The Casey angle. A Different Angle on Perspective

Size: px
Start display at page:

Download "The Casey angle. A Different Angle on Perspective"

Transcription

1 A Different Angle on Perspective Marc Frantz Marc Frantz majored in painting at the Herron School of Art, where he received his.f.a. in After a thirteen-year career as a painter and picture framer, he entered graduate school in mathematics at Indiana University Purdue University Indianapolis (IUPUI), where he received his M.S. in Since then he has taught mathematics at IUPUI and Indiana University, where he is currently a research associate. He loves the visual approach to mathematics, especially links between mathematics and art. In Figure 1, the angle between a fence post and the fence rail is a right angle. On the other hand, in a projective image, such as a perspective drawing or the photograph in Figure 2, the measure of the image of a right angle may well not be 90. ut should all angles be disregarded in projective geometry? We answer No, and describe a sense in which certain angles are preserved by projective transformations, although generally projective geometry disregards all considerations of distance and angle [3, p. xii]. The Casey angle Consider the four fence posts in Figures 1 and 2. It turns out that from the intersection of the two semicircles, the angle subtended by the inner semicircle endpoints is 60. This is easy to prove in Figure 1, and easy to check empirically in Figure 2 by measuring with a protractor. We go on to discuss some applications of the invariance of these angles to projective geometry, perspective drawing, and photography in hopes 60 α = 90 Figure 1. Two angles associated with a fence. MSC: 51N THE MATHEMATICAL ASSOCIATION OF AMERICA

2 60 α < 90 Figure 2. of convincing the reader that they deserve to be better known. These are examples of a concept we dub the Casey angle, after a theorem by the Irish geometer John Casey ( ). Consider any four distinct points on a line, denoted in order by A, C,, D, as in Figure 3. Let O be an intersection point of the circles with diameters A and CD. The angle θ = CO is the Casey angle of the four points. O θ A C D Figure 3. The Casey angle of four collinear points. Observe that O lies on the circle with diameter A in Figure 3, hence m( AO) = 90, where m denotes the measure of an angle. Consequently, the Casey angle satisfies 0 < θ < 90. Observe also that unlike the angles α and α, the Casey angle in Figure 2 is not the projected image of that in Figure 1. For instance, if the semicircles in Figure 1 were physically in the plane of the fence, their projected images in Figure 2 would be elliptical arcs not semicircles and the corresponding angle would not be 60. Instead, we should think of the semicircles and the Casey angles as compass and straightedge constructions drawn on the figures. This is the sense in which the Casey angle is preserved: if we take a photograph of the fence, or a photograph of the photograph, et cetera, the corresponding semicircles may vary but the measure of the Casey angle remains the same. In fact, this construction serves as a partial check on a perspective drawing of a fence: if the Casey angle corresponding to the four fence post tops isn t 60, then there is a mistake in the drawing. VOL. 43, NO. 5, NOVEMER 2012 THE COLLEGE MATHEMATICS JOURNAL 355

3 Casey s theorem Casey s theorem is based on the cross ratio. The cross ratio (A, CD) of four collinear points A,, C, D is given by (A, CD) = AC D C DA, where each quantity e.g., AC, is a directed distance. This means that a positive direction is arbitrarily assigned to the line, so that AC and CA have the same magnitude but opposite sign. Since there are an even number of directed distances in the expression, the number of negative directed distances remains even or odd if the positive direction is reversed, so the choice of the positive direction does not affect the cross ratio. A fundamental result of projective geometry is that the cross ratio is projectively invariant: if A,, C, D are four collinear points and A,, C, D are their images under a projective transformation, then A,, C, D are collinear and (A, CD) = (A, C D ). The invariance holds when the labels of the points are permuted, so there is more than one invariant numerical quantity associated with a given quadruple of collinear points. Although there are 4! = 24 ways to apply the labels A,, C, D to four points, it is well known that permuting the labels leads to at most six distinct values of the cross ratio. Specifically, if one labeling gives λ for the cross ratio, the set of all cross ratio values of the four points is = { λ, 1 λ, 1 λ, 1 1 λ, λ 1 λ, λ λ 1 }. (1) Casey s theorem expresses the six cross ratio values in (1) in terms of the six trigonometric functions and the Casey angle: Casey s Theorem. The set of the cross ratio values of four distinct collinear points can be written = (θ) = { sin 2 θ, cos 2 θ, csc 2 θ, sec 2 θ, tan 2 θ, cot 2 θ }, (2) where θ is the Casey angle of the four points. In textbooks the proof of Casey s theorem is typically left as an exercise (see for example [4, p. 93], [8, p. 194], or [6, p. 155]). The statement of the theorem may also include the fact that 2θ is the angle at O between (the tangents of) the two semicircles in Figure 3. We also leave the proof for the reader, with the following hint. The fact that (A, CD) = cot 2 θ follows using the formula for the cross ratio and the law of sines. The other elements of (θ) are generated using the formulas in (1), and basic trigonometric identities. It s also helpful to use the fact that the inscribed angles AO and COD are right angles. (Readers familiar with the cross ratio of four concurrent lines can take a shortcut to this proof.) As suggested by Figures 1 and 2, the Casey angle is invariant in perspective drawing and photography. To be more precise, we first state without proof that if A, C,, D are collinear points appearing in that order, then their respective images A, C,, D in a photograph or perspective drawing are collinear points appearing in the corresponding order. Thus, as mentioned earlier, we have both (A, CD) = cot 2 θ and (A, C D ) = cot 2 φ, where θ and φ are the respective Casey angles. The invariance of the cross ratio then gives cot 2 θ = cot 2 φ. It is easy to check that the function β cot 2 β is one-to-one on (0, π/2), and hence φ = θ. 356 THE MATHEMATICAL ASSOCIATION OF AMERICA

