mice Typical viewpoint options Virtual camera at avatar s eye (egocentric) Virtual camera fixed in the world (exocentric) Tethered virtual camera (trailing user with an over the shoulder view) Natural view control involves egocentric view and head and gaze movements Natural to look around (rotate and translate head to change view) Reduced learning curve, cognitive demand, hands free 6

7 Head orientation and position Need to track users head pose Ideally 6DOF pose, often 3D orientation is sufficient for distant objects of interest and restricted head motion (i.e. vehicle simulators) Render view appropriate for viewing direction and vantage point McDowall and Bolas, IPT 2002 critical component for immersive displays supports structure from motion perception maneuvering locomotion active perception situational awareness 7

8 Instantaneous field of view (FOV) of a display is angle subtended by the image at the eye Field of Regard amount of space (in terms of visual angle) filled by the virtual world an increased effective FOV beyond the instantaneous FOV is provided by tracking head motion Calibration and alignment very important in VCS in order to generate appropriate images much more sensitive to relative misregistration between real and synthetic imagery in AR than absolute misalignment in VR distortion and aberration more apparent in see-through displays than in VR displays distortion causes distortion misjudgment of shape and depth from perspective and motion. Lag ( exponential lag ) in VCS Delay in interaction in a CAVE or helmet-mounted display (HMD) can lead to perceptual and performance degradation Dynamic error - temporal mismatch between expected and actual response Display lag arises from transduction, filtering, transmission, image generation, rendering and display 8

9 Detrimental effects of delay for interaction Manual control Large lags (> 300 ms) force adoption of nonideal control strategies (move and wait) Degraded tracking or pursuit of a target Instability (pilot induced oscillation) Lag restrains head movements Slows hand-eye or head-eye co-ordination Fitt s law: MT = C1 + C2 (C3+lag) ID Visually guided motor behaviour Reduced ability to recalibrate motor behaviour (prism adaptation) Difficulties with grasp and placement and precision manoeuvring (e.g. ring tracing task degraded with 48ms delay) Visual search time increases with latency Depends on task, for tightly coupled visual simulation, maximum latencies of 40 or 80 ms used as rules of thumb (DIS 100 ms) Simulator or cyber sickness and workload Perceptual stability/oscillopsia VE Interactions Selection Manipulation Navigation Wayfinding Travel and Locomotion System or Application Control (Executive functions) 9

10 Selection Specifying object(s) in set or scene Indicate target of action Make active for manipulation and other operations Destination for travel At a distance necessarily involves tool metaphors or magic Degree of difficulty affected by distance, size, density object selection methods Contact/Virtual Hand Pointing (GoGo, ray casting) 3D cursor Aperture (occlusion, framing) Indirect (menu, context, spoken naming) world in miniature Need to provide feedback Touch, graphical, auditory Abstract (i.e. auditory icon) or realistic (forces, motion) Bowman and Hodge s Taxonomy 10

11 Direct Selection Virtual hand directly grabs or touches to select Direct, no magic but only limited range Avatar feedback essential in HMD systems GoGo and Reeling Magic extension to virtual hand GoGo: arm stretches to grab distant objects Reeling: Fishing rod metaphor Poupyrev et al, Eurographics 98 Ray Casting and Laser Metaphors Using hand other pointer cast a ray into scene Natural extension of pointing Action at a distance Feedback through extended pointer or laser beam metaphor Object touched or lit up is selected Intersect in 3D space Sensitive to orientation tracking noise and error due to large moment arm 11

12 University of Delft, Moldrive Poupyrev et al, Eurographics 98 Steinicke, WSCG 2005 direction selection methods (for selection, direction of travel etc) selection by pointing by gaze direction (or head or torso orientation) by crosshair (selection beam) by valuator by coordinate specification by landmarks 12

13 Image plane selection (Pierce 1997) Head Crusher Sticky Finger Palm lifting Framing Image plane techniques require user to view VE as both 3D environment Magic picture Manipulation manipulation operations positioning and sizing objects pushing/pulling on objects attribute modification (of object/simulation) controlling travel Tightly coupled to selection in a virtual environment A related an important issue is collision detection and management 13

14 Gruchalla, IEEE VR2004 Direct Metaphors Hand is modeled with limited degrees of freedom, often as a point no posture, grasp Okay for selection how to support manipulation? Grasp with button, pinch glove After grasp object moves with hand 14

15 University of Delft, Project Moldrive From Slater et al (2002) Computer Graphics and Virtual Environments 15

16 Kim & Fellner (2005) More complex direction interactions? Track orientation of hand for pose changes Modal manipulation through secondary input device Tracking of finger flexion for grasp Orientation changes at a distance difficult Bring object to user and use hand centred manipulation Manipulation methods (Mine 1995) Photos from Sherman& Craig, Understanding Virtual Reality

17 Exocentric Manipulation Manipulation from a external view (exocentric) rather than first person (egocentric) World in miniature (WIM) Scaled world grab May break presence immersion indirect WIM does not scale easily and is difficult for precise positioning Mark Mine (1995), Scaled world grab Two handed interaction Guiard, Y (1987 The Journal of Motor Behaviour) stresses asymmetry between dominant and non-dominant hand: Motion of the dominant hand uses nondominant as spatial reference Dominant hand performs finer and smaller scale motions Non-dominant hand motion typically precedes dominant hand motion 17

18 Navigation Two components to navigating way finding travel Wayfinding Refers to determination of current location and path to desired location Need to maneuver through environment and avoid obstacles when wayfinding (or wandering) need to provide cognitive information to support location determination and wayfinding behaviour (navigational awareness) 18

