Geometry, Aperiodic tiling, Mathematical symmetry.

Size: px
Start display at page:

Download "Geometry, Aperiodic tiling, Mathematical symmetry."

Transcription

1 Conference of the International Journal of Arts & Sciences, CD-ROM. ISSN: :: 07(03): (2014) Copyright c 2014 by UniversityPublications.net Tiling Theory studies how one might cover the plane with various shapes. Aperiodic tilings are nonperiodic patterns that cannot be rearranged to form periodic tilings. Examples of this aperiodic symmetry are found in a variety of places from medieval Islamic architecture to 20 th Century Penrose tilesand also characterize newly discovered quasicrystals. Construction techniques, other than the usual methods for producing periodic tilings, are required to successfully generate these aperiodic patterns. Historic manuscripts like the Topkapi Scrollprovide insight into how these intricate designs might have been produced in the past. This paper focuses on the discoveries of aperiodic symmetry with a brief historical perspective and examines the mathematics of dissection and iterative techniques for generating some well-known patterns. Geometry, Aperiodic tiling, Mathematical symmetry. Throughout history, virtually all cultures around the world have created simple and intricate symmetric designs and ornamentation to express aesthetic feelings and to decorate their dwellings, workplaces, highways, and places of worship. As the patterns developed from simple ornaments centered around a point to more intricate repetitive patterns, the methods for constructing these patterns evolved as well. From ancient times straightedge and compass constructions allowed for precise patterns. Numerous historical sites exist such as the Alhambra [6], in Granada, Spain which shows the mastery of skilled craftsmen in producing intricate precise ornamentation that has survived to the present day. In the modern world, recursive computer techniques allow for these patterns to be studied and produced with new tools. Students equipped with Geometer s Sketchpad [5] can create modern versions of historical designs. Recent discoveries have found intriguing connections between modern day aperiodic tilings and medieval Islamic architecture as well as to the real-world research into quasicrystals. Mathematical symmetry provides tools for measuring the symmetry of ornamental patterns and thereby allows for these patterns to be classified. It is well know that for two-dimensional patterns, symmetry is expressed in terms of the four possible planar transformations for a pattern, rotations, reflections, translations, and glide reflections. If all the symmetries of a pattern are given the additional structure of multiplication, they form a group referred to as a symmetry group.the simplest finite ornamental designs 343

2 344 Dissection Methods for Aperiodic Tilings: From Medieval Islamic Architecture to Quasicrystals formed around a central point have symmetry which may include rotations and reflections and the resulting finite symmetry groups are either cyclic in the case of a pattern with all rotational symmetry or dihedral in the case of a pattern with both rotational and reflective symmetry. Tiling theory describes methods for constructing and classifying ornamental patterns in the plane. A tiling is defined as a covering of the plane by finite shapes so that there are no gaps or overlaps between tiles. The simplest tilings are the three regular tilings which involve covering the plane with congruent copies of one regular polygon. The three regular tilings are formed by equilateral triangles, squares, and regular hexagons. The eight tilings by two or more regular polygons with the condition that each vertex is surrounded by polygons in the same way are called semiregular. The regular and semiregular tilings have been known since antiquity. If the condition that the tiles be regular is relaxed, there is a wide variety of possibilities for tiling the plane. Group theory provides tools for measuring the symmetry of ornamental tilings or patterns and thereby allows for these patterns to be described and classified. For two-dimensional patterns, symmetry is expressed in terms of the four possible planar transformations that may leave a pattern unchanged, namely rotations, reflections, translations, and glide reflections. If all the symmetries of a pattern are given the additional structure of multiplication of transformations, they form a group referred to as the symmetry group of the pattern. The simplest finite ornamental patterns formed around a central point have symmetry which may include rotations and reflections and the resulting finite symmetry groups are either cyclic in the case of a pattern with all rotational symmetry or dihedral in the case of a pattern with both rotational and reflective symmetry. Patterns that can be repeated by translations in two linearly independent directions to cover the entire plane are called periodic and may also contain rotational, reflective, and glide symmetry. The symmetry groups for these infinite periodic patterns form the seventeen two-dimensional crystallographic groups [4]. Tilings of the plane that cannot be translated in two linearly independent directions are called nonperiodic. The simplest nonperiodic tilings involve modifying one of the tiles to be unique so that no translation of the tiling is possible. Other nonperiodic tilings involve patterns that are generated from a central point and progress radially outward orthat spiral around one or more points. Another technique involves combing congruent copies of one tile to form a larger version of the tile and then continuing this iterative step to cover the plane. A nonperiodic tiling which cannot be rearranged to form a periodic tiling along with the additional property that the tiling does not contain arbitrarily large periodic patchesis called aperiodic [7]. In 1964 Hao Wang conjectured that no such set of aperiodic tiles exists. In 1966 Wang s Conjecture was proved false and shortly thereafter Robert Berger found a set of 20,426 Wang Dominoes that tile the plane aperiodically. This was improved on when aperiodic tiles were found by Donald Knuth (92 tiles) in 1968, Raphael Robinson (6 tiles) in 1971, and Roger Penrose (2 tiles kite and dart) in In 2008, Peter Lu [1] discovered a connection between aperiodic tilings and medieval Islamic architecture in Iran, Uzbekistan and other historic locations (Figure 1a). The 15 th Century Topkapi Scroll contains instructions for matching rules which involve five girih tiles (decagon, hexagon, bowtie, pentagon, and rhombus. The enhanced lines red lines on Drawing 28 of the Topkapi (Figure 1b) show how the tiling is dissected and the dotted lines show the girih tiles, [2].