4 Photographs and drawings Photogrammetry is the science of extracting three-dimensional information from twodimensional photographic images. Many techniques of photogrammetry also apply to perspective drawings and paintings. Here we present a simple application of the cross ratio to photogrammetry, with the Casey angle in a central role. Our starting point is the perspective image of two books lying on a table as in Figure 4. The goal is to determine what the indicated angle is between the actual physical books on the table, omitting the trivial cases in which the angle is 0 or 90. Calling this the actual angle, we phrase the question as follows: What is the actual angle between the books depicted in Figure 4?? Figure 4. What is the actual angle between the books? Simply measuring the image of the actual angle with a protractor will not give the correct answer, because of the distortion caused by the oblique point of view. This is not an angle preserved by projective transformations. To frame the correct answer, we show the same books in Figure 5, with their sides extended to pairs A, and C, D of vanishing points on the horizon line. ecause the actual angle is not 0 or θ A C D Figure 5. It is the Casey angle of the vanishing points! VOL. 43, NO. 5, NOVEMER 2012 THE COLLEGE MATHEMATICS JOURNAL 357

5 90, the vanishing points are distinct. Therefore the four points have a Casey angle θ. This angle is the solution we seek. To explain, we briefly review some concepts from the theory of perspective. Figure 6 is a bird s-eye view of an observer looking with one eye from the viewpoint E through a picture plane at a rectangle lying in the ground plane (or a plane parallel to the ground plane). In the balloon we have the observer s view of the image in the picture plane, including the vanishing points A, on the horizon line. ground plane rectangle in ground plane what the viewer sees parallel A picture plane parallel A E viewing semicircle parallel to ground plane Figure 6. Observer looking through a picture plane at a rectangle lying in the ground plane. The key idea is the relationship between the viewpoint, the vanishing points, and the rectangle in the ground plane. It is a basic fact of linear perspective that every perspective drawing or photograph has a unique viewpoint, from which the image is meant to be viewed with one eye [5]. This point is the center of projection when the real world is projected onto the picture plane. From this viewpoint, the line of sight to a vanishing point is parallel in space to the lines in the real world whose images converge to that point. Therefore, since adjacent sides of the rectangle in the ground plane (or a book on the table) meet at right angles, the lines of sight EA and E are mutually perpendicular and parallel to the ground plane. It follows from plane geometry that the viewpoint E lies on the semicircle A parallel to the ground plane, indicated in Figure 6. We call this semicircle the viewing semicircle. In Figure 7 we look down on an observer viewing a wall-sized version of the picture of the two books. As in Figure 5, the points A, are the vanishing points of the book on the right, and the points C, D are the vanishing points of the book on the left. The corresponding viewing semicircles, both parallel to the ground plane, determine the viewpoint E at their intersection. Two edges of the image of the left-hand book have been extended to meet C, and two edges of the image of the right-hand book have been extended to meet. Since the lines of sight EC and E are parallel to the 358 THE MATHEMATICAL ASSOCIATION OF AMERICA

6 A C? D θ E Figure 7. The viewpoint E is the vertex of the Casey angle of the vanishing points A, C,, D. corresponding edges of the actual books, the actual angle between the books is the Casey angle θ = m( CE), as we claimed. Conclusion In the Renaissance, art lovers had their first experience of seeing realistic twodimensional representations of the real world, in the form of paintings and frescoes. Today our experience is flooded with the counterparts of these paintings: photographic images from newspapers, magazines, and the Internet, and we frequently make our own such images with digital cameras and cell phones. Embedded in these many images are interesting geometric relationships, including examples of projective invariants. One of the easiest invariants to visualize is the Casey angle, which can be represented as a single measurement with a protractor. In many cases we can use it to extract information about the real world despite the distortion of perspective and better understand the relationship of the viewpoint and vanishing points in perspective drawings. An appropriate selection of photographs, together with straightedges, compasses, and protractors, can serve as materials for interesting classroom experiments with the Casey angle. Such experiments reveal surprising mathematical relationships right in front of our eyes all the time and make an interesting counterpoint to the notion that angles have no place in projective geometry. On a historical note, John Casey is perhaps best known for another Casey s theorem, which is sometimes regarded as a generalization of Ptolemy s theorem (see for example [7]). The first prominent mathematician to investigate perspective with multiple vanishing points as used in this article was rook Taylor, who wrote two versions of a treatise on the subject for artists [9, 10]. For an interesting account of this work, see the excellent books by Kirsti Andersen [1, 2]. VOL. 43, NO. 5, NOVEMER 2012 THE COLLEGE MATHEMATICS JOURNAL 359

