MATH 225: Foundations of Higher Matheamatics. Dr. Morton. Chapter 2: Logic (This is where we begin setting the stage for proofs!)

Size: px
Start display at page:

Download "MATH 225: Foundations of Higher Matheamatics. Dr. Morton. Chapter 2: Logic (This is where we begin setting the stage for proofs!)"

Transcription

1 MATH 225: Foundations of Higher Matheamatics Dr. Morton Chapter 2: Logic (This is where we begin setting the stage for proofs!) New Problem from 2.5 page 3 parts 1,2,4: Suppose that we have the two open sentences P (x) x is a multiple of 3; Q(x) x < 9 over the domain S = N. For which x S are the following true? Make sure to show all work and give all possible scenarios which lead to the sentence being true. Solution: Recall from class today the following: P (x) is true on {3, 6, 9, 12,...} P (x) is false on {1, 2, 4, 5, 7, 8,...} Q(x) is true on {1, 2, 3, 4, 5, 6, 7, 8} Q(x) is false on {9, 10, 11, 12,...} 1. P (x) Q(x) Solution: There are two different possibilities we need to consider for when this is true: First, when both the hypothesis and conclusion are true, and secondly when the hypothesis is false. 1. Hyp/Concl true: Then P (x) is true AND Q(x) is true. Thus x is in both {3, 6, 9, 12,...} and {1, 2, 3, 4, 5, 6, 7, 8}. This is the set {3, 6}. 2. Hyp false: Then Q(x) is false: thus x is in {9, 10, 11, 12,...} For the entire statement to be true, then, it can come from the first type OR the second type, i.e. x can be in {3, 6} or in {9, 10, 11, 12,...}. Thus x is in {3, 6, 9, 10, 11, 12, 13,...} 2. ( P (x)) Q(x) Solution: There is only one possibility we need to consider for when this is true: When both ( P (x) AND Q(x) are true. Thus P (x) is false and Q(x) is true. We did much of this in class in part 3. We found that P (x) was F on {1, 2, 4, 5, 7, 8,...}, while Q(x) is T on {1, 2, 3, 4, 5, 6, 7, 8}. For this entire AND statement to be true, then, x must be in {1, 2, 4, 5, 7, 8,...} and {1, 2, 3, 4, 5, 6, 7, 8}, i.e. x is in {1, 2, 4, 5, 7, 8}. 4. [ P (x)] Q(x) Solution: Again, we did much of this in class today. Recall that in an iff statement, both parts must be true or both parts must be false. 1. Hyp/Concl both true: Then P (x) is true AND Q(x) is true, in other words P (x) is false AND Q(x) is true. We did this in part 2. above; the solution is {1, 2, 4, 5, 7, 8} 1

2 2. Hyp/Concl both false: Then P (x) is false AND Q(x) is false, in other words P (x) is true AND Q(x) is false. We know that P (x) is true on {3, 6, 9, 12,...} and Q(x) is false on {9, 10, 11, 12,...}. Thus for this part to be true, x must be in both {3, 6, 9, 12,...} and {9, 10, 11, 12,...}. Thus this part works when x is in {9, 12, 15, 18,...}. For the entire statement to be true, then, it can come from the first type OR the second type, i.e. x can be in {1, 2, 4, 5, 7, 8} or in {9, 12, 15, 18,...}. Thus x is in {1, 2, 4, 5, 7, 8, 9, 12, 15, 18, 21,...} 2

3 Page 10 Chapter 2 handout problem 4: What is the converse of If 3 is prime then 5 is odd. Is the original true? The converse? Solution: Converse is If 5 is odd then 3 is prime. Here the original is of the form If T then T =T, and the converse is of the form If T then T=T. Page 11 Chapter 2 handout problem 9bc: Are the following true or false? Why? b. Every integer is a real number if and only if every real number is an integer. Solution: This is of the form T if and only if F which is FALSE. c. 16 is prime if and only if π is rational. Solution: This is of the form F if and only if F which is TRUE. Page 11 Chapter 2 handout problem 10: Rephrase Example 9(c) using the equivalent phrasing found in example 8. Solution: is prime if and only if π is rational is prime is equivalent to π being rational is prime iff π is rational is prime is a necessary and sufficient condition for π to be rational. 3