19 people believed to form cognitive maps or models of the environment landmark procedural survey In VR we need to be able to navigate about the VE. A typical goal of wearable computers is to provide navigational awareness. Pierce& Pausch, Navigation with place representations and visible landmarks IEEE VR2005 Aids to wayfinding landmarks (natural or artificial) path following/leaving trails maps memorable place names compass/instruments exocentric views coordinate display, grid structure constrained travel 19

20 With non-immersive and small fields of view Exocentric view preferred for global spatial awareness Egocentric view preferred for local navigation Tethered view as a compromise In immersive applications, Egocentric views are the normal mode Exocentric views used for reorientation, large scale travel Travel Current VR systems allow small tracked work spaces To move to other places in the virtual environment (or in the real world) need to support travel between two places Physical travel fits real world Locomotion on foot is natural form of travel Vehicular travel is also familiar direct or indirect control and locomotion 20

21 Travel through computer based worlds using mice and joystick is familiar to many (computer games etc) Travel through time is also useful Travel supports Exploration Search Maneuvering Travel requires control of direction and speed of motion Steering Locomotion (real time user control of the virtual camera through VE ) Real travel is limited in a VE- we need a travel metaphor Travel Methods and Metaphors Real locomotion modest distances, limited by tracking capabilities some tricks possible (treadmills, walking in place) typically some real locomotion supported in addition to other techniques Difficulties with terrain following, collision detection and response 21

22 Route planning metaphor Ride along a preplanned route Tow rope or river metaphor Image from Sherman& Craig, Understanding Virtual Reality 2003 Path to be specified can be done in path planning navigation task Waypoints Icons Path drawing Image from Doug Bowman s dissertation Fly mode most common, lots of freedom direction and speed control A walk through is fly mode constrained to follow the terrain. If not other interaction possible we have a walk-through VE 22

23 Travel Methods and Metaphors Direction Control (Steering) Gaze, head, or torso orientation Hand pointing or other gesture Tracked devices (wands) Two or three-dimensional input devices: Gamepads and joysticks, 3D input devices,wands Speed control: constant velocity, gesture, input device, select from list Can drive vehicles using virtual or physical controls (steering wheels, flight yokes), often with increased control over speed, acceleration Saito VR

24 Komerska and Ware, 2003 Beckhaus 2005 Maipulation method Eye-in-hand and scene-in-hand viewpoint control metaphors by hand rotate around a target moving /scaling the world often used in visualization Image from Doug Bowman s dissertation 24

25 Put me there method Target based metaphor: jump to a defined location multimodal displays (speech, gesture) ask to go to named location point to target define location in a exocentric, map or world-inminiature display select from application menu list, enter coordinates stepping into a picture or aperture into a different world Teleporting can be disorienting World in miniature (Stoakley, 1995) Hand centered model of VE for navigation Coupled with handheld scale model (prop) all methods except real locomotion dissociate real from virtual travel Problems with this dissociation conflict between real and physical motion unnatural, may interfere with wayfinding not suitable for AR or wearable applications 25

26 Which travel mode is best? Real motion is most natural but not always desirable in virtual environments travelling large distances or through outer space etc vehicular travel fatigue Steering, fly, natural locomotion best for search and exploration of new environment Map and manipulation are efficient for relative motion Natural Motion Interest in extending the range of real physical motion Hi-ball and other long range trackers vision based AR trackers & wearable systems GPS, landmark based York Trike project Application or System Control Changing state of simulation Timeline, replay events Modify environment Change behaviours Annotate Interact with underlying system Develop and debug Communicating with other users or agents Controlling the behaviour of the simulation or of agents in the world 26

27 Traditional 2D menus Floating Embedded (better presence?) 3D Windows 1D Ring Menus Other 3D metaphors Can interfere with visualizing VE Hot keys, specialised interface 2D interaction on surface in VE (e.g. graphic tablet represented in VE) Speech recognition Gestures Implicit controls Generally less natural fit to VR interaction model 27

Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine)

Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine) Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine) Presentation Working in a virtual world Interaction principles Interaction examples Why VR in the First Place? Direct perception

More information

CSC 2524, Fall 2017 AR/VR Interaction Interface

CSC 2524, Fall 2017 AR/VR Interaction Interface CSC 2524, Fall 2017 AR/VR Interaction Interface Karan Singh Adapted from and with thanks to Mark Billinghurst Typical Virtual Reality System HMD User Interface Input Tracking How can we Interact in VR?

More information

3D Interaction Techniques

3D Interaction Techniques 3D Interaction Techniques Hannes Interactive Media Systems Group (IMS) Institute of Software Technology and Interactive Systems Based on material by Chris Shaw, derived from Doug Bowman s work Why 3D Interaction?

More information

Virtuelle Realität. Overview. Part 13: Interaction in VR: Navigation. Navigation Wayfinding Travel. Virtuelle Realität. Prof.

Virtuelle Realität. Overview. Part 13: Interaction in VR: Navigation. Navigation Wayfinding Travel. Virtuelle Realität. Prof. Part 13: Interaction in VR: Navigation Virtuelle Realität Wintersemester 2006/07 Prof. Bernhard Jung Overview Navigation Wayfinding Travel Further information: D. A. Bowman, E. Kruijff, J. J. LaViola,

More information

Guidelines for choosing VR Devices from Interaction Techniques

Guidelines for choosing VR Devices from Interaction Techniques Guidelines for choosing VR Devices from Interaction Techniques Jaime Ramírez Computer Science School Technical University of Madrid Campus de Montegancedo. Boadilla del Monte. Madrid Spain http://decoroso.ls.fi.upm.es

More information

Interaction in VR: Manipulation

Interaction in VR: Manipulation Part 8: Interaction in VR: Manipulation Virtuelle Realität Wintersemester 2007/08 Prof. Bernhard Jung Overview Control Methods Selection Techniques Manipulation Techniques Taxonomy Further reading: D.