7 Summary. When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with compass and straightedge on existing projective images, giving insights into photography and perspective drawing. References 1. K. Andersen, rook Taylor s Work on Linear Perspective: A Study of Taylor s Role in the History of Perspective Geometry. Including Facsimiles of Taylor s Two ooks on Perspective, Springer-Verlag, New York, , The Geometry of an Art: The History of the Mathematical Theory of Perspective from Alberti to Monge, Springer, New York, H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, Mathematical Association of America, Washington DC, H. Eves, A Survey of Geometry, Allyn and acon, oston MA, M. Frantz and A. Crannell, Viewpoints: Mathematical Perspective and Fractal Geometry in Art, Princeton University Press, Princeton NJ, A. F. Horadam, A Guide to Undergraduate Projective Geometry, Pergamon Press, Australia, R. Johnson, Advanced Euclidean Geometry, Dover, Mineola NY, D. C. Kay, College Geometry, Holt, Rinehart and Winston, New York, Taylor, Linear Perspective, R. Knaplock, London, , New Principles of Linear Perspective, R. Knaplock, London, THE MATHEMATICAL ASSOCIATION OF AMERICA

Chapter 5. Drawing a cube. 5.1 One and two-point perspective. Math 4520, Spring 2015

Chapter 5. Drawing a cube. 5.1 One and two-point perspective. Math 4520, Spring 2015 Chapter 5 Drawing a cube Math 4520, Spring 2015 5.1 One and two-point perspective In Chapter 5 we saw how to calculate the center of vision and the viewing distance for a square in one or two-point perspective.

More information

The reciprocal identities are obvious from the definitions of the six trigonometric functions.

The reciprocal identities are obvious from the definitions of the six trigonometric functions. The Fundamental Identities: (1) The reciprocal identities: csc = 1 sec = 1 (2) The tangent and cotangent identities: tan = cot = cot = 1 tan (3) The Pythagorean identities: sin 2 + cos 2 =1 1+ tan 2 =

More information

One of the classes that I have taught over the past few years is a technology course for

One of the classes that I have taught over the past few years is a technology course for Trigonometric Functions through Right Triangle Similarities Todd O. Moyer, Towson University Abstract: This article presents an introduction to the trigonometric functions tangent, cosecant, secant, and

More information

2.2. Special Angles and Postulates. Key Terms

2.2. Special Angles and Postulates. Key Terms And Now From a New Angle Special Angles and Postulates. Learning Goals Key Terms In this lesson, you will: Calculate the complement and supplement of an angle. Classify adjacent angles, linear pairs, and

More information

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 2: Constructing Lines, Segments, and Angles Instruction

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 2: Constructing Lines, Segments, and Angles Instruction Prerequisite Skills This lesson requires the use of the following skills: using a compass understanding the geometry terms line, segment, ray, and angle Introduction Two basic instruments used in geometry

More information

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points.

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points. Student Name: Teacher: Date: District: Miami-Dade County Public Schools Test: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the given

More information

In addition to one-point perespective, another common perspective

In addition to one-point perespective, another common perspective CHAPTR 5 Two-Point Perspective In addition to one-point perespective, another common perspective drawing technique is two-point perspective, illustrated in Figure 5.1. Unless otherwise stated, we will

More information

Trigonometric identities

Trigonometric identities Trigonometric identities An identity is an equation that is satisfied by all the values of the variable(s) in the equation. For example, the equation (1 + x) = 1 + x + x is an identity. If you replace

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities.

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities. 4.6 Trigonometric Identities Solutions to equations that arise from real-world problems sometimes include trigonometric terms. One example is a trajectory problem. If a volleyball player serves a ball

More information

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes Trigonometric Identities 4.3 Introduction trigonometric identity is a relation between trigonometric expressions which is true for all values of the variables (usually angles. There are a very large number

More information

Trigonometry. David R. Wilkins

Trigonometry. David R. Wilkins Trigonometry David R. Wilkins 1. Trigonometry 1. Trigonometry 1.1. Trigonometric Functions There are six standard trigonometric functions. They are the sine function (sin), the cosine function (cos), the

