Making DARPA META Goals Come True: How do we Revolutionize Verification and Validation for Complex Systems?

Size: px
Start display at page:

Download "Making DARPA META Goals Come True: How do we Revolutionize Verification and Validation for Complex Systems?"

Transcription

1 Making DARPA META Goals Come True: How do we Revolutionize Verification and Validation for Complex Systems? Dr. Kirstie L. Bellman Computers and Software Division; Aerospace Integration Science Center (AISC) The Aerospace Corporation June 17, 2010 S5 2010, WP AFB The Aerospace Corporation 2010

2 Overview The purpose of talk is to stimulate a critical discussion on what we need to revolutionize V&V and to design provably correct systems The state of testing/ensuring correct behavior in large complex systems The DARPA META program goals Asking the tough questions For more information, Bellman@aero.org June 17, 2010

3 Guaranteeing Correct Behavior in Large Complex Systems: Observations (1) Planned testing often cut off as funds dry up in schedule-driven developments Little negative or stress testing Often only well-known domain or operator anomalies addressed happy path testing testing lead, contractor Fault Management Systems are developed late and inadequately Not handling multiple errors, emergent phenomena, and until recently, any software-driven errors Unit tests not adequately updated as code base changes during development Late integration testing Elaborate (wonderful) models and formal methods not integrated into analysis, test, and evaluation process For more information, June 17, 2010

4 Guaranteeing Correct Behavior in Large Complex Systems: Observations (2) Regression testing inappropriately applied Inadequate guidelines for how much of the system can be regression tested Done in lieu of adequate re-testing of code base/siqt testing FMECA still largely excludes SW-driven SPFs; SW SPFs largely unrecognized Many leading corporations appear to have insufficient skill base for good testers/modelers Required architectural artifacts used as documentation not to analyze, engineer, formulate tests Inappropriate parallelization of tasks creates architectures and design artifacts after code/system developed For more information, June 17, 2010

5 And in the future These and other problems lead to enormous costs and schedule delays And things are only going to get more difficult as systems continue to grow in size and complexity For example, the new adaptive capabilities we are trying to introduce into all DoD platforms The following slides are provided courtesy of Paul Eremenko, PM, from his Industry Day Brief for the DARPA META program (Dec. 22, 2009) The views expressed are the author s/presenter s own and do not represent those of DARPA, the DoD, or the US Government. For more information, Bellman@aero.org June 17, 2010

6 Aerospace and defense systems have experienced significant growth in development time and cost with increasing complexity Next-Gen Platform Historical Cost Growth (not adjusted for inflation) Aerospace Systems (1960 present) Automobiles (1960 present) Integrated Circuits (1970 present) 8-12%/yr 4%/yr ~0%/yr New IC design flow MIL-STD-499A Aerospace Vehicle 1990s ~5X Reduction in Development Effort New automotive design flow Automobile 1960s Aerospace Vehicle 1960s Automobile 1990s Pentium META Goal Integrated Circuit Next Gen Integrated Circuit 1960s Intel 8088 Intel 286 Intel 386 Automobile Next Gen Xeon Note (*): Not a great metric. But that s what we have today. META will come up with better metrics.

7 Indicia and consequences of complexity growth Trends in Complexity-Related Metrics for Various Systems 1960s 1990s Next Gen Aircraft 1.5 W/kg* 25 W/kg* 60 W/kg* Spacecraft 120 kg 3,000 kg 10,000 kg Surface Ships 1 kw/ton* 1.5 kw/ton* 5 kw/ton* Power Transfer States Comm. Paths Aerospace Software 10 ksloc 2,000 ksloc 10,000 ksloc Development Time 4 years 12 years? Cost Growth PPBS (1962) MIL-STD-499 (1969) 8-12%/yr Automobiles 10 3 parts 10 4 parts 10 5 parts Automotive Software 0 1,000 ksloc 100,000 ksloc Development Time 60 months 36 months 18 months Cost Escalation ~0%/yr System complexity has grown substantially Exponential growth in many metrics Acquisition process is vintage 1962 Systems engineering process dates to 1969 No advances to manage complexity growth No hardware-software trades or co-design Complexity-related phenomena worsen High cost of change: changes propagate quickly & widely in tightly integrated systems Emergent behaviors: unanticipated interactions, multi-mode failure cascades Fragility: unanticipated vulnerabilities Consequences for DoD systems are dire Lack of adaptability to change & new needs Longer development timelines Significant cost escalation (especially I&T) Cost and schedule variance Integrated Circuits 10 3 transist transist transist. Development Time 36 months 36 months 36 months Cost Escalation ~0%/yr I&T = integration and test; SLOC = source lines of code Note (*): Wattages refer to electrical power generation capability, which also drives thermal dissipation and EMI.

8 A major cause of these phenomena is the industry s failure to update a 1960s-vintage systems engineering, integration, and test process SWaP used as a proxy metric for cost, and dis-incentivizes abstraction in design MIL-STD-499A (1969) Systems Engineering Process As Employed Today System decomposed based on arbitrary cleavage lines... Re-Design Conventional V&V techniques do not scale to highly complex or adaptable systems with large or infinite numbers of possible states/configurations Cost Optimization System Functional Specification System Layout Verification & Validation SWaP Optimization SWaP Optimization Power Data & Control Thermal Mgmt Subsystem Design Component Design Subsystem Testing Component Testing Resulting architectures are fragile point designs... and detailed design occurs within these functional stovepipes Unmodeled and undesired interactions lead to emergent behaviors during integration SWaP = Size, Weight, and Power V&V = Verification & Validation Desirable interactions (data, power, forces & torques) Undesirable interactions (thermal, vibrations, EMI)

9 The goal of the META program is to dramatically shorten the design, integration, and verification timeline for aerospace systems Demonstrate 5X compression in development time for a complex aerospace system Develop practical, observable metric of complexity for cyber-physical systems to enable cyber-vs-physical implementation trades; improve parametrization of cost & schedule Develop a quantitative metric of adaptability associated with a given system architecture to support trade-offs between adaptability, complexity, performance, cost, and other attributes Develop a structured design flow employing hierarchical abstraction and model-based composition of electromechanical and software components Develop a component and manufacturing model library for a given systems domain through extensive characterization of desirable and spurious interactions, dynamics, and properties Develop a verification flow that generates probabilistic certificates of correctness for the entire cyber-physical system based on stochastic formal methods, scaling linearly with size Apply the above framework and toolset to design, manufacture, integrate, and verify a complex aerospace system 5X faster than with a conventional design/build/test approach We think that 5X is doable, but certainly DARPA-hard Software VLSI Automotive

10 Complexity Some general observations on management of complexity Today s Systems Managing complexity really means reducing design complexity for a given capability By analogy to Kolmogorov complexity, any