More information

CSE 165: 3D User Interaction. Lecture #11: Travel

CSE 165: 3D User Interaction. Lecture #11: Travel CSE 165: 3D User Interaction Lecture #11: Travel 2 Announcements Homework 3 is on-line, due next Friday Media Teaching Lab has Merge VR viewers to borrow for cell phone based VR http://acms.ucsd.edu/students/medialab/equipment

More information

Réalité Virtuelle et Interactions. Interaction 3D. Année / 5 Info à Polytech Paris-Sud. Cédric Fleury

Réalité Virtuelle et Interactions. Interaction 3D. Année / 5 Info à Polytech Paris-Sud. Cédric Fleury Réalité Virtuelle et Interactions Interaction 3D Année 2016-2017 / 5 Info à Polytech Paris-Sud Cédric Fleury (cedric.fleury@lri.fr) Virtual Reality Virtual environment (VE) 3D virtual world Simulated by

More information

Welcome. My name is Jason Jerald, Co-Founder & Principal Consultant at Next Gen Interactions I m here today to talk about the human side of VR

Welcome. My name is Jason Jerald, Co-Founder & Principal Consultant at Next Gen Interactions I m here today to talk about the human side of VR Welcome. My name is Jason Jerald, Co-Founder & Principal Consultant at Next Gen Interactions I m here today to talk about the human side of VR Interactions. For the technology is only part of the equationwith

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Interaction in Virtual and Augmented Reality 3DUIs

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Interaction in Virtual and Augmented Reality 3DUIs Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Interaction in Virtual and Augmented Reality 3DUIs Realidade Virtual e Aumentada 2017/2018 Beatriz Sousa Santos Interaction

More information

Perception in Immersive Virtual Reality Environments ROB ALLISON DEPT. OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE YORK UNIVERSITY, TORONTO

Perception in Immersive Virtual Reality Environments ROB ALLISON DEPT. OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE YORK UNIVERSITY, TORONTO Perception in Immersive Virtual Reality Environments ROB ALLISON DEPT. OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE YORK UNIVERSITY, TORONTO Overview Basic concepts and ideas of virtual environments

More information

Virtual Environment Interaction Based on Gesture Recognition and Hand Cursor

Virtual Environment Interaction Based on Gesture Recognition and Hand Cursor Virtual Environment Interaction Based on Gesture Recognition and Hand Cursor Chan-Su Lee Kwang-Man Oh Chan-Jong Park VR Center, ETRI 161 Kajong-Dong, Yusong-Gu Taejon, 305-350, KOREA +82-42-860-{5319,

More information

RV - AULA 05 - PSI3502/2018. User Experience, Human Computer Interaction and UI

RV - AULA 05 - PSI3502/2018. User Experience, Human Computer Interaction and UI RV - AULA 05 - PSI3502/2018 User Experience, Human Computer Interaction and UI Outline Discuss some general principles of UI (user interface) design followed by an overview of typical interaction tasks

More information

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design CSE 165: 3D User Interaction Lecture #14: 3D UI Design 2 Announcements Homework 3 due tomorrow 2pm Monday: midterm discussion Next Thursday: midterm exam 3D UI Design Strategies 3 4 Thus far 3DUI hardware

More information

Panel: Lessons from IEEE Virtual Reality

Panel: Lessons from IEEE Virtual Reality Panel: Lessons from IEEE Virtual Reality Doug Bowman, PhD Professor. Virginia Tech, USA Anthony Steed, PhD Professor. University College London, UK Evan Suma, PhD Research Assistant Professor. University

More information

3D User Interfaces. Using the Kinect and Beyond. John Murray. John Murray

3D User Interfaces. Using the Kinect and Beyond. John Murray. John Murray Using the Kinect and Beyond // Center for Games and Playable Media // http://games.soe.ucsc.edu John Murray John Murray Expressive Title Here (Arial) Intelligence Studio Introduction to Interfaces User

More information

Using Pinch Gloves for both Natural and Abstract Interaction Techniques in Virtual Environments

Using Pinch Gloves for both Natural and Abstract Interaction Techniques in Virtual Environments Using Pinch Gloves for both Natural and Abstract Interaction Techniques in Virtual Environments Doug A. Bowman, Chadwick A. Wingrave, Joshua M. Campbell, and Vinh Q. Ly Department of Computer Science (0106)

More information

Are Existing Metaphors in Virtual Environments Suitable for Haptic Interaction

Are Existing Metaphors in Virtual Environments Suitable for Haptic Interaction Are Existing Metaphors in Virtual Environments Suitable for Haptic Interaction Joan De Boeck Chris Raymaekers Karin Coninx Limburgs Universitair Centrum Expertise centre for Digital Media (EDM) Universitaire

More information

Chapter 1 - Introduction

Chapter 1 - Introduction 1 "We all agree that your theory is crazy, but is it crazy enough?" Niels Bohr (1885-1962) Chapter 1 - Introduction Augmented reality (AR) is the registration of projected computer-generated images over

More information

Virtual Environments: Tracking and Interaction

Virtual Environments: Tracking and Interaction Virtual Environments: Tracking and Interaction Simon Julier Department of Computer Science University College London http://www.cs.ucl.ac.uk/teaching/ve Outline Problem Statement: Models of Interaction

More information

3D User Interaction CS-525U: Robert W. Lindeman. Intro to 3D UI. Department of Computer Science. Worcester Polytechnic Institute.