More information

Geometry Problem Solving Drill 11: Right Triangle

Geometry Problem Solving Drill 11: Right Triangle Geometry Problem Solving Drill 11: Right Triangle Question No. 1 of 10 Which of the following points lies on the unit circle? Question #01 A. (1/2, 1/2) B. (1/2, 2/2) C. ( 2/2, 2/2) D. ( 2/2, 3/2) The

More information

Trigonometry Review Page 1 of 14

Trigonometry Review Page 1 of 14 Trigonometry Review Page of 4 Appendix D has a trigonometric review. This material is meant to outline some of the proofs of identities, help you remember the values of the trig functions at special values,

More information

MAT01A1. Appendix D: Trigonometry

MAT01A1. Appendix D: Trigonometry MAT01A1 Appendix D: Trigonometry Dr Craig 12 February 2019 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

ONE-POINT PERSPECTIVE

ONE-POINT PERSPECTIVE NAME: PERIOD: PERSPECTIVE Linear Perspective Linear Perspective is a technique for representing 3-dimensional space on a 2- dimensional (paper) surface. This method was invented during the Renaissance

More information

Math 123 Discussion Session Week 4 Notes April 25, 2017

Math 123 Discussion Session Week 4 Notes April 25, 2017 Math 23 Discussion Session Week 4 Notes April 25, 207 Some trigonometry Today we want to approach trigonometry in the same way we ve approached geometry so far this quarter: we re relatively familiar with

More information

Math 1205 Trigonometry Review

Math 1205 Trigonometry Review Math 105 Trigonometry Review We begin with the unit circle. The definition of a unit circle is: x + y =1 where the center is (0, 0) and the radius is 1. An angle of 1 radian is an angle at the center of

More information

Challenges from Ancient Greece

Challenges from Ancient Greece Challenges from ncient Greece Mathematical goals Make formal geometric constructions with a variety of tools and methods. Use congruent triangles to justify geometric constructions. Common Core State Standards

More information

How to Do Trigonometry Without Memorizing (Almost) Anything

How to Do Trigonometry Without Memorizing (Almost) Anything How to Do Trigonometry Without Memorizing (Almost) Anything Moti en-ari Weizmann Institute of Science http://www.weizmann.ac.il/sci-tea/benari/ c 07 by Moti en-ari. This work is licensed under the reative

More information

NAME: PERIOD: Perspective Packet (Week One)

NAME: PERIOD: Perspective Packet (Week One) NAME: PERIOD: Perspective Packet (Week One) The following are your beginning assignments for perspective. You are to complete ONE page at a time. When you finish each page show it to me to sign off and

More information

Georgia Standards of Excellence Frameworks. Mathematics. Accelerated GSE Pre-Calculus Unit 4: Trigonometric Identities

Georgia Standards of Excellence Frameworks. Mathematics. Accelerated GSE Pre-Calculus Unit 4: Trigonometric Identities Georgia Standards of Excellence Frameworks Mathematics Accelerated GSE Pre-Calculus Unit 4: Trigonometric Identities These materials are for nonprofit educational purposes only. Any other use may constitute

More information

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles easures, hape & pace EXEMPLAR 28 Trigonometric Identities Objective: To explore some relations of trigonometric ratios Key Stage: 3 Learning Unit: Trigonometric Ratios and Using Trigonometry Materials

More information

MATH 1113 Exam 3 Review. Fall 2017

MATH 1113 Exam 3 Review. Fall 2017 MATH 1113 Exam 3 Review Fall 2017 Topics Covered Section 4.1: Angles and Their Measure Section 4.2: Trigonometric Functions Defined on the Unit Circle Section 4.3: Right Triangle Geometry Section 4.4:

More information

Mathematical Perspective. Alex Jang, Shannon Jones, Anna Shapiro

Mathematical Perspective. Alex Jang, Shannon Jones, Anna Shapiro Mathematical Perspective Alex Jang, Shannon Jones, Anna Shapiro Paintings During the Middle Ages -Often focusing on religion -Less attention to the body and detail -Sometimes very strange -Rarely, if ever,

More information

The Image of a Square

The Image of a Square Mathematical Assoc. of America American Mathematical Monthly 121:1 March 25, 2016 2:38 p.m. Image-of-A-Square-2016-03-25.tex The Image of a Square Annalisa Crannell, Marc Frantz, and Fumiko Futamura Abstract.