4 Page 11 Chapter 2 handout problem 11: Consider the open sentences where n N. P (n) n is divisible by 6, Q(n) n is divisible by 3, 1. Write the implication P (n) Q(n) in words or symbols. (I.e., form the open sentence P (n) Q(n).) Solution: If n is divisible by 6 then n is divisible by Is part (a) true for each n N? Solution: We need to be careful here. An implication is true when both the hypothesis and conclusion are true OR when the hypothesis is false. The hyp is true on {6, 12, 18, 24,..}. The conclusion is true on {3, 6, 9, 12, 15, 18,...}. For them to both be true, we look at their intersection and find it to be {6, 12, 18,...}. The hyp is false on {1, 2, 3, 4, 5, 7, 8, 9, 10, 11,...} i.e. all things that are not multiples of 6. Thus the entire statement is true when one OR the other of these parts is true. Thus it is true on {6, 12, 18,...} OR {1, 2, 3, 4, 5, 7, 8, 9, 10, 11,...}, which is actually N 3. Write the converse of the implication P (n) Q(n) in words or symbols. (What is the converse?) Solution: If n is divisible by 3 then n is divisible by Is part (c) true for each n N? Solution: We need to be careful here. An implication is true when both the hypothesis and conclusion are true OR when the hypothesis is false. The hyp is true on {3, 6, 9, 12, 15, 18,...}. The conclusion is true on {6, 12, 18, 24,..}. For them to both be true, we look at their intersection and find it to be {6, 12, 18,...}. The hyp is false on {1, 2, 4, 5, 7, 8,,...} i.e. all things that are not multiples of 3. Thus the entire statement is true when one OR the other of these parts is true. Thus it is true on {6, 12, 18,...} OR {1, 2, 4, 5, 7, 8, 10, 11,...}, which is actually {1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17...} 5. Give a value of n so that P (n) Q(n) is true. It is true when the hypothesis and conclusion are either both true or both false. For example, n = 6 (it is divisible by both 3 and 6). 6. Give a value of n so that P (n) Q(n) is false. It is false when the hypothesis and conclusion do not agree. For example, n = 9 (it is divisible by 3 but not by 6). 4

5 Page 11 Chapter 2 handout problem 12: Consider the open sentences where x, y R. P (x, y) x < y, Q(x, y) x 2 < y 2, 1. Form the open sentence P (x, y) Q(x, y). Solution: x < y iff x 2 < y 2 2. For the open sentence above, give a pair (x, y) so that the statement is true and a pair (x, y) so that the statement is false. Solution: They are both false when (x, y) = (1, 1), making the iff statement true. On ( 1, 1) the hyp is true but the conclusion is false so the iff statement is false. 5

6 Page 13 Chapter 2 handout, Problem 6: Find the truth table for P ( ( P )). P P ( P ) P ( ( P )) T F T T F T F T Page 14 Chapter 2 handout, Problem 7a: ( P ) (Q P ) P Q (Q P ) ( P ) ( P ) (Q P ) T T T F T T F T F T F T F T T F F T T T This is a tautology. 6

CLASS NOTES. A mathematical proof is an argument which convinces other people that something is true.

CLASS NOTES. A mathematical proof is an argument which convinces other people that something is true. Propositional Statements A mathematical proof is an argument which convinces other people that something is true. The implication If p then q written as p q means that if p is true, then q must also be

More information

CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016

CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016 CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016 Review Recall from last time that we proved the following theorem: Theorem 1. The sign of any transposition is 1. Using this

More information

CS 202, section 2 Final Exam 13 December Pledge: Signature:

CS 202, section 2 Final Exam 13 December Pledge: Signature: CS 22, section 2 Final Exam 3 December 24 Name: KEY E-mail ID: @virginia.edu Pledge: Signature: There are 8 minutes (3 hours) for this exam and 8 points on the test; don t spend too long on any one question!