3 Raymond Tennant 345 Portal of the Darb-i Imam Shrine, Isfahan, Iran, 15 th Century CE. Topkapi Scroll Late 15 th Century, C Whether a single tile (monotile) tiles the plane aperiodically in a similar fashion has been under investigation for a number of years. In 2010 Joan Taylor in Tasmania developed a single hexagonal prototile [3] which contains matching rules on both sides of the tile allowing it to be flipped (Figure 2a). To construct the tiling, black lines must connect and the purple one-sided arrow heads must align.for this tile to be modified so that it can tile by one shape alone without being flipped requires that the tile not be one contiguous piece (Figure 2b). For this tiling, all the components of one color are considered a tile. Therefore, the question remains open as to whether there is a single contiguous monotile that tiles the plane in an aperiodic manner. Two-sided Hexagonal Tile. One-sided Non Contiguous Tiles. All tilings can be constructed by giving an algorithm to follow in building the pattern. In the case of periodic tilings (Figure 3) this process is straightforward and generally involves producing a fundamental finite region and then completing the tiling by translations. In the case of nonperiodic tilings, the algorithm for generating the pattern has matching rules for connecting tiles to one another for constructing the pattern outward toward infinity (Figure 4).

4 346 Dissection Methods for Aperiodic Tilings: From Medieval Islamic Architecture to Quasicrystals Periodic Tiling by Hexagons Periodic Tilings. Periodic Tiling by Octagons and Squares Above Penrose Tiling with Kites and Darts Below Penrose Tiling with Matching Rules Periodic and Aperiodic Tilings. Above Portal from the Darb-I Imam Shrine Below Overlay of a Girih Tiling Constructions of both periodic and nonperiodic tilings can be described by the method of dissection where each prototile is dissected into smaller versions of all the prototiles that make up the overall

5 Raymond Tennant 347 pattern. The information on numbers of smaller tiles involved in this process can be used to form a matrix of the dissection. As examples, the periodic tiling by regular hexagons, each tile can be dissectedd into four smaller regular hexagon while the semiregular tiling by regular octagons and squares can be dissected in a similar fashion. The aperiodic tilings by Penrose tiles and by girih tiles are dissected according to their respective matching rules. Table 1 below shows the prototiles with matrices and eigenvalues is given for the four tilings described above. The non-zero eigenvalues for the two aperiodic tilings are multiples of powers of the golden ratio which reinforces that if the dissection matrix has irrational eigenvalues then it follows that the tiling is nonperiodic. Matrices of Dissection and Eigenvalues Tilings Prototiles Dissection Matrix Eigenvalues Hexagons 4 4 Octagons and Squares , and 64 Penrose Kites and Darts (Roger Penrose) and Kites and Darts Girih Tiles (Peter Lu) and 4 Bowties, Hexagons and Decagons The field of aperiodic tilings remains an interesting crossroads of mathematical symmetry, art, cultural ornamentation and quasicrystals with the open question being the search for a contiguous monotile that tiles the plane aperiodically.

6 348 Dissection Methods for Aperiodic Tilings: From Medieval Islamic Architecture to Quasicrystals Peter J. Lu and Paul J. Steinhardt,, Science. vol. 315, pp , Gülru Necipolu, The Topkapi Scroll Geometry and Ornament in Islamic Architecture (Sketchbooks & Albums), Getty Center Publications, Joshua E.S. Socolar, Joan M. Taylor,, Journal of Combinatorial Theory, Series A 118, pp , Raymond F. Tennant,, Visual Mathematics: Art and Science Electronic Journal, vol. 4, no. 4, December, Raymond F. Tennant,, BRIDGES/ISAMA International Conference Proceedings, pp , Raymond F. Tennant,, Teachers, Learners and Curriculum, Vol. 2, pp , Raymond F. Tennant,, Symmetry: Culture andscience, vol. 19, nos. 2-3, pp , 2009.

Constructing and Classifying Designs of al-andalus

Constructing and Classifying Designs of al-andalus ISAMA The International Society of the Arts, Mathematics, and Architecture Constructing and Classifying Designs of al-andalus BRIDGES Mathematical Connections in Art, Music, and Science B. Lynn Bodner

More information

18 Two-Dimensional Shapes

18 Two-Dimensional Shapes 18 Two-Dimensional Shapes CHAPTER Worksheet 1 Identify the shape. Classifying Polygons 1. I have 3 sides and 3 corners. 2. I have 6 sides and 6 corners. Each figure is made from two shapes. Name the shapes.

More information

Underlying Tiles in a 15 th Century Mamluk Pattern

Underlying Tiles in a 15 th Century Mamluk Pattern Bridges Finland Conference Proceedings Underlying Tiles in a 15 th Century Mamluk Pattern Ron Asherov Israel rasherov@gmail.com Abstract An analysis of a 15 th century Mamluk marble mosaic pattern reveals

More information

Islamic Constructions: The Geometry Needed by Craftsmen

Islamic Constructions: The Geometry Needed by Craftsmen ISAMA The International Society of the Arts, Mathematics, and Architecture BRIDGEs Mathematical Connections in Art, Music, and Science Islamic Constructions: The Geometry Needed by Craftsmen Raymond Tennant

More information

People love patterns. We find recurring patterns

People love patterns. We find recurring patterns http://www.research.microsoft.com/research/graphics/glassner Aperiodic Tiling People love patterns. We find recurring patterns everywhere we look in the structures of rocks, the personalities of our friends,

More information

Flying Patterns. Jean-Marc Castera 6, rue Alphand, Paris, France Abstract. 1. A Morphogenesis