More information

Exploring 3D in Flash

Exploring 3D in Flash 1 Exploring 3D in Flash We live in a three-dimensional world. Objects and spaces have width, height, and depth. Various specialized immersive technologies such as special helmets, gloves, and 3D monitors

More information

Geometric Puzzle Medley

Geometric Puzzle Medley Geometric Puzzle Medley (16 August 2018) Jim Stevenson This is a collection of simple but elegant puzzles, mostly from a British high school math teacher Catriona Shearer @Cshearer41 (https://twitter.com/cshearer41),

More information

Big Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry

Big Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry Common Core State s for High School Geometry Conceptual Category: Geometry Domain: The Number System G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment,

More information

MAT01A1. Appendix D: Trigonometry

MAT01A1. Appendix D: Trigonometry MAT01A1 Appendix D: Trigonometry Dr Craig 14 February 2017 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

Chapter 1. Trigonometry Week 6 pp

Chapter 1. Trigonometry Week 6 pp Fall, Triginometry 5-, Week -7 Chapter. Trigonometry Week pp.-8 What is the TRIGONOMETRY o TrigonometryAngle+ Three sides + triangle + circle. Trigonometry: Measurement of Triangles (derived form Greek

More information

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1 Radian Measures Exercise 1 Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1. Suppose I know the radian measure of the

More information

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days Mathematics 0- Student Workbook Unit 5 Lesson : Trigonometric Equations Approximate Completion Time: 4 Days Lesson : Trigonometric Identities I Approximate Completion Time: 4 Days Lesson : Trigonometric

More information

UNIT 1 GEOMETRY. (revision from 1 st ESO) Unit 8 in our books

UNIT 1 GEOMETRY. (revision from 1 st ESO) Unit 8 in our books UNIT 1 GEOMETRY (revision from 1 st ESO) Unit 8 in our books WHAT'S GEOMETRY? Geometry is the study of the size, shape and position of 2 dimensional shapes and 3 dimensional figures. In geometry, one explores

More information

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180.

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. We denote the measure of ABC by m ABC. (Temporary Definition): A point D lies in the interior of ABC iff there exists a segment

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

Title: Quadrilaterals Aren t Just Squares

Title: Quadrilaterals Aren t Just Squares Title: Quadrilaterals ren t Just Squares Brief Overview: This is a collection of the first three lessons in a series of seven lessons studying characteristics of quadrilaterals, including trapezoids, parallelograms,

More information

9.1 and 9.2 Introduction to Circles

9.1 and 9.2 Introduction to Circles Date: Secondary Math 2 Vocabulary 9.1 and 9.2 Introduction to Circles Define the following terms and identify them on the circle: Circle: The set of all points in a plane that are equidistant from a given

More information

Sec Geometry - Constructions

Sec Geometry - Constructions Sec 2.2 - Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Trigonometry Final Exam Study Guide Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a polar equation is given. Select the polar

More information

Trigonometry. An Overview of Important Topics

Trigonometry. An Overview of Important Topics Trigonometry An Overview of Important Topics 1 Contents Trigonometry An Overview of Important Topics... 4 UNDERSTAND HOW ANGLES ARE MEASURED... 6 Degrees... 7 Radians... 7 Unit Circle... 9 Practice Problems...

More information

Unit 10 Arcs and Angles of Circles

Unit 10 Arcs and Angles of Circles Lesson 1: Thales Theorem Opening Exercise Vocabulary Unit 10 Arcs and Angles of Circles Draw a diagram for each of the vocabulary words. Definition Circle The set of all points equidistant from a given

More information

Drawing on Desargues. About four years before Girard Desargues wrote the ANNALISA CRANNELL AND STEPHANIE DOUGLAS

Drawing on Desargues. About four years before Girard Desargues wrote the ANNALISA CRANNELL AND STEPHANIE DOUGLAS Drawing on Desargues ANNALISA CRANNELL AND STEPHANIE DOUGLAS D ESARGUES S TRIANGLE THEOREM: Two triangles that are perspective from a point are also perspective from a line. About four years before Girard

More information

and Transitional Comprehensive Curriculum. Geometry Unit 3: Parallel and Perpendicular Relationships

and Transitional Comprehensive Curriculum. Geometry Unit 3: Parallel and Perpendicular Relationships Geometry Unit 3: Parallel and Perpendicular Relationships Time Frame: Approximately three weeks Unit Description This unit demonstrates the basic role played by Euclid s fifth postulate in geometry. Euclid

More information

13-1 Practice. Trigonometric Identities. Find the exact value of each expression if 0 < θ < 90. 1, find sin θ. 1. If cos θ = 1, find cot θ.

13-1 Practice. Trigonometric Identities. Find the exact value of each expression if 0 < θ < 90. 1, find sin θ. 1. If cos θ = 1, find cot θ. 1-1 Practice Trigonometric Identities Find the exact value of each expression if 0 < θ < 90. 1. If cos θ = 5 1, find sin θ.. If cot θ = 1, find sin θ.. If tan θ = 4, find sec θ. 4. If tan θ =, find cot

More information

I. Course Information

I. Course Information G E O M E T R Y A ND T H E A R TS T I E R 2 C R E A T I V E DRI V E I. Course Information Department: Mathematics Course Code and Number: MAT 260 Number of C redits: 3 credits Course Title: Geometry and

More information

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function.

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function. 0.5 Graphs of the Trigonometric Functions 809 0.5. Eercises In Eercises -, graph one ccle of the given function. State the period, amplitude, phase shift and vertical shift of the function.. = sin. = sin.