More information

MATH 200 FINAL EXAM PEYAM RYAN TABRIZIAN

MATH 200 FINAL EXAM PEYAM RYAN TABRIZIAN MATH 200 FINAL EXAM PEYAM RYAN TABRIZIAN Name: Instructions: Welcome to your Final Exam! You have 150 minutes (= 2h30) to take this exam, for a total of 100 points. Do not open the exam until you re instructed

More information

Congruence. Solving linear congruences. A linear congruence is an expression in the form. ax b (modm)

Congruence. Solving linear congruences. A linear congruence is an expression in the form. ax b (modm) Congruence Solving linear congruences A linear congruence is an expression in the form ax b (modm) a, b integers, m a positive integer, x an integer variable. x is a solution if it makes the congruence

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

Math 3560 HW Set 6. Kara. October 17, 2013

Math 3560 HW Set 6. Kara. October 17, 2013 Math 3560 HW Set 6 Kara October 17, 013 (91) Let I be the identity matrix 1 Diagonal matrices with nonzero entries on diagonal form a group I is in the set and a 1 0 0 b 1 0 0 a 1 b 1 0 0 0 a 0 0 b 0 0

More information

2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item. [A] 5 and 4 [B] 5 and 10 [C] 7 and 6 [D] 9 and 10

2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item. [A] 5 and 4 [B] 5 and 10 [C] 7 and 6 [D] 9 and 10 Identify the missing number in the pattern. 1. 3, 6, 9, 12, 15,? [A] 17 [B] 12 [C] 18 [D] 19 2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item 3. Look for a pattern to complete the table. 4 5 6 7

More information

Chapter 1. Set Theory

Chapter 1. Set Theory Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can

More information

Lesson 2: Using the Number Line to Model the Addition of Integers

Lesson 2: Using the Number Line to Model the Addition of Integers : Using the Number Line to Model the Addition of Integers Classwork Exercise 1: Real-World Introduction to Integer Addition Answer the questions below. a. Suppose you received $10 from your grandmother

More information

Multiples and Divisibility

Multiples and Divisibility Multiples and Divisibility A multiple of a number is a product of that number and an integer. Divisibility: A number b is said to be divisible by another number a if b is a multiple of a. 45 is divisible

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, 2016 CS1800 Discrete Structures Midterm Version C Instructions: 1. The exam is closed book and closed notes.

More information

Ideas beyond Number. Activity worksheets

Ideas beyond Number. Activity worksheets Ideas beyond Number Activity sheet 1 Task 1 Some students started to solve this equation in different ways: For each statement tick True or False: = = = = Task 2: Counter-examples The exception disproves

More information

Goldbach Conjecture (7 th june 1742)

Goldbach Conjecture (7 th june 1742) Goldbach Conjecture (7 th june 1742) We note P the odd prime numbers set. P = {p 1 = 3, p 2 = 5, p 3 = 7, p 4 = 11,...} n 2N\{0, 2, 4}, p P, p n/2, q P, q n/2, n = p + q We call n s Goldbach decomposition

More information

MATH6 - Introduction to Finite Mathematics

MATH6 - Introduction to Finite Mathematics MATH6 - Introduction to Finite Mathematics Exam II ANSWERS May 19, 2007 1. (1 points) Under previous rules, the NCAA men s basketball tournament has 64 teams, paired off to play in 32 first round games.

More information

Best of luck on the exam!

Best of luck on the exam! CS103 Handout 18 Fall 2014 October 20, 2014 Practice Midterm Exam This practice exam is closed-book and closed-computer but open-note. You may have a doublesided, 8.5 11 sheet of notes with you when you

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Parallel Line Converse Theorems. Key Terms

Parallel Line Converse Theorems. Key Terms A Reversed Condition Parallel Line Converse Theorems.5 Learning Goals Key Terms In this lesson, you will: Write parallel line converse conjectures. Prove parallel line converse conjectures. converse Corresponding

More information

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS DANIEL BACZKOWSKI, OLAOLU FASORANTI, AND CARRIE E. FINCH Abstract. In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Ideas beyond Number. Teacher s guide to Activity worksheets

Ideas beyond Number. Teacher s guide to Activity worksheets Ideas beyond Number Teacher s guide to Activity worksheets Learning objectives To explore reasoning, logic and proof through practical, experimental, structured and formalised methods of communication