3D User Interaction CS-525U: Robert W. Lindeman. Intro to 3D UI. Department of Computer Science. Worcester Polytechnic Institute. CS-525U: 3D User Interaction Intro to 3D UI Robert W. Lindeman Worcester Polytechnic Institute Department of Computer Science gogo@wpi.edu Why Study 3D UI? Relevant to real-world tasks Can use familiarity

More information

Chapter 15 Principles for the Design of Performance-oriented Interaction Techniques

Chapter 15 Principles for the Design of Performance-oriented Interaction Techniques Chapter 15 Principles for the Design of Performance-oriented Interaction Techniques Abstract Doug A. Bowman Department of Computer Science Virginia Polytechnic Institute & State University Applications

More information

COMS W4172 Travel 2 Steven Feiner Department of Computer Science Columbia University New York, NY 10027 www.cs.columbia.edu/graphics/courses/csw4172 April 3, 2018 1 Physical Locomotion Walking Simulators

More information

ThumbsUp: Integrated Command and Pointer Interactions for Mobile Outdoor Augmented Reality Systems

ThumbsUp: Integrated Command and Pointer Interactions for Mobile Outdoor Augmented Reality Systems ThumbsUp: Integrated Command and Pointer Interactions for Mobile Outdoor Augmented Reality Systems Wayne Piekarski and Bruce H. Thomas Wearable Computer Laboratory School of Computer and Information Science

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Virtual Reality Input Devices Special input devices are required for interaction,navigation and motion tracking (e.g., for depth cue calculation): 1 WIMP:

More information

VEWL: A Framework for Building a Windowing Interface in a Virtual Environment Daniel Larimer and Doug A. Bowman Dept. of Computer Science, Virginia Tech, 660 McBryde, Blacksburg, VA dlarimer@vt.edu, bowman@vt.edu

More information

Input devices and interaction. Ruth Aylett

Input devices and interaction. Ruth Aylett Input devices and interaction Ruth Aylett Contents Tracking What is available Devices Gloves, 6 DOF mouse, WiiMote Why is it important? Interaction is basic to VEs We defined them as interactive in real-time

More information

Issues and Challenges of 3D User Interfaces: Effects of Distraction

Issues and Challenges of 3D User Interfaces: Effects of Distraction Issues and Challenges of 3D User Interfaces: Effects of Distraction Leslie Klein kleinl@in.tum.de In time critical tasks like when driving a car or in emergency management, 3D user interfaces provide an

More information

A Novel Human Computer Interaction Paradigm for Volume Visualization in Projection-Based. Environments

A Novel Human Computer Interaction Paradigm for Volume Visualization in Projection-Based. Environments Virtual Environments 1 A Novel Human Computer Interaction Paradigm for Volume Visualization in Projection-Based Virtual Environments Changming He, Andrew Lewis, and Jun Jo Griffith University, School of

More information

3D interaction strategies and metaphors

3D interaction strategies and metaphors 3D interaction strategies and metaphors Ivan Poupyrev Interaction Lab, Sony CSL Ivan Poupyrev, Ph.D. Interaction Lab, Sony CSL E-mail: poup@csl.sony.co.jp WWW: http://www.csl.sony.co.jp/~poup/ Address:

More information

Gestaltung und Strukturierung virtueller Welten. Bauhaus - Universität Weimar. Research at InfAR. 2ooo

Gestaltung und Strukturierung virtueller Welten. Bauhaus - Universität Weimar. Research at InfAR. 2ooo Gestaltung und Strukturierung virtueller Welten Research at InfAR 2ooo 1 IEEE VR 99 Bowman, D., Kruijff, E., LaViola, J., and Poupyrev, I. "The Art and Science of 3D Interaction." Full-day tutorial presented

More information

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1 VR Software Class 4 Dr. Nabil Rami http://www.simulationfirst.com/ein5255/ Audio Output Can be divided into two elements: Audio Generation Audio Presentation Page 4-1 Audio Generation A variety of audio

More information

VR System Input & Tracking

VR System Input & Tracking Human-Computer Interface VR System Input & Tracking 071011-1 2017 년가을학기 9/13/2017 박경신 System Software User Interface Software Input Devices Output Devices User Human-Virtual Reality Interface User Monitoring

More information

3D interaction techniques in Virtual Reality Applications for Engineering Education

3D interaction techniques in Virtual Reality Applications for Engineering Education 3D interaction techniques in Virtual Reality Applications for Engineering Education Cristian Dudulean 1, Ionel Stareţu 2 (1) Industrial Highschool Rosenau, Romania E-mail: duduleanc@yahoo.com (2) Transylvania

More information

The architectural walkthrough one of the earliest

The architectural walkthrough one of the earliest Editors: Michael R. Macedonia and Lawrence J. Rosenblum Designing Animal Habitats within an Immersive VE The architectural walkthrough one of the earliest virtual environment (VE) applications is still

More information

AUTOMATIC SPEED CONTROL FOR NAVIGATION IN 3D VIRTUAL ENVIRONMENT

AUTOMATIC SPEED CONTROL FOR NAVIGATION IN 3D VIRTUAL ENVIRONMENT AUTOMATIC SPEED CONTROL FOR NAVIGATION IN 3D VIRTUAL ENVIRONMENT DOMOKOS M. PAPOI A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

More information

Interaction Techniques for Immersive Virtual Environments: Design, Evaluation, and Application

Interaction Techniques for Immersive Virtual Environments: Design, Evaluation, and Application Interaction Techniques for Immersive Virtual Environments: Design, Evaluation, and Application Doug A. Bowman Graphics, Visualization, and Usability Center College of Computing Georgia Institute of Technology