More information

*Unit 1 Constructions and Transformations

*Unit 1 Constructions and Transformations *Unit 1 Constructions and Transformations Content Area: Mathematics Course(s): Geometry CP, Geometry Honors Time Period: September Length: 10 blocks Status: Published Transfer Skills Previous coursework:

More information

Project Maths Geometry Notes

Project Maths Geometry Notes The areas that you need to study are: Project Maths Geometry Notes (i) Geometry Terms: (ii) Theorems: (iii) Constructions: (iv) Enlargements: Axiom, theorem, proof, corollary, converse, implies The exam

More information

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas Math 180 Chapter 6 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 180 Lecture Notes Section 6.1 Section 6.1 Verifying Trigonometric Identities Verify the identity. a. sin x + cos x cot x = csc

More information

Contributors: Sean Holt Adam Parke Tom Turner. Solutions Manual. Edition: 25 April Editors: Adam W. Parke, Thomas B. Turner, Glen Van Brummelen

Contributors: Sean Holt Adam Parke Tom Turner. Solutions Manual. Edition: 25 April Editors: Adam W. Parke, Thomas B. Turner, Glen Van Brummelen Contributors: He a v e n l y Ma t h e ma t i c s T h ef o r g o t t e nar to f S p h e r i c a l T r i g o n o me t r y Gl e nva nbr umme l e n Solutions Manual Edition: 25 April 2013 Editors: Adam W.

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D. Review of Trigonometric Functions D7 APPENDIX D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving

More information

Mohr-Mascheroni theorem

Mohr-Mascheroni theorem Mohr-Mascheroni theorem NOGNENG Dorian LIX October 25, 2016 Table of Contents Introduction Constructible values Projection Intersecting a circle with a line Ratio a b c Intersecting 2 lines Conclusion

More information

1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw.

1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 Problem Set 4 Name Date 1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw.

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

MAC 1114 REVIEW FOR EXAM #2 Chapters 3 & 4

MAC 1114 REVIEW FOR EXAM #2 Chapters 3 & 4 MAC 111 REVIEW FOR EXAM # Chapters & This review is intended to aid you in studying for the exam. This should not be the only thing that you do to prepare. Be sure to also look over your notes, textbook,

More information

Grade 4 Mathematics Indiana Academic Standards Crosswalk

Grade 4 Mathematics Indiana Academic Standards Crosswalk Grade 4 Mathematics Indiana Academic Standards Crosswalk 2014 2015 The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content and the ways

More information

θ = = 45 What is the measure of this reference angle?

θ = = 45 What is the measure of this reference angle? OF GENERAL ANGLES Our method of using right triangles only works for acute angles. Now we will see how we can find the trig function values of any angle. To do this we'll place angles on a rectangular

More information

As the Planimeter s Wheel Turns

As the Planimeter s Wheel Turns As the Planimeter s Wheel Turns December 30, 2004 A classic example of Green s Theorem in action is the planimeter, a device that measures the area enclosed by a curve. Most familiar may be the polar planimeter

More information

Foundations of Projective Geometry

Foundations of Projective Geometry C H T E 15 Foundations of rojective Geometry What a delightful thing this perspective is! aolo Uccello (1379-1475) Italian ainter and Mathematician 15.1 XIMS F JECTIVE GEMETY In section 9.3 of Chapter

More information

Special Right Triangles and Right Triangle Trigonometry

Special Right Triangles and Right Triangle Trigonometry Special Right Triangles and Right Triangle Trigonometry Reporting Category Topic Triangles Investigating special right triangles and right triangle trigonometry Primary SOL G.8 The student will solve real-world

More information

Islamic Constructions: The Geometry Needed by Craftsmen

Islamic Constructions: The Geometry Needed by Craftsmen ISAMA The International Society of the Arts, Mathematics, and Architecture BRIDGEs Mathematical Connections in Art, Music, and Science Islamic Constructions: The Geometry Needed by Craftsmen Raymond Tennant

More information

Unit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools

Unit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools Number of Days: 34 9/5/17-10/20/17 Unit Goals Stage 1 Unit Description: Using building blocks from Algebra 1, students will use a variety of tools and techniques to construct, understand, and prove geometric

More information

SKETCHLAB Week 5. Alberti SKETCHLAB NOTES 5 PERSPECTIVE PRECISION AND PROPORTION FOR MR RONNIE TURNBULL

SKETCHLAB Week 5. Alberti SKETCHLAB NOTES 5 PERSPECTIVE PRECISION AND PROPORTION FOR MR RONNIE TURNBULL Alberti SKETCHLAB NOTES 5 PERSPECTIVE PRECISION AND PROPORTION FOR MR RONNIE TURNBULL 1 BEFORE THE RENAISSANCE PERSPECTIVE DRAWING IS The art of drawing solid objects on a two-dimensional surface so as