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large

A C E. Answers Investigation 4. Applications. Dimensions of 39 Square Unit Rectangles and Partitions. Small Medium Large Answers Applications 1. An even number minus an even number will be even. Students may use examples, tiles, the idea of groups of two, or the inverse relationship between addition and subtraction. Using

More information

Walking on Numbers and a Self-Referential Formula

Walking on Numbers and a Self-Referential Formula Walking on Numbers and a Self-Referential Formula Awesome Math Summer Camp, Cornell University August 3, 2017 Coauthors for Walking on Numbers Figure: Kevin Kupiec, Marina Rawlings and me. Background Walking

More information

Lesson 21: If-Then Moves with Integer Number Cards

Lesson 21: If-Then Moves with Integer Number Cards Student Outcomes Students understand that if a number sentence is true and we make any of the following changes to the number sentence, the resulting number sentence will be true: i. Adding the same number

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

Sect Linear Equations in Two Variables

Sect Linear Equations in Two Variables 99 Concept # Sect. - Linear Equations in Two Variables Solutions to Linear Equations in Two Variables In this chapter, we will examine linear equations involving two variables. Such equations have an infinite

More information

Below are four problems which are comparable in organization, complexity and length to the four problems on the upcoming Ling 100 final.

Below are four problems which are comparable in organization, complexity and length to the four problems on the upcoming Ling 100 final. Ling 100 Sample Final Below are four problems which are comparable in organization, complexity and length to the four problems on the upcoming Ling 100 final. Problem 1 Problem 3.4 (Maltese) from the Language

More information

Cardinality revisited

Cardinality revisited Cardinality revisited A set is finite (has finite cardinality) if its cardinality is some (finite) integer n. Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B

More information

Order and Compare Rational and Irrational numbers and Locate on the number line

Order and Compare Rational and Irrational numbers and Locate on the number line 806.2.1 Order and Compare Rational and Irrational numbers and Locate on the number line Rational Number ~ any number that can be made by dividing one integer by another. The word comes from the word "ratio".

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

Use each digit card once to make the decimal number nearest to 20

Use each digit card once to make the decimal number nearest to 20 NUMBER Level 4 questions 1. Here is a number chart. Circle the smallest number on the chart that is a multiple of both 2 and 7 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

More information

REU 2006 Discrete Math Lecture 3

REU 2006 Discrete Math Lecture 3 REU 006 Discrete Math Lecture 3 Instructor: László Babai Scribe: Elizabeth Beazley Editors: Eliana Zoque and Elizabeth Beazley NOT PROOFREAD - CONTAINS ERRORS June 6, 006. Last updated June 7, 006 at :4

More information

An elementary study of Goldbach Conjecture

An elementary study of Goldbach Conjecture An elementary study of Goldbach Conjecture Denise Chemla 26/5/2012 Goldbach Conjecture (7 th, june 1742) states that every even natural integer greater than 4 is the sum of two odd prime numbers. If we

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

COMPSCI 223: Computational Microeconomics - Practice Final

COMPSCI 223: Computational Microeconomics - Practice Final COMPSCI 223: Computational Microeconomics - Practice Final 1 Problem 1: True or False (24 points). Label each of the following statements as true or false. You are not required to give any explanation.

More information

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions PRINT Your Name: Oski Bear SIGN Your Name: OS K I PRINT Your Student ID: CIRCLE your exam room: Pimentel

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information

2-1 Inductive Reasoning and Conjecture

2-1 Inductive Reasoning and Conjecture Write a conjecture that describes the pattern in each sequence. Then use your conjecture to find the next item in the sequence. 18. 1, 4, 9, 16 1 = 1 2 4 = 2 2 9 = 3 2 16 = 4 2 Each element is the square

More information

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION

MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MODULAR ARITHMETIC II: CONGRUENCES AND DIVISION MATH CIRCLE (BEGINNERS) 02/05/2012 Modular arithmetic. Two whole numbers a and b are said to be congruent modulo n, often written a b (mod n), if they give

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

ELEMENTS OF NUMBER THEORY & CONGRUENCES. Lagrange, Legendre and Gauss. Mth Mathematicst