More information

Tracking. Alireza Bahmanpour, Emma Byrne, Jozef Doboš, Victor Mendoza and Pan Ye

Tracking. Alireza Bahmanpour, Emma Byrne, Jozef Doboš, Victor Mendoza and Pan Ye Tracking Alireza Bahmanpour, Emma Byrne, Jozef Doboš, Victor Mendoza and Pan Ye Outline of this talk Introduction: what makes a good tracking system? Example hardware and their tradeoffs Taxonomy of tasks:

More information

3D UIs 101 Doug Bowman

3D UIs 101 Doug Bowman 3D UIs 101 Doug Bowman Welcome, Introduction, & Roadmap 3D UIs 101 3D UIs 201 User Studies and 3D UIs Guidelines for Developing 3D UIs Video Games: 3D UIs for the Masses The Wii Remote and You 3D UI and

More information

Tangible User Interface for CAVE TM based on Augmented Reality Technique

Tangible User Interface for CAVE TM based on Augmented Reality Technique Tangible User Interface for CAVE TM based on Augmented Reality Technique JI-SUN KIM Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of

More information

Mid-term report - Virtual reality and spatial mobility

Mid-term report - Virtual reality and spatial mobility Mid-term report - Virtual reality and spatial mobility Jarl Erik Cedergren & Stian Kongsvik October 10, 2017 The group members: - Jarl Erik Cedergren (jarlec@uio.no) - Stian Kongsvik (stiako@uio.no) 1

More information

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems F. Steinicke, G. Bruder, H. Frenz 289 A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems Frank Steinicke 1, Gerd Bruder 1, Harald Frenz 2 1 Institute of Computer Science,

More information

Stereo-based Hand Gesture Tracking and Recognition in Immersive Stereoscopic Displays. Habib Abi-Rached Thursday 17 February 2005.

Stereo-based Hand Gesture Tracking and Recognition in Immersive Stereoscopic Displays. Habib Abi-Rached Thursday 17 February 2005. Stereo-based Hand Gesture Tracking and Recognition in Immersive Stereoscopic Displays Habib Abi-Rached Thursday 17 February 2005. Objective Mission: Facilitate communication: Bandwidth. Intuitiveness.

More information

Alternative Interfaces. Overview. Limitations of the Mac Interface. SMD157 Human-Computer Interaction Fall 2002

Alternative Interfaces. Overview. Limitations of the Mac Interface. SMD157 Human-Computer Interaction Fall 2002 INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Alternative Interfaces SMD157 Human-Computer Interaction Fall 2002 Nov-27-03 SMD157, Alternate Interfaces 1 L Overview Limitation of the Mac interface

More information

TRAVEL IN SMILE : A STUDY OF TWO IMMERSIVE MOTION CONTROL TECHNIQUES

TRAVEL IN SMILE : A STUDY OF TWO IMMERSIVE MOTION CONTROL TECHNIQUES IADIS International Conference Computer Graphics and Visualization 27 TRAVEL IN SMILE : A STUDY OF TWO IMMERSIVE MOTION CONTROL TECHNIQUES Nicoletta Adamo-Villani Purdue University, Department of Computer

More information

Direct Manipulation. and Instrumental Interaction. CS Direct Manipulation

Direct Manipulation. and Instrumental Interaction. CS Direct Manipulation Direct Manipulation and Instrumental Interaction 1 Review: Interaction vs. Interface What s the difference between user interaction and user interface? Interface refers to what the system presents to the

More information

Simultaneous Object Manipulation in Cooperative Virtual Environments

Simultaneous Object Manipulation in Cooperative Virtual Environments 1 Simultaneous Object Manipulation in Cooperative Virtual Environments Abstract Cooperative manipulation refers to the simultaneous manipulation of a virtual object by multiple users in an immersive virtual

More information

Interactive and Immersive 3D Visualization for ATC

Interactive and Immersive 3D Visualization for ATC Interactive and Immersive 3D Visualization for ATC Matt Cooper & Marcus Lange Norrköping Visualization and Interaction Studio University of Linköping, Sweden Summary of last presentation A quick description

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

Collaboration en Réalité Virtuelle

Collaboration en Réalité Virtuelle Réalité Virtuelle et Interaction Collaboration en Réalité Virtuelle https://www.lri.fr/~cfleury/teaching/app5-info/rvi-2018/ Année 2017-2018 / APP5 Info à Polytech Paris-Sud Cédric Fleury (cedric.fleury@lri.fr)

More information

TRAVEL IN IMMERSIVE VIRTUAL LEARNING ENVIRONMENTS: A USER STUDY WITH CHILDREN

TRAVEL IN IMMERSIVE VIRTUAL LEARNING ENVIRONMENTS: A USER STUDY WITH CHILDREN Vol. 2, No. 2, pp. 151-161 ISSN: 1646-3692 TRAVEL IN IMMERSIVE VIRTUAL LEARNING ENVIRONMENTS: A USER STUDY WITH Nicoletta Adamo-Villani and David Jones Purdue University, Department of Computer Graphics

More information

Jerald, Jason. The VR Book : Human-centered Design for Virtual Reality. First ed. ACM Books ; #8. New York] : [San Rafael, California]: Association

Jerald, Jason. The VR Book : Human-centered Design for Virtual Reality. First ed. ACM Books ; #8. New York] : [San Rafael, California]: Association Jerald, Jason. The VR Book : Human-centered Design for Virtual Reality. First ed. ACM Books ; #8. New York] : [San Rafael, California]: Association for Computing Machinery ; M&C, Morgan & Claypool, 2016.