More information

arxiv: v1 [math.ho] 26 May 2014

arxiv: v1 [math.ho] 26 May 2014 Party Game for a 500th Anniversary arxiv:405.648v [math.ho] 26 May 204 Fumiko Futamura,, Marc Frantz,, and Annalisa Crannell 2, Southwestern University, Georgetown, TX 78626, USA 2 Franklin & Marshall

More information

(1) Page 482 #1 20. (2) Page 488 #1 14. (3) Page # (4) Page 495 #1 10. (5) Page #12 30,

(1) Page 482 #1 20. (2) Page 488 #1 14. (3) Page # (4) Page 495 #1 10. (5) Page #12 30, Geometry/Trigonometry Unit 8: Circles Notes Name: Date: Period: # (1) Page 482 #1 20 (2) Page 488 #1 14 (3) Page 488 489 #15 26 (4) Page 495 #1 10 (5) Page 495 496 #12 30, 37 39 (6) Page 502 #1 7 (7) Page

More information

1. When sketching long, narrow objects in OBLIQUE, distortion can be lessened by placing the long dimension along:

1. When sketching long, narrow objects in OBLIQUE, distortion can be lessened by placing the long dimension along: Draft Student Name: Teacher: District: Date: Wake County Test: 9_12 T and I IC61 - Drafting I Test 2 Description: 3.03 Apply 3D sketching Form: 501 1. When sketching long, narrow objects in OBLIQUE, distortion

More information

http://my.nctm.org/eresources/view_article.asp?article_id=7655 Page 1 of 2 Advanced Search SIGN OFF MY NCTM MY MEMBERSHIP HELP HOME NCTM You are signed in as Jennifer Bergner. ON-Math 2006-2007 Volume

More information

MATH Week 10. Ferenc Balogh Winter. Concordia University

MATH Week 10. Ferenc Balogh Winter. Concordia University MATH 20 - Week 0 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos

More information

AC phase. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC phase. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC phase This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

MATH STUDENT BOOK. 12th Grade Unit 5

MATH STUDENT BOOK. 12th Grade Unit 5 MATH STUDENT BOOK 12th Grade Unit 5 Unit 5 ANALYTIC TRIGONOMETRY MATH 1205 ANALYTIC TRIGONOMETRY INTRODUCTION 3 1. IDENTITIES AND ADDITION FORMULAS 5 FUNDAMENTAL TRIGONOMETRIC IDENTITIES 5 PROVING IDENTITIES

More information

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1 5 Trigonometric functions Trigonometry is the mathematics of triangles. A right-angle triangle is one in which one angle is 90, as shown in Figure 5.1. The thir angle in the triangle is φ = (90 θ). Figure

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module Pre-/Post-Test. U x T'

The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module Pre-/Post-Test. U x T' Pre-/Post-Test The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module Pre-/Post-Test 1. Triangle STU is rotated 180 clockwise to form image STU ' ' '. Determine the

More information

INTRODUCTION TO TRIGONOMETRY

INTRODUCTION TO TRIGONOMETRY INTRODUCTION TO TRIGONOMETRY 7 INTRODUCTION TO TRIGONOMETRY 8 8. Introduction There is perhaps nothing which so occupies the middle position of mathematics as trigonometry. J.F. Herbart (890) You have

More information

Packing Unit Squares in Squares: A Survey and New Results

Packing Unit Squares in Squares: A Survey and New Results Packing Unit Squares in Squares: A Survey and New Results Erich Friedman Stetson University, DeLand, FL 370 erich.friedman@stetson.edu Abstract Let s(n) be the side of the smallest square into which we

More information

1 von 14 03.01.2015 17:44 Diese Seite anzeigen auf: Deutsch Übersetzen Deaktivieren für: Englisch Optionen How did M. C. Escher draw his Circle Limit figures... Bill Casselman University of British Columbia,

More information

How Did Escher Do It?

How Did Escher Do It? How Did Escher Do It? How did M. C. Escher draw his Circle Limit figures... Bill Casselman University of British Columbia, Vancouver, Canada cass at math.ubc.ca Mail to a friend Print this article Introduction

More information

C.3 Review of Trigonometric Functions

C.3 Review of Trigonometric Functions C. Review of Trigonometric Functions C7 C. Review of Trigonometric Functions Describe angles and use degree measure. Use radian measure. Understand the definitions of the si trigonometric functions. Evaluate

More information

b. Draw a line and a circle that intersect at exactly one point. When this happens, the line is called a tangent.

b. Draw a line and a circle that intersect at exactly one point. When this happens, the line is called a tangent. 6-1. Circles can be folded to create many different shapes. Today, you will work with a circle and use properties of other shapes to develop a three-dimensional shape. Be sure to have reasons for each

More information

9.3 Properties of Chords

9.3 Properties of Chords 9.3. Properties of Chords www.ck12.org 9.3 Properties of Chords Learning Objectives Find the lengths of chords in a circle. Discover properties of chords and arcs. Review Queue 1. Draw a chord in a circle.