ELEMENTS OF NUMBER THEORY & CONGRUENCES. Lagrange, Legendre and Gauss. Mth Mathematicst ELEMENTS OF NUMBER THEORY & CONGRUENCES Lagrange, Legendre and Gauss ELEMENTS OF NUMBER THEORY & CONGRUENCES 1) If a 0, b 0 Z and a/b, b/a then 1) a=b 2) a=1 3) b=1 4) a=±b Ans : is 4 known result. If

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Discrete Math Class 4 ( )

Discrete Math Class 4 ( ) Discrete Math 37110 - Class 4 (2016-10-06) 41 Division vs congruences Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor DO 41 If m ab and gcd(a, m) = 1, then m b DO 42 If gcd(a,

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

Visualizing Integers TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Visualizing Integers TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will identify expressions that balance an equation. Students will find values that satisfy integer equalities. Students will recognize and use the additive inverse property. Students

More information

Potpourri 5 th Grade points: How many positive factors do the numbers 16, 24, and 48 all have in common?

Potpourri 5 th Grade points: How many positive factors do the numbers 16, 24, and 48 all have in common? Potpourri 5 th Grade If your answer is a fraction like 3, bubble in 3. 1. 2 points: How many positive factors do the numbers, 24, and 48 all have in common? 2. 2 points: Find the next number in the following

More information

Math 1001: Excursions in Mathematics Final Exam: 9 May :30-4:30 p.m.

Math 1001: Excursions in Mathematics Final Exam: 9 May :30-4:30 p.m. Math 1001: Excursions in Mathematics Final Exam: 9 May 2011 1:30-4:30 p.m. Name: Section Number: You have three hours to complete this exam. There are ten problems on twelve pages, worth a total of 100

More information

TEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters

TEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters TEKSING TOWARD STAAR MATHEMATICS GRADE 7 Projection Masters Six Weeks 1 Lesson 1 STAAR Category 1 Grade 7 Mathematics TEKS 7.2A Understanding Rational Numbers A group of items or numbers is called a set.

More information

Mohr-Mascheroni theorem

Mohr-Mascheroni theorem Mohr-Mascheroni theorem NOGNENG Dorian LIX October 25, 2016 Table of Contents Introduction Constructible values Projection Intersecting a circle with a line Ratio a b c Intersecting 2 lines Conclusion

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

Algebra 1 Ch. 1-2 Study Guide September 12, 2012 Name: Actual test on Friday, Actual Test will be mostly multiple choice.

Algebra 1 Ch. 1-2 Study Guide September 12, 2012 Name: Actual test on Friday, Actual Test will be mostly multiple choice. Algebra 1 Ch. 1-2 Study Guide September 12, 2012 Name:_ Actual test on Friday, 9-14-12 Actual Test will be mostly multiple choice. Multiple Choice Identify the choice that best completes the statement

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures CS61C L22 Representations of Combinatorial Logic Circuits (1) inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 22 Representations of Combinatorial Logic Circuits 27-3-9 TA David

More information

22c181: Formal Methods in Software Engineering. The University of Iowa Spring Propositional Logic

22c181: Formal Methods in Software Engineering. The University of Iowa Spring Propositional Logic 22c181: Formal Methods in Software Engineering The University of Iowa Spring 2010 Propositional Logic Copyright 2010 Cesare Tinelli. These notes are copyrighted materials and may not be used in other course

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

Intensionalisation of Logical Operators

Intensionalisation of Logical Operators Intensionalisation of Logical Operators Vít Punčochář Institute of Philosophy Academy of Sciences Czech Republic Vít Punčochář (AS CR) Intensionalisation 2013 1 / 29 A nonstandard representation of classical

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

MATH STUDENT BOOK. 12th Grade Unit 5

MATH STUDENT BOOK. 12th Grade Unit 5 MATH STUDENT BOOK 12th Grade Unit 5 Unit 5 ANALYTIC TRIGONOMETRY MATH 1205 ANALYTIC TRIGONOMETRY INTRODUCTION 3 1. IDENTITIES AND ADDITION FORMULAS 5 FUNDAMENTAL TRIGONOMETRIC IDENTITIES 5 PROVING IDENTITIES

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 43 The Multiplication Principle Theorem Let S be a set of k-tuples (s 1,

More information

MAT Modular arithmetic and number theory. Modular arithmetic

MAT Modular arithmetic and number theory. Modular arithmetic Modular arithmetic 1 Modular arithmetic may seem like a new and strange concept at first The aim of these notes is to describe it in several different ways, in the hope that you will find at least one

More information

I SEE REASONING KS1. This is a free copy of the addition section and the addition and subtraction section from I See Reasoning KS1.