More information

VR/AR Concepts in Architecture And Available Tools

VR/AR Concepts in Architecture And Available Tools VR/AR Concepts in Architecture And Available Tools Peter Kán Interactive Media Systems Group Institute of Software Technology and Interactive Systems TU Wien Outline 1. What can you do with virtual reality

More information

NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS

NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EFFECTIVE SPATIALLY SENSITIVE INTERACTION IN VIRTUAL ENVIRONMENTS by Richard S. Durost September 2000 Thesis Advisor: Associate Advisor: Rudolph P.

More information

Interactive and Immersive 3D Visualization for ATC. Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden

Interactive and Immersive 3D Visualization for ATC. Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden Interactive and Immersive 3D Visualization for ATC Matt Cooper Norrköping Visualization and Interaction Studio University of Linköping, Sweden Background Fundamentals: Air traffic expected to increase

More information

User Interface Constraints for Immersive Virtual Environment Applications

User Interface Constraints for Immersive Virtual Environment Applications User Interface Constraints for Immersive Virtual Environment Applications Doug A. Bowman and Larry F. Hodges {bowman, hodges}@cc.gatech.edu Graphics, Visualization, and Usability Center College of Computing

More information

Occlusion based Interaction Methods for Tangible Augmented Reality Environments

Occlusion based Interaction Methods for Tangible Augmented Reality Environments Occlusion based Interaction Methods for Tangible Augmented Reality Environments Gun A. Lee α Mark Billinghurst β Gerard J. Kim α α Virtual Reality Laboratory, Pohang University of Science and Technology

More information

Wayfinding. Ernst Kruijff. Wayfinding. Wayfinding

Wayfinding. Ernst Kruijff. Wayfinding. Wayfinding Bauhaus-Universitaet Weimar & GMD Chair for CAAD & Architecture (Prof. Donath), Faculty of Architecture Bauhaus-Universitaet Weimar, Germany Virtual Environments group (IMK.VE) German National Research

More information

Approaches to the Successful Design and Implementation of VR Applications

Approaches to the Successful Design and Implementation of VR Applications Approaches to the Successful Design and Implementation of VR Applications Steve Bryson Computer Science Corporation/NASA Ames Research Center Moffett Field, Ca. 1 Introduction Virtual reality is the use

More information

Testbed Evaluation of Virtual Environment Interaction Techniques

Testbed Evaluation of Virtual Environment Interaction Techniques Testbed Evaluation of Virtual Environment Interaction Techniques Doug A. Bowman Department of Computer Science (0106) Virginia Polytechnic & State University Blacksburg, VA 24061 USA (540) 231-7537 bowman@vt.edu

More information

Interface Design V: Beyond the Desktop

Interface Design V: Beyond the Desktop Interface Design V: Beyond the Desktop Rob Procter Further Reading Dix et al., chapter 4, p. 153-161 and chapter 15. Norman, The Invisible Computer, MIT Press, 1998, chapters 4 and 15. 11/25/01 CS4: HCI

More information

Augmented and mixed reality (AR & MR)

Augmented and mixed reality (AR & MR) Augmented and mixed reality (AR & MR) Doug Bowman CS 5754 Based on original lecture notes by Ivan Poupyrev AR/MR example (C) 2008 Doug Bowman, Virginia Tech 2 Definitions Augmented reality: Refers to a

More information

Effective Iconography....convey ideas without words; attract attention...

Effective Iconography....convey ideas without words; attract attention... Effective Iconography...convey ideas without words; attract attention... Visual Thinking and Icons An icon is an image, picture, or symbol representing a concept Icon-specific guidelines Represent the

More information

VISUAL REQUIREMENTS ON AUGMENTED VIRTUAL REALITY SYSTEM

VISUAL REQUIREMENTS ON AUGMENTED VIRTUAL REALITY SYSTEM Annals of the University of Petroşani, Mechanical Engineering, 8 (2006), 73-78 73 VISUAL REQUIREMENTS ON AUGMENTED VIRTUAL REALITY SYSTEM JOZEF NOVÁK-MARCINČIN 1, PETER BRÁZDA 2 Abstract: Paper describes

More information

A Study of Navigation and Selection Techniques in Virtual Environments Using Microsoft Kinect

A Study of Navigation and Selection Techniques in Virtual Environments Using Microsoft Kinect A Study of Navigation and Selection Techniques in Virtual Environments Using Microsoft Kinect Peter Dam 1, Priscilla Braz 2, and Alberto Raposo 1,2 1 Tecgraf/PUC-Rio, Rio de Janeiro, Brazil peter@tecgraf.puc-rio.br

More information

Look-That-There: Exploiting Gaze in Virtual Reality Interactions

Look-That-There: Exploiting Gaze in Virtual Reality Interactions Look-That-There: Exploiting Gaze in Virtual Reality Interactions Robert C. Zeleznik Andrew S. Forsberg Brown University, Providence, RI {bcz,asf,schulze}@cs.brown.edu Jürgen P. Schulze Abstract We present

More information

PERCEPTUAL AND SOCIAL FIDELITY OF AVATARS AND AGENTS IN VIRTUAL REALITY. Benjamin R. Kunz, Ph.D. Department Of Psychology University Of Dayton

PERCEPTUAL AND SOCIAL FIDELITY OF AVATARS AND AGENTS IN VIRTUAL REALITY. Benjamin R. Kunz, Ph.D. Department Of Psychology University Of Dayton PERCEPTUAL AND SOCIAL FIDELITY OF AVATARS AND AGENTS IN VIRTUAL REALITY Benjamin R. Kunz, Ph.D. Department Of Psychology University Of Dayton MAICS 2016 Virtual Reality: A Powerful Medium Computer-generated