Flying Patterns. Jean-Marc Castera 6, rue Alphand, Paris, France   Abstract. 1. A Morphogenesis Bridges 2011: Mathematics, Music, Art, Architecture, Culture Flying Patterns Jean-Marc Castera 6, rue Alphand, 75013 Paris, France E-mail: jm@castera.net Abstract Contribution to the investigation on Islamic

More information

Aperiodic Tilings. An Introduction. Justin Kulp. October, 4th, 2017

Aperiodic Tilings. An Introduction. Justin Kulp. October, 4th, 2017 Aperiodic Tilings An Introduction Justin Kulp October, 4th, 2017 2 / 36 1 Background 2 Substitution Tilings 3 Penrose Tiles 4 Ammann Lines 5 Topology 6 Penrose Vertex 3 / 36 Background: Tiling Denition

More information

Equilateral k-isotoxal Tiles

Equilateral k-isotoxal Tiles Equilateral k-isotoxal Tiles R. Chick and C. Mann October 26, 2012 Abstract In this article we introduce the notion of equilateral k-isotoxal tiles and give of examples of equilateral k-isotoxal tiles

More information

Heesch s Tiling Problem

Heesch s Tiling Problem Heesch s Tiling Problem Casey Mann 1. INTRODUCTION. Let T be a tile in the plane. By calling T a tile, we mean that T is a topological disk whose boundary is a simple closed curve. But also implicit in

More information

The trouble with five

The trouble with five 1997 2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non commercial use. For other uses, including electronic redistribution,

More information

Copying a Line Segment

Copying a Line Segment Copying a Line Segment Steps 1 4 below show you how to copy a line segment. Step 1 You are given line segment AB to copy. A B Step 2 Draw a line segment that is longer than line segment AB. Label one of

More information

Some Monohedral Tilings Derived From Regular Polygons

Some Monohedral Tilings Derived From Regular Polygons Some Monohedral Tilings Derived From Regular Polygons Paul Gailiunas 25 Hedley Terrace, Gosforth Newcastle, NE3 1DP, England email: p-gailiunas@argonet.co.uk Abstract Some tiles derived from regular polygons

More information

Hexagonal Parquet Tilings

Hexagonal Parquet Tilings This article appears in The Mathematical Intelligencer, Volume 29, page 33 (2007). The version printed there is slightly different. Due to a mix-up in the editorial process, it does not reflect a number

More information

A Tour of Tilings in Thirty Minutes

A Tour of Tilings in Thirty Minutes A Tour of Tilings in Thirty Minutes Alexander F. Ritter Mathematical Institute & Wadham College University of Oxford Wadham College Mathematics Alumni Reunion Oxford, 21 March, 2015. For a detailed tour

More information

Geometer s Skethchpad 7th Grade Guide to Learning Geometry

Geometer s Skethchpad 7th Grade Guide to Learning Geometry Geometer s Skethchpad 7th Grade Guide to Learning Geometry This Guide Belongs to: Date: 2 -- Learning with Geometer s Sketchpad **a story can be added or one could choose to use the activities alone and

More information

o sha 30 June - 4 July 2009 at the Royal Society, London

o sha 30 June - 4 July 2009 at the Royal Society, London o sha d w pace? fi s l l e s p Ho Ar sc e th ie e in nce se im to, o To m r a age fin at d w s RS ou bea hem ind art, ht t tp Sum mo uty atic ow 30 June - 4 July 2009 at the ://? al Royal Society, London

More information

SEMI-REGULAR FIGURES. BETWEEN BEAUTY AND REGULARITY

SEMI-REGULAR FIGURES. BETWEEN BEAUTY AND REGULARITY SEMI-REGULAR FIGURES. BETWEEN BEAUTY AND REGULARITY Hans Walser, Basel University, Switzerland hwalser@bluewin.ch Abstract: Cutting away a rhombus from a regular pentagon, the leftover will be a semiregular

More information

An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari. S. Eigen J. Navarro V. Prasad

An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari. S. Eigen J. Navarro V. Prasad An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari S. Eigen J. Navarro V. Prasad These tiles can tile the plane But only Aperiodically Example A (Culik-Kari) Dynamical

More information

Elementary Geometric Drawings Angles. Angle Bisector. Perpendicular Bisector

Elementary Geometric Drawings Angles. Angle Bisector. Perpendicular Bisector Lessons and Activities GEOMETRY Elementary Geometric Drawings Angles Angle Bisector Perpendicular Bisector 1 Lessons and Activities POLYGONS are PLANE SHAPES (figures) with at least 3 STRAIGHT sides and

More information

The Tiling Problem. Nikhil Gopalkrishnan. December 08, 2008

The Tiling Problem. Nikhil Gopalkrishnan. December 08, 2008 The Tiling Problem Nikhil Gopalkrishnan December 08, 2008 1 Introduction A Wang tile [12] is a unit square with each edge colored from a finite set of colors Σ. A set S of Wang tiles is said to tile a

More information

Phoenix Symbol of Mathematics

Phoenix Symbol of Mathematics Phoenix Symbol of Mathematics Tuomas Nurmi Turku, Finland; outolumo@gmail.com Abstract The phoenix is a mythical firebird that burns to death once in an eon and is reborn from its own ashes. Thus it is

More information

Theorem 1 Every perfect aperiodic tiling by kites and darts can be covered by cartwheel patches.