I SEE REASONING KS1. This is a free copy of the addition section and the addition and subtraction section from I See Reasoning KS1. SAMPLE Sample materials - addition This is a free copy of the addition section and the addition and subtraction section from I See Reasoning KS1. There are 15 sections and a total of 281 questions in the

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

Chapter 01 Test. 1 Write an algebraic expression for the phrase the sum of g and 3. A 3g B 3g + 3 C g 3 D g Write a word phrase for.

Chapter 01 Test. 1 Write an algebraic expression for the phrase the sum of g and 3. A 3g B 3g + 3 C g 3 D g Write a word phrase for. hapter 01 Test Name: ate: 1 Write an algebraic expression for the phrase the sum of g and 3. 3g 3g + 3 g 3 g + 3 2 Write a word phrase for. negative 5 minus 4 plus a number n negative 5 minus 4 times a

More information

PART I: NO CALCULATOR (115 points)

PART I: NO CALCULATOR (115 points) Prealgebra Practice Midterm Math 40 OER (Ch. 1-4) PART I: NO CALCULATOR (115 points) (1.) 1. Find the difference. a) 578 80 480 b) 10 165 51 (1.). Multiply the given numbers. 684 9. Divide the given numbers.

More information

Alessandro Cincotti School of Information Science, Japan Advanced Institute of Science and Technology, Japan

Alessandro Cincotti School of Information Science, Japan Advanced Institute of Science and Technology, Japan #G03 INTEGERS 9 (2009),621-627 ON THE COMPLEXITY OF N-PLAYER HACKENBUSH Alessandro Cincotti School of Information Science, Japan Advanced Institute of Science and Technology, Japan cincotti@jaist.ac.jp

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 22 Representations of Combinatorial Logic Circuits Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia 100 MPG Car contest!

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

SF2972 GAME THEORY Normal-form analysis II

SF2972 GAME THEORY Normal-form analysis II SF2972 GAME THEORY Normal-form analysis II Jörgen Weibull January 2017 1 Nash equilibrium Domain of analysis: finite NF games = h i with mixed-strategy extension = h ( ) i Definition 1.1 Astrategyprofile

More information

Roberto Clemente Middle School

Roberto Clemente Middle School Roberto Clemente Middle School Summer Math Packet for Students Entering Algebra I Name: 1. On the grid provided, draw a right triangle with whole number side lengths and a hypotenuse of 10 units. The

More information

5.4 Imperfect, Real-Time Decisions

5.4 Imperfect, Real-Time Decisions 5.4 Imperfect, Real-Time Decisions Searching through the whole (pruned) game tree is too inefficient for any realistic game Moves must be made in a reasonable amount of time One has to cut off the generation

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center Infinite Sets and Their Cardinalities As mentioned at the beginning of this chapter, most of the early work in set theory was done by Georg Cantor He devoted much of his life to a study of the cardinal

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 Massahusetts Institute of Tehnology 6.042J/18.062J, Fall 05: Mathematis for Computer Siene Otober 28 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised Otober 12, 2005, 909 minutes Solutions to Problem

More information

Math 10 Lesson 1-1 Factors, primes, composites and multiples

Math 10 Lesson 1-1 Factors, primes, composites and multiples Math 10 Lesson 1-1 Factors, primes, composites and multiples I. Factors and common factors Problem: If you were asked to arrange 12 chairs in a classroom, how many different arrangements of the chairs

More information

7.4, 9.42, 55,

7.4, 9.42, 55, Good Luck to: Period: Date DIRECTIONS: Show all work in the space provided. 1. Which of the following equations is equivalent to: 2 1 3 x + 3 2 a. 7x + 18 7 b. 3 x + 18 c. 2.3x + 4.2 d. 2.13x + 4.2 2.