More information

Evaluating Visual/Motor Co-location in Fish-Tank Virtual Reality

Evaluating Visual/Motor Co-location in Fish-Tank Virtual Reality Evaluating Visual/Motor Co-location in Fish-Tank Virtual Reality Robert J. Teather, Robert S. Allison, Wolfgang Stuerzlinger Department of Computer Science & Engineering York University Toronto, Canada

More information

Virtual Reality and Natural Interactions

Virtual Reality and Natural Interactions Virtual Reality and Natural Interactions Jackson Rushing Game Development and Entrepreneurship Faculty of Business and Information Technology j@jacksonrushing.com 2/23/2018 Introduction Virtual Reality

More information

PERFORMANCE IN A HAPTIC ENVIRONMENT ABSTRACT

PERFORMANCE IN A HAPTIC ENVIRONMENT ABSTRACT PERFORMANCE IN A HAPTIC ENVIRONMENT Michael V. Doran,William Owen, and Brian Holbert University of South Alabama School of Computer and Information Sciences Mobile, Alabama 36688 (334) 460-6390 doran@cis.usouthal.edu,

More information

Virtual Reality Calendar Tour Guide

Virtual Reality Calendar Tour Guide Technical Disclosure Commons Defensive Publications Series October 02, 2017 Virtual Reality Calendar Tour Guide Walter Ianneo Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Affordances and Feedback in Nuance-Oriented Interfaces

Affordances and Feedback in Nuance-Oriented Interfaces Affordances and Feedback in Nuance-Oriented Interfaces Chadwick A. Wingrave, Doug A. Bowman, Naren Ramakrishnan Department of Computer Science, Virginia Tech 660 McBryde Hall Blacksburg, VA 24061 {cwingrav,bowman,naren}@vt.edu

More information

Ubiquitous Computing Summer Episode 16: HCI. Hannes Frey and Peter Sturm University of Trier. Hannes Frey and Peter Sturm, University of Trier 1

Ubiquitous Computing Summer Episode 16: HCI. Hannes Frey and Peter Sturm University of Trier. Hannes Frey and Peter Sturm, University of Trier 1 Episode 16: HCI Hannes Frey and Peter Sturm University of Trier University of Trier 1 Shrinking User Interface Small devices Narrow user interface Only few pixels graphical output No keyboard Mobility

More information

The Control of Avatar Motion Using Hand Gesture

The Control of Avatar Motion Using Hand Gesture The Control of Avatar Motion Using Hand Gesture ChanSu Lee, SangWon Ghyme, ChanJong Park Human Computing Dept. VR Team Electronics and Telecommunications Research Institute 305-350, 161 Kajang-dong, Yusong-gu,

More information

EVALUATING 3D INTERACTION TECHNIQUES

EVALUATING 3D INTERACTION TECHNIQUES EVALUATING 3D INTERACTION TECHNIQUES ROBERT J. TEATHER QUALIFYING EXAM REPORT SUPERVISOR: WOLFGANG STUERZLINGER DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, YORK UNIVERSITY TORONTO, ONTARIO MAY, 2011

More information

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Helmut Schrom-Feiertag 1, Christoph Schinko 2, Volker Settgast 3, and Stefan Seer 1 1 Austrian

More information

CSE 190: Virtual Reality Technologies LECTURE #7: VR DISPLAYS

CSE 190: Virtual Reality Technologies LECTURE #7: VR DISPLAYS CSE 190: Virtual Reality Technologies LECTURE #7: VR DISPLAYS Announcements Homework project 2 Due tomorrow May 5 at 2pm To be demonstrated in VR lab B210 Even hour teams start at 2pm Odd hour teams start

More information

Admin. Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR

Admin. Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR HCI and Design Admin Reminder: Assignment 4 Due Thursday before class Questions? Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR 3D Interfaces We

More information

Input devices and interaction. Ruth Aylett

Input devices and interaction. Ruth Aylett Input devices and interaction Ruth Aylett Tracking What is available Devices Gloves, 6 DOF mouse, WiiMote, Kinect Contents Why is it important? Interaction is basic to VEs We defined them as interactive

More information

The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments

The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments The Amalgamation Product Design Aspects for the Development of Immersive Virtual Environments Mario Doulis, Andreas Simon University of Applied Sciences Aargau, Schweiz Abstract: Interacting in an immersive

More information

What was the first gestural interface?

What was the first gestural interface? stanford hci group / cs247 Human-Computer Interaction Design Studio What was the first gestural interface? 15 January 2013 http://cs247.stanford.edu Theremin Myron Krueger 1 Myron Krueger There were things

More information

ExTouch: Spatially-aware embodied manipulation of actuated objects mediated by augmented reality

ExTouch: Spatially-aware embodied manipulation of actuated objects mediated by augmented reality ExTouch: Spatially-aware embodied manipulation of actuated objects mediated by augmented reality The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Chapter 1 Virtual World Fundamentals

Chapter 1 Virtual World Fundamentals Chapter 1 Virtual World Fundamentals 1.0 What Is A Virtual World? {Definition} Virtual: to exist in effect, though not in actual fact. You are probably familiar with arcade games such as pinball and target

More information

Geo-Located Content in Virtual and Augmented Reality

Geo-Located Content in Virtual and Augmented Reality Technical Disclosure Commons Defensive Publications Series October 02, 2017 Geo-Located Content in Virtual and Augmented Reality Thomas Anglaret Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Determining Optimal Player Position, Distance, and Scale from a Point of Interest on a Terrain