Theorem 1 Every perfect aperiodic tiling by kites and darts can be covered by cartwheel patches. A Porous Aperiodic Decagon Tile Duane A. Bailey 1 and Feng Zhu 2 Abstract. We consider the development of a single universal aperiodic prototile that tiles the plane without overlap. We describe two aperiodic

More information

Basic Mathematics Review 5232

Basic Mathematics Review 5232 Basic Mathematics Review 5232 Symmetry A geometric figure has a line of symmetry if you can draw a line so that if you fold your paper along the line the two sides of the figure coincide. In other words,

More information

Title: Quadrilaterals Aren t Just Squares

Title: Quadrilaterals Aren t Just Squares Title: Quadrilaterals ren t Just Squares Brief Overview: This is a collection of the first three lessons in a series of seven lessons studying characteristics of quadrilaterals, including trapezoids, parallelograms,

More information

Extending Recognizable-motif Tilings to Multiple-solution Tilings and Fractal Tilings. Robert Fathauer 3913 E. Bronco Trail, Phoenix, Arizona 85044

Extending Recognizable-motif Tilings to Multiple-solution Tilings and Fractal Tilings. Robert Fathauer 3913 E. Bronco Trail, Phoenix, Arizona 85044 Extending Recognizable-motif Tilings to Multiple-solution Tilings and Fractal Tilings Robert Fathauer 3913 E. Bronco Trail, Phoenix, Arizona 85044 Tiling of the plane is a theme with which M.C. Escher

More information

Exploring The Einstein Problem

Exploring The Einstein Problem Exploring The Einstein Problem Thesis submitted at the University of Leicester in partial fulllment of the requirements for the degree of Master of Mathematics by Zoe C. Allwood Department of Mathematics

More information

Preface. References. Michael Baake & Uwe Grimm Hobart, March 2010

Preface. References. Michael Baake & Uwe Grimm Hobart, March 2010 Preface At the 6th International Conference on Aperiodic Crystals [1] in Liverpool in September 2009, Roger Penrose gave a public lecture Simple sets of shapes that tile the plane but cannot ever repeat.

More information

Name Date Class Practice A. 5. Look around your classroom. Describe a geometric pattern you see.

Name Date Class Practice A. 5. Look around your classroom. Describe a geometric pattern you see. Practice A Geometric Patterns Identify a possible pattern. Use the pattern to draw the next figure. 5. Look around your classroom. Describe a geometric pattern you see. 6. Use squares to create a geometric

More information

Geometer s Skethchpad 8th Grade Guide to Learning Geometry

Geometer s Skethchpad 8th Grade Guide to Learning Geometry Geometer s Skethchpad 8th Grade Guide to Learning Geometry This Guide Belongs to: Date: Table of Contents Using Sketchpad - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

More information

Symmetry: A Visual Presentation

Symmetry: A Visual Presentation Symmetry: A Visual Presentation Line Symmetry Shape has line symmetry when one half of it is the mirror image of the other half. Symmetry exists all around us and many people see it as being a thing of

More information

A hierarchical strongly aperiodic set of tiles in the hyperbolic plane

A hierarchical strongly aperiodic set of tiles in the hyperbolic plane A hierarchical strongly aperiodic set of tiles in the hyperbolic plane C. Goodman-Strauss August 6, 2008 Abstract We give a new construction of strongly aperiodic set of tiles in H 2, exhibiting a kind

More information

ELEMENTARY MATH. Teacher s Guide

ELEMENTARY MATH. Teacher s Guide shapes square ELEMENTARY MATH AND GEOMETRY Teacher s Guide rectangle KNX 96220-V2 2007 K'NEX Limited Partnership Group and its licensors. K NEX Limited Partnership Group P.O. Box 700 Hatfield, PA 19440-0700

More information

Art and Culture Center of Hollywood Distance Learning

Art and Culture Center of Hollywood Distance Learning Art and Culture Center of Hollywood Distance Learning Integrated Art Lesson Title: Description and Overall Focus: Length of Lesson Grade Range Objective(s) Materials: PLEASE NOTE: Some materials must be

More information

Standard Indicator Lines Of Symmetry. Students will identify and draw lines of symmetry in polygons.

Standard Indicator Lines Of Symmetry. Students will identify and draw lines of symmetry in polygons. TIMSS NAEP Standard Indicator 4.4.5 Lines Of Symmetry Purpose Students will identify and draw lines of symmetry in polygons. Materials For the teacher: square and rectangle of construction paper, marker,

More information

Line Op Art. In the mid-20th century, artists such as Josef Albers, Victor Vasarely, and M.C. Escher experimented with Optical Art.

Line Op Art. In the mid-20th century, artists such as Josef Albers, Victor Vasarely, and M.C. Escher experimented with Optical Art. Intro Basic line, space Line Op Art Concept/Skill:When lines are close together in patterns, colors, motion or other optical illusions are created. OHS line - A1, A2, C4, C5, D3 Objective: The learner

More information

PENNSYLVANIA. List properties, classify, draw, and identify geometric figures in two dimensions.

PENNSYLVANIA. List properties, classify, draw, and identify geometric figures in two dimensions. Know: Understand: Do: CC.2.3.4.A.1 -- Draw lines and angles and identify these in two-dimensional figures. CC.2.3.4.A.2 -- Classify twodimensional figures by properties of their lines and angles. CC.2.3.4.A.3

More information

Liberty Pines Academy Russell Sampson Rd. Saint Johns, Fl 32259

Liberty Pines Academy Russell Sampson Rd. Saint Johns, Fl 32259 Liberty Pines Academy 10901 Russell Sampson Rd. Saint Johns, Fl 32259 M. C. Escher is one of the world s most famous graphic artists. He is most famous for his so called impossible structure and... Relativity

More information

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if:

GLOSSARY. a * (b * c) = (a * b) * c. A property of operations. An operation * is called associative if: Associativity A property of operations. An operation * is called associative if: a * (b * c) = (a * b) * c for every possible a, b, and c. Axiom For Greek geometry, an axiom was a 'self-evident truth'.