More information

1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw.

1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 Homework 4 Name Date 1. Use the following directions to draw a figure in the box to the right. a. Draw two points: and. b. Use a straightedge to draw. c.

More information

Geometry Station Activities for Common Core State Standards

Geometry Station Activities for Common Core State Standards Geometry Station Activities for Common Core State Standards WALCH EDUCATION Table of Contents Standards Correlations...................................................... v Introduction..............................................................vii

More information

Copying a Line Segment

Copying a Line Segment Copying a Line Segment Steps 1 4 below show you how to copy a line segment. Step 1 You are given line segment AB to copy. A B Step 2 Draw a line segment that is longer than line segment AB. Label one of

More information

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 1. Description: Unit C - Sketching - Test 2.

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 1. Description: Unit C - Sketching - Test 2. Student Name: Teacher: Date: District: Rowan Assessment: 9_12 T and I IC61 - Drafting I Test 1 Description: Unit C - Sketching - Test 2 Form: 501 1. The most often used combination of views includes the:

More information

Basic Geometry. Editors: Mary Dieterich and Sarah M. Anderson Proofreader: Margaret Brown. COPYRIGHT 2011 Mark Twain Media, Inc.

Basic Geometry. Editors: Mary Dieterich and Sarah M. Anderson Proofreader: Margaret Brown. COPYRIGHT 2011 Mark Twain Media, Inc. asic Geometry Editors: Mary Dieterich and Sarah M. nderson Proofreader: Margaret rown COPYRIGHT 2011 Mark Twain Media, Inc. ISN 978-1-58037-999-1 Printing No. 404154-E Mark Twain Media, Inc., Publishers

More information

Objective: Use a compass and straight edge to construct congruent segments and angles.

Objective: Use a compass and straight edge to construct congruent segments and angles. CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Introduction to Constructions Constructions: The drawing of various shapes using only a pair of compasses

More information

PreCalc: Chapter 6 Test Review

PreCalc: Chapter 6 Test Review Name: Class: Date: ID: A PreCalc: Chapter 6 Test Review Short Answer 1. Draw the angle. 135 2. Draw the angle. 3. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 8. If

More information

Investigation 1 Going Off on a Tangent

Investigation 1 Going Off on a Tangent Investigation 1 Going Off on a Tangent a compass, a straightedge In this investigation you will discover the relationship between a tangent line and the radius drawn to the point of tangency. Construct

More information

BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE

BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE Mathematica Pannonica 22/1 (2011), 119 125 BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE A. Sliepčević University of Zagreb, Faculty of Civil Engineering, Kačićeva 26, 10000 Zagreb, Croatia E. Jurkin

More information

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) (sin x + cos x) 1 + sin x cos x =? 1) ) sec 4 x + sec x tan x - tan 4 x =? ) ) cos

More information

Review Test 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 1)

More information

12 Constructions and Loci

12 Constructions and Loci MEP Y9 Practice ook 12 onstructions and Loci 12.1 Recap: ngles and Scale Drawing The concepts in this unit rely heavily on knowledge acquired previously, particularly for angles and scale drawings, so

More information

10 GRAPHING LINEAR EQUATIONS

10 GRAPHING LINEAR EQUATIONS 0 GRAPHING LINEAR EQUATIONS We now expand our discussion of the single-variable equation to the linear equation in two variables, x and y. Some examples of linear equations are x+ y = 0, y = 3 x, x= 4,

More information

Table of Contents. Standards Correlations...v Introduction...vii Materials List... x

Table of Contents. Standards Correlations...v Introduction...vii Materials List... x Table of Contents Standards Correlations...v Introduction...vii Materials List... x...1...1 Set 2: Classifying Triangles and Angle Theorems... 13 Set 3: Corresponding Parts, Transformations, and Proof...

More information

Objective: Use a compass and straight edge to construct congruent segments and angles.

Objective: Use a compass and straight edge to construct congruent segments and angles. CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Oct 1 8:33 AM Oct 2 7:42 AM 1 Introduction to Constructions Constructions: The drawing of various shapes

More information

Objective: Draw rectangles and rhombuses to clarify their attributes, and define rectangles and rhombuses based on those attributes.

Objective: Draw rectangles and rhombuses to clarify their attributes, and define rectangles and rhombuses based on those attributes. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 18 5 5 Lesson 18 Objective: Draw rectangles and rhombuses to clarify their attributes, and define Suggested Lesson Structure Fluency Practice Application Problem

More information

Drawing: technical drawing TECHNOLOGY

Drawing: technical drawing TECHNOLOGY Drawing: technical drawing Introduction Humans have always used images to communicate. Cave paintings, some of which are over 40,000 years old, are the earliest example of this artistic form of communication.

More information