Determining Optimal Player Position, Distance, and Scale from a Point of Interest on a Terrain Technical Disclosure Commons Defensive Publications Series October 02, 2017 Determining Optimal Player Position, Distance, and Scale from a Point of Interest on a Terrain Adam Glazier Nadav Ashkenazi Matthew

More information

Immersive Guided Tours for Virtual Tourism through 3D City Models

Immersive Guided Tours for Virtual Tourism through 3D City Models Immersive Guided Tours for Virtual Tourism through 3D City Models Rüdiger Beimler, Gerd Bruder, Frank Steinicke Immersive Media Group (IMG) Department of Computer Science University of Würzburg E-Mail:

More information

Exploring the Benefits of Immersion in Abstract Information Visualization

Exploring the Benefits of Immersion in Abstract Information Visualization Exploring the Benefits of Immersion in Abstract Information Visualization Dheva Raja, Doug A. Bowman, John Lucas, Chris North Virginia Tech Department of Computer Science Blacksburg, VA 24061 {draja, bowman,

More information

EyeScope: A 3D Interaction Technique for Accurate Object Selection in Immersive Environments

EyeScope: A 3D Interaction Technique for Accurate Object Selection in Immersive Environments EyeScope: A 3D Interaction Technique for Accurate Object Selection in Immersive Environments Cleber S. Ughini 1, Fausto R. Blanco 1, Francisco M. Pinto 1, Carla M.D.S. Freitas 1, Luciana P. Nedel 1 1 Instituto

More information

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright E90 Project Proposal 6 December 2006 Paul Azunre Thomas Murray David Wright Table of Contents Abstract 3 Introduction..4 Technical Discussion...4 Tracking Input..4 Haptic Feedack.6 Project Implementation....7

More information

Explorations on Body-Gesture based Object Selection on HMD based VR Interfaces for Dense and Occluded Dense Virtual Environments

Explorations on Body-Gesture based Object Selection on HMD based VR Interfaces for Dense and Occluded Dense Virtual Environments Report: State of the Art Seminar Explorations on Body-Gesture based Object Selection on HMD based VR Interfaces for Dense and Occluded Dense Virtual Environments By Shimmila Bhowmick (Roll No. 166105005)

More information

General conclusion on the thevalue valueof of two-handed interaction for. 3D interactionfor. conceptual modeling. conceptual modeling

General conclusion on the thevalue valueof of two-handed interaction for. 3D interactionfor. conceptual modeling. conceptual modeling hoofdstuk 6 25-08-1999 13:59 Pagina 175 chapter General General conclusion on on General conclusion on on the value of of two-handed the thevalue valueof of two-handed 3D 3D interaction for 3D for 3D interactionfor

More information

Haptic, vestibular and other physical input/output devices

Haptic, vestibular and other physical input/output devices Human Touch Sensing - recap Haptic, vestibular and other physical input/output devices SGN-5406 Virtual Reality Autumn 2007 ismo.rakkolainen@tut.fi The human sensitive areas for touch: Hand, face Many

More information

NAVIGATION TECHNIQUES IN AUGMENTED AND MIXED REALITY: CROSSING THE VIRTUALITY CONTINUUM

NAVIGATION TECHNIQUES IN AUGMENTED AND MIXED REALITY: CROSSING THE VIRTUALITY CONTINUUM Chapter 20 NAVIGATION TECHNIQUES IN AUGMENTED AND MIXED REALITY: CROSSING THE VIRTUALITY CONTINUUM Raphael Grasset 1,2, Alessandro Mulloni 2, Mark Billinghurst 1 and Dieter Schmalstieg 2 1 HIT Lab NZ University

More information

Direct Manipulation. and Instrumental Interaction. Direct Manipulation

Direct Manipulation. and Instrumental Interaction. Direct Manipulation Direct Manipulation and Instrumental Interaction Direct Manipulation 1 Direct Manipulation Direct manipulation is when a virtual representation of an object is manipulated in a similar way to a real world

More information

Experiments in the Use of Immersion for Information Visualization. Ameya Datey

Experiments in the Use of Immersion for Information Visualization. Ameya Datey Experiments in the Use of Immersion for Information Visualization Ameya Datey Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

EMPOWERING THE CONNECTED FIELD FORCE WORKER WITH ADVANCED ANALYTICS MATTHEW SHORT ACCENTURE LABS

EMPOWERING THE CONNECTED FIELD FORCE WORKER WITH ADVANCED ANALYTICS MATTHEW SHORT ACCENTURE LABS EMPOWERING THE CONNECTED FIELD FORCE WORKER WITH ADVANCED ANALYTICS MATTHEW SHORT ACCENTURE LABS ACCENTURE LABS DUBLIN Artificial Intelligence Security SILICON VALLEY Digital Experiences Artificial Intelligence

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

Immersive Simulation in Instructional Design Studios

Immersive Simulation in Instructional Design Studios Blucher Design Proceedings Dezembro de 2014, Volume 1, Número 8 www.proceedings.blucher.com.br/evento/sigradi2014 Immersive Simulation in Instructional Design Studios Antonieta Angulo Ball State University,

More information

Touch & Gesture. HCID 520 User Interface Software & Technology

Touch & Gesture. HCID 520 User Interface Software & Technology Touch & Gesture HCID 520 User Interface Software & Technology Natural User Interfaces What was the first gestural interface? Myron Krueger There were things I resented about computers. Myron Krueger

More information

Virtual Environments. Ruth Aylett

Virtual Environments. Ruth Aylett Virtual Environments Ruth Aylett Aims of the course 1. To demonstrate a critical understanding of modern VE systems, evaluating the strengths and weaknesses of the current VR technologies 2. To be able

More information