More information

Robert Fathauer. Extending Recognizable-Motif Tilings to Multiple-Solution Tilings and Fractal Tilings. Further Work. Photo by J.

Robert Fathauer. Extending Recognizable-Motif Tilings to Multiple-Solution Tilings and Fractal Tilings. Further Work. Photo by J. Robert Fathauer Photo by J. Taylor Hollist Extending Recognizable-Motif Tilings to Multiple-Solution Tilings and Fractal Tilings Further Work Extending Recognizable-motif Tilings to Multiple-solution Tilings

More information

Table of Contents. Constructions Day 1... Pages 1-5 HW: Page 6. Constructions Day 2... Pages 7-14 HW: Page 15

Table of Contents. Constructions Day 1... Pages 1-5 HW: Page 6. Constructions Day 2... Pages 7-14 HW: Page 15 CONSTRUCTIONS Table of Contents Constructions Day 1...... Pages 1-5 HW: Page 6 Constructions Day 2.... Pages 7-14 HW: Page 15 Constructions Day 3.... Pages 16-21 HW: Pages 22-24 Constructions Day 4....

More information

Spiral Tilings. Paul Gailiunas 25 Hedley Terrace, Gosforth Newcastle, NE3 IDP, England Abstract

Spiral Tilings. Paul Gailiunas 25 Hedley Terrace, Gosforth Newcastle, NE3 IDP, England Abstract BRIDGES Mathematical Connections in Art, Music, and Science Spiral Tilings Paul Gailiunas 25 Hedley Terrace, Gosforth Newcastle, NE3 IDP, England paulg@argonet.co.uk Abstract In Tilings and Patterns [1]

More information

SHAPE level 2 questions. 1. Match each shape to its name. One is done for you. 1 mark. International School of Madrid 1

SHAPE level 2 questions. 1. Match each shape to its name. One is done for you. 1 mark. International School of Madrid 1 SHAPE level 2 questions 1. Match each shape to its name. One is done for you. International School of Madrid 1 2. Write each word in the correct box. faces edges vertices 3. Here is half of a symmetrical

More information

NCERT Solution Class 7 Mathematics Symmetry Chapter: 14. Copy the figures with punched holes and find the axes of symmetry for the following:

NCERT Solution Class 7 Mathematics Symmetry Chapter: 14. Copy the figures with punched holes and find the axes of symmetry for the following: Downloaded from Q.1) Exercise 14.1 NCERT Solution Class 7 Mathematics Symmetry Chapter: 14 Copy the figures with punched holes and find the axes of symmetry for the following: Sol.1) S.No. Punched holed

More information

UNDECIDABILITY AND APERIODICITY OF TILINGS OF THE PLANE

UNDECIDABILITY AND APERIODICITY OF TILINGS OF THE PLANE UNDECIDABILITY AND APERIODICITY OF TILINGS OF THE PLANE A Thesis to be submitted to the University of Leicester in partial fulllment of the requirements for the degree of Master of Mathematics. by Hendy

More information

Problem of the Month: Between the Lines

Problem of the Month: Between the Lines Problem of the Month: Between the Lines Overview: In the Problem of the Month Between the Lines, students use polygons to solve problems involving area. The mathematical topics that underlie this POM are

More information

Art and Culture Center of Hollywood Distance Learning Optical Illusion: Creating a Mathematical Tessellation

Art and Culture Center of Hollywood Distance Learning Optical Illusion: Creating a Mathematical Tessellation Integrated Art Lesson Title: Art and Culture Center of Hollywood Distance Learning Optical Illusion: Creating a Mathematical Tessellation Description and Overall Focus: Length of Lesson Grade Range Objective(s)

More information

Contents TABLE OF CONTENTS Math Guide 6-72 Overview NTCM Standards (Grades 3-5) 4-5 Lessons and Terms Vocabulary Flash Cards 45-72

Contents TABLE OF CONTENTS Math Guide 6-72 Overview NTCM Standards (Grades 3-5) 4-5 Lessons and Terms Vocabulary Flash Cards 45-72 Contents shapes TABLE OF CONTENTS Math Guide 6-72 Overview 3 NTCM Standards (Grades 3-5) 4-5 Lessons and Terms Lesson 1: Introductory Activity 6-8 Lesson 2: Lines and Angles 9-12 Line and Angle Terms 11-12

More information

Statue of Liberty Eiffel Tower Gothic Cathedral (p1) Gothic Cathedral (p2) Gothic Cathedral (p3) Medieval Manor (p1)

Statue of Liberty Eiffel Tower Gothic Cathedral (p1) Gothic Cathedral (p2) Gothic Cathedral (p3) Medieval Manor (p1) ARCHITECTURE Statue of Liberty Eiffel Tower Gothic Cathedral (p1) Gothic Cathedral (p2) Gothic Cathedral (p3) Medieval Manor (p1) Medieval Manor (p1) Toltec sculpture Aqueduct Great Pyramid of Khufu (p1)

More information

Modularity in Medieval Persian Mosaics: Textual, Empirical, Analytical, and Theoretical Considerations

Modularity in Medieval Persian Mosaics: Textual, Empirical, Analytical, and Theoretical Considerations Modularity in Medieval Persian Mosaics: Textual, Empirical, Analytical, and Theoretical Considerations Reza Sarhangi Mathematics Department Towson University Towson, MD 21252, USA rsarhangi@towson.edu