More information

G E N E R A L A P T I T U D E

G E N E R A L A P T I T U D E G E N E R A L A P T I T U D E Aptitude for GATE The GATE syllabus for General Aptitude is as follows: Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions,

More information

Sample pages. Multiples, factors and divisibility. Recall 2. Student Book

Sample pages. Multiples, factors and divisibility. Recall 2. Student Book 52 Recall 2 Prepare for this chapter by attempting the following questions. If you have difficulty with a question, go to Pearson Places and download the Recall from Pearson Reader. Copy and complete these

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 Representations of Combinational Logic Circuits Senior Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Conway s Life

More information

Comparing Numbers on a Place Value Chart

Comparing Numbers on a Place Value Chart Comparing Numbers on a Place Value Chart Students will: Objective Identify the place value of specific digits in a number Represent numbers on a place vale chart Utilize place value charts to compare numbers

More information

Using Trigonometric Ratios Part 1: Solving For Unknown Sides

Using Trigonometric Ratios Part 1: Solving For Unknown Sides MPM2D: Principles of Mathematics Using Trigonometric Ratios Part 1: Solving For Unknown Sides J. Garvin Slide 1/15 Recap State the three primary trigonometric ratios for A in ABC. Slide 2/15 Recap State

More information

Arithmetic Properties of Combinatorial Quantities

Arithmetic Properties of Combinatorial Quantities A tal given at the National Center for Theoretical Sciences (Hsinchu, Taiwan; August 4, 2010 Arithmetic Properties of Combinatorial Quantities Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China

More information

Classwork Example 1: Exploring Subtraction with the Integer Game

Classwork Example 1: Exploring Subtraction with the Integer Game 7.2.5 Lesson Date Understanding Subtraction of Integers Student Objectives I can justify the rule for subtraction: Subtracting a number is the same as adding its opposite. I can relate the rule for subtraction

More information

MATH 021 TEST 2 REVIEW SHEET

MATH 021 TEST 2 REVIEW SHEET TO THE STUDENT: MATH 021 TEST 2 REVIEW SHEET This Review Sheet gives an outline of the topics covered on Test 2 as well as practice problems. Answers for all problems begin on page 8. In several instances,

More information

3. (8 points) If p, 4p 2 + 1, and 6p are prime numbers, find p. Solution: The answer is p = 5. Analyze the remainders upon division by 5.

3. (8 points) If p, 4p 2 + 1, and 6p are prime numbers, find p. Solution: The answer is p = 5. Analyze the remainders upon division by 5. 1. (6 points) Eleven gears are placed on a plane, arranged in a chain, as shown below. Can all the gears rotate simultaneously? Explain your answer. (4 points) What if we have a chain of 572 gears? Solution:

More information

Counting integral solutions

Counting integral solutions Thought exercise 2.2 25 Counting integral solutions Question: How many non-negative integer solutions are there of x 1 + x 2 + x 3 + x 4 =10? Give some examples of solutions. Characterize what solutions

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

th Grade Test. A. 128 m B. 16π m C. 128π m

th Grade Test. A. 128 m B. 16π m C. 128π m 1. Which of the following is the greatest? A. 1 888 B. 2 777 C. 3 666 D. 4 555 E. 6 444 2. How many whole numbers between 1 and 100,000 end with the digits 123? A. 50 B. 76 C. 99 D. 100 E. 101 3. If the

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

Team Round University of South Carolina Math Contest, 2018

Team Round University of South Carolina Math Contest, 2018 Team Round University of South Carolina Math Contest, 2018 1. This is a team round. You have one hour to solve these problems as a team, and you should submit one set of answers for your team as a whole.

More information

A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES

A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES Last update: Nov. 6, 2015. A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 210093, People s Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

Assignment 5 unit3-4-radicals. Due: Friday January 13 BEFORE HOMEROOM

Assignment 5 unit3-4-radicals. Due: Friday January 13 BEFORE HOMEROOM Assignment 5 unit3-4-radicals Name: Due: Friday January 13 BEFORE HOMEROOM Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Write the prime factorization

More information