More information

4 th Grade Mathematics Instructional Week 30 Geometry Concepts Paced Standards: 4.G.1: Identify, describe, and draw parallelograms, rhombuses, and

4 th Grade Mathematics Instructional Week 30 Geometry Concepts Paced Standards: 4.G.1: Identify, describe, and draw parallelograms, rhombuses, and 4 th Grade Mathematics Instructional Week 30 Geometry Concepts Paced Standards: 4.G.1: Identify, describe, and draw parallelograms, rhombuses, and trapezoids using appropriate tools (e.g., ruler, straightedge

More information

A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry

A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry Hiroshi Fukuda 1, Nobuaki Mutoh 1, Gisaku Nakamura 2, Doris Schattschneider 3 1 School of Administration and Informatics,

More information

Symmetries of Cairo-Prismatic Tilings

Symmetries of Cairo-Prismatic Tilings Rose-Hulman Undergraduate Mathematics Journal Volume 17 Issue 2 Article 3 Symmetries of Cairo-Prismatic Tilings John Berry Williams College Matthew Dannenberg Harvey Mudd College Jason Liang University

More information

Planning Guide. Shape and Space (Transformations) Specific Outcomes 5, 6

Planning Guide. Shape and Space (Transformations) Specific Outcomes 5, 6 Mathematics Planning Guide Grade 4 Transformations Shape and Space (Transformations) Specific Outcomes 5, 6 This Planning Guide can be accessed online at: http://www.learnalberta.ca/content/mepg4/html/pg4_transformations/index.html

More information

Unit 5 Shape and space

Unit 5 Shape and space Unit 5 Shape and space Five daily lessons Year 4 Summer term Unit Objectives Year 4 Sketch the reflection of a simple shape in a mirror line parallel to Page 106 one side (all sides parallel or perpendicular

More information

DOWNLOAD OR READ : PATTY PAPER GEOMETRY PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : PATTY PAPER GEOMETRY PDF EBOOK EPUB MOBI DOWNLOAD OR READ : PATTY PAPER GEOMETRY PDF EBOOK EPUB MOBI Page 1 Page 2 patty paper geometry patty paper geometry pdf patty paper geometry Patty Paper Geometry is designed as two books. A PPG Teacher

More information

Refer to Blackboard for Activities and/or Resources

Refer to Blackboard for Activities and/or Resources Lafayette Parish School System Curriculum Map Mathematics: Grade 5 Unit 4: Properties in Geometry (LCC Unit 5) Time frame: 16 Instructional Days Assess2know Testing Date: March 23, 2012 Refer to Blackboard

More information

Aperiodic Tilings. Chaim Goodman-Strauss Univ Arkansas

Aperiodic Tilings. Chaim Goodman-Strauss Univ Arkansas Aperiodic Tilings Chaim Goodman-Strauss Univ Arkansas strauss@uark.edu Black and white squares can tile the plane non-periodically, but can also tile periodically. They are not, then aperiodic. Aperiodicity

More information

Homeotoxal and Homeohedral Tiling Using Pasting Scheme

Homeotoxal and Homeohedral Tiling Using Pasting Scheme Malaya J. Mat. S(2)(2015) 366 373 Homeotoxal and Homeohedral Tiling Using Pasting Scheme S. Jebasingh a Robinson Thamburaj b and Atulya K. Nagar c a Department of Mathematics Karunya University Coimbatore

More information

University of Houston High School Mathematics Contest Geometry Exam Spring 2016

University of Houston High School Mathematics Contest Geometry Exam Spring 2016 University of Houston High School Mathematics ontest Geometry Exam Spring 016 nswer the following. Note that diagrams may not be drawn to scale. 1. In the figure below, E, =, = 4 and E = 0. Find the length

More information

is formed where the diameters intersect? Label the center.

is formed where the diameters intersect? Label the center. E 26 Get Into Shape Hints or notes: A circle will be folded into a variety of geometric shapes. This activity provides the opportunity to assess the concepts, vocabulary and knowledge of relationships

More information

ORIGAMI: SYMMETRY AND APLICATIONS IN ARCHITECTURE

ORIGAMI: SYMMETRY AND APLICATIONS IN ARCHITECTURE ORIGAMI: SYMMETRY AND APLICATIONS IN ARCHITECTURE Juliana Matsubara juju.matsuri@gmail.com Undergraduate student, School of Civil Engineering, Architecture and Urban Planning, State University of Campinas,

More information

Mathematics in the Modern World

Mathematics in the Modern World Mathematics as a Tool Geometric Designs 1/17 Mathematics in the Modern World Geometric Designs Joel Reyes Noche, Ph.D. jnoche@gbox.adnu.edu.ph Department of Mathematics Ateneo de Naga University Council

More information

Islamic Geometric Design PDF

Islamic Geometric Design PDF Islamic Geometric Design PDF Combines wide-ranging research with the authorâ s artistic skills to reveal the techniques used to create the patterns adorning buildings in the Islamic world Islamic geometric

More information

Tiling the Plane with a Fixed Number of Polyominoes

Tiling the Plane with a Fixed Number of Polyominoes Tiling the Plane with a Fixed Number of Polyominoes Nicolas Ollinger (LIF, Aix-Marseille Université, CNRS, France) LATA 2009 Tarragona April 2009 Polyominoes A polyomino is a simply connected tile obtained

More information

From the Angle of Quasicrystals

From the Angle of Quasicrystals Bridges 2010: Mathematics, Music, Art, Architecture, Culture From the Angle of Quasicrystals Jean-Marc Castera 6, rue Alphand 75013 Paris E-mail: jm@castera.net Figure 1: Poster of the exhibition. Abstract

More information

arxiv: v2 [math.co] 9 Sep 2010

arxiv: v2 [math.co] 9 Sep 2010 n aperiodic hexagonal tile Joshua. S. Socolar a,, Joan M. Taylor b a Physics epartment, uke University, urham, N 27514 b P.O. ox U91, urnie, Tas. 7320 ustralia arxiv:1003.4279v2 [math.o] 9 Sep 2010 bstract

More information

Scaffolding Task: Super Hero Symmetry

Scaffolding Task: Super Hero Symmetry Scaffolding Task: Super Hero Symmetry STANDARDS FOR MATHEMATICAL CONTENT MCC.4.G.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded

More information

Investigation and Exploration Dynamic Geometry Software

Investigation and Exploration Dynamic Geometry Software Investigation and Exploration Dynamic Geometry Software What is Mathematics Investigation? A complete mathematical investigation requires at least three steps: finding a pattern or other conjecture; seeking

More information

Multidimensional Impossible Polycubes

Multidimensional Impossible Polycubes Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture Multidimensional Impossible Polycubes Koji Miyazaki 20-27 Fukakusa-Kurumazaka, Fushimi, Kyoto 612-0803, Japan miyazakiijok@gmail.com

More information

Length and area Block 1 Student Activity Sheet

Length and area Block 1 Student Activity Sheet Block 1 Student Activity Sheet 1. Write the area and perimeter formulas for each shape. 2. What does each of the variables in these formulas represent? 3. How is the area of a square related to the area

More information

Standard 4.G.1 4.G.2 5.G.3 5.G.4 4.MD.5

Standard 4.G.1 4.G.2 5.G.3 5.G.4 4.MD.5 Draw and identify lines and angles, as well as classify shapes by properties of their lines and angles (Standards 4.G.1 3). Standard 4.G.1 Draw points, lines, line segments, rays, angles (right, acute,

More information

Inductive Reasoning. L E S S O N 2.1

Inductive Reasoning.   L E S S O N 2.1 Page 1 of 6 L E S S O N 2.1 We have to reinvent the wheel every once in a while, not because we need a lot of wheels; but because we need a lot of inventors. BRUCE JOYCE Language The word geometry means

More information

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations)

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) The class will divide into four groups. Each group will have a different polygon

More information

The Geometer s Sketchpad Unit 1. Meet Geometer s Sketchpad

The Geometer s Sketchpad Unit 1. Meet Geometer s Sketchpad Trainer/Instructor Notes: Geometer s Sketchpad Training Meet Geometer s Sketchpad The Geometer s Sketchpad Unit 1 Meet Geometer s Sketchpad Overview: Objective: In this unit, participants become familiar

More information

13. a) 4 planes of symmetry b) One, line through the apex and the center of the square in the base. c) Four rotational symmetries.

13. a) 4 planes of symmetry b) One, line through the apex and the center of the square in the base. c) Four rotational symmetries. 1. b) 9 c) 9 d) 16 2. b)12 c) 8 d) 18 3. a) The base of the pyramid is a dodecagon. b) 24 c) 13 4. a) The base of the prism is a heptagon b) 14 c) 9 5. Drawing 6. Drawing 7. a) 46 faces b) No. If that

More information

Contents. Congruent Triangles. Additional Practice Answers to Check Your Work. Section

Contents. Congruent Triangles. Additional Practice Answers to Check Your Work. Section Contents Section Congruent Triangles Flip, Turn, Resize, and Slide 1 Transformed Triangles 2 Constructing Parallel Lines 5 Transformations 6 Reflections 7 Rotations 10 Summary 13 Check Your Work 14 Additional

More information

Performance Assessment Task Quilt Making Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Quilt Making Grade 4. Common Core State Standards Math - Content Standards Performance Assessment Task Quilt Making Grade 4 The task challenges a student to demonstrate understanding of concepts of 2-dimensional shapes and ir properties. A student must be able to use characteristics,

More information

Downloaded from

Downloaded from Symmetry 1 1.Find the next figure None of these 2.Find the next figure 3.Regular pentagon has line of symmetry. 4.Equlilateral triangle has.. lines of symmetry. 5.Regular hexagon has.. lines of symmetry.

More information

CHARACTERISTICS AND CLASSIFICATION OF SHAPES and 1.3.2

CHARACTERISTICS AND CLASSIFICATION OF SHAPES and 1.3.2 CHARACTERISTICS AND CLASSIFICATION OF SHAPES 1.3.1 and 1.3.2 Geometric shapes occur in many places. After studying them using transformations, students start to see certain characteristics of different

More information

learning about tangram shapes

learning about tangram shapes Introduction A Tangram is an ancient puzzle, invented in China and consisting of a square divided into seven geometric shapes: Two large right triangles One medium right triangle Tangram Two small right

More information

CONSTRUCTING TASK: Line Symmetry

CONSTRUCTING TASK: Line Symmetry CONSTRUCTING TASK: Line Symmetry STANDARDS FOR MATHEMATICAL CONTENT MCC.4.G.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along

More information

FIBONACCI KOLAMS -- AN OVERVIEW

FIBONACCI KOLAMS -- AN OVERVIEW FIBONACCI KOLAMS -- AN OVERVIEW S. Naranan This paper is an overview of all my work on Fibonacci Kolams as of end of the year 2015 that is included in my website www.vindhiya.com/snaranan/fk/index.htm

More information

Bubbles and Tilings: Art and Mathematics

Bubbles and Tilings: Art and Mathematics Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture Bubbles and Tilings: Art and Mathematics Frank Morgan Department of Mathematics and Statistics, Williams College Williamstown,

More information

4th Bay Area Mathematical Olympiad

4th Bay Area Mathematical Olympiad 2002 4th ay Area Mathematical Olympiad February 26, 2002 The time limit for this exam is 4 hours. Your solutions should be clearly written arguments. Merely stating an answer without any justification

More information

Sample test questions All questions

Sample test questions All questions Ma KEY STAGE 3 LEVELS 3 8 Sample test questions All questions 2003 Contents Question Level Attainment target Page Completing calculations 3 Number and algebra 3 Odd one out 3 Number and algebra 4 Hexagon

More information

HIGH SCHOOL - PROBLEMS

HIGH SCHOOL - PROBLEMS PURPLE COMET! MATH MEET April 2013 HIGH SCHOOL - PROBLEMS Copyright c Titu Andreescu and Jonathan Kane Problem 1 Two years ago Tom was 25% shorter than Mary. Since then Tom has grown 20% taller, and Mary

More information

Generalization of Non-periodic Rhomb Substitution Tilings.

Generalization of Non-periodic Rhomb Substitution Tilings. Generalization of Non-periodic Rhomb Substitution Tilings. arxiv:1509.0053v1 [math.mg] 7 Sep 015 T.Hibma Zernike Institute for Advanced Materials University of Groningen t.hibma@rug.nl September 4, 018

More information

Problem of the Month: Between the Lines

Problem of the Month: Between the Lines Problem of the Month: Between the Lines The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

More information

Kenmore-Town of Tonawanda UFSD. We educate, prepare, and inspire all students to achieve their highest potential

Kenmore-Town of Tonawanda UFSD. We educate, prepare, and inspire all students to achieve their highest potential Kenmore-Town of Tonawanda UFSD We educate, prepare, and inspire all students to achieve their highest potential Grade 2 Module 8 Parent Handbook The materials contained within this packet have been taken

More information

Mathematics Paper 2. Stage minutes. Page Mark. Name.. Additional materials: Ruler Calculator Protractor READ THESE INSTRUCTIONS FIRST

Mathematics Paper 2. Stage minutes. Page Mark. Name.. Additional materials: Ruler Calculator Protractor READ THESE INSTRUCTIONS FIRST 1 55 minutes Mathematics Paper 2 Stage 7 Name.. Additional materials: Ruler Calculator Protractor READ THESE INSTRUCTIONS FIRST Answer all questions in the spaces provided on the question paper. You should

More information

3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm.

3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

More information

3. Given the similarity transformation shown below; identify the composition:

3. Given the similarity transformation shown below; identify the composition: Midterm Multiple Choice Practice 1. Based on the construction below, which statement must be true? 1 1) m ABD m CBD 2 2) m ABD m CBD 3) m ABD m ABC 1 4) m CBD m ABD 2 2. Line segment AB is shown in the

More information

Shape, space and measures 4

Shape, space and measures 4 Shape, space and measures 4 contents There are three lessons in this unit, Shape, space and measures 4. S4.1 Rotation and rotation symmetry 3 S4.2 Reflection and line symmetry 6 S4.3 Problem solving 9

More information

Geometry Mrs. Crocker Spring 2014 Final Exam Review

Geometry Mrs. Crocker Spring 2014 Final Exam Review Name: Mod: Geometry Mrs. Crocker Spring 2014 Final Exam Review Use this exam review to complete your flip book and to study for your upcoming exam. You must bring with you to the exam: 1. Pencil, eraser,

More information

Challenges from Ancient Greece

Challenges from Ancient Greece Challenges from ncient Greece Mathematical goals Make formal geometric constructions with a variety of tools and methods. Use congruent triangles to justify geometric constructions. Common Core State Standards

More information

B. The skills to be taught in this unit include patterning, various polygons, right angles, congruent figures and rotating shapes.

B. The skills to be taught in this unit include patterning, various polygons, right angles, congruent figures and rotating shapes. March 12-14, 1998 SHAPE UP Grade Level: Third Grade Presented by: Donna Fernow, Barbara Jensen, Vineyard Elementary School, Templeton, CA Length of Unit: 6 Lessons I. ABSTRACT This unit integrates geometry

More information

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y.

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y. Characterization of Domino Tilings of Squares with Prescribed Number of Nonoverlapping 2 2 Squares Evangelos Kranakis y (kranakis@scs.carleton.ca) Abstract For k = 1; 2; 3 we characterize the domino tilings

More information

Constructing Perpendiculars to a Line. Finding the Right Line. Draw a line and a point labeled P not on the line, as shown above.

Constructing Perpendiculars to a Line. Finding the Right Line. Draw a line and a point labeled P not on the line, as shown above. Page 1 of 5 3.3 Intelligence plus character that is the goal of true education. MARTIN LUTHER KING, JR. Constructing Perpendiculars to a Line If you are in a room, look over at one of the walls. What is

More information

SFUSD Mathematics Core Curriculum Development Project

SFUSD Mathematics Core Curriculum Development Project 1 SFUSD Mathematics Core Curriculum Development Project 2014 2015 Creating meaningful transformation in mathematics education Developing learners who are independent, assertive constructors of their own

More information

lines of weakness building for the future All of these walls have a b c d Where are these lines?

lines of weakness building for the future All of these walls have a b c d Where are these lines? All of these walls have lines of weakness a b c d Where are these lines? A standard British brick is twice as wide as it is tall. Using British bricks, make a rectangle that does not have any lines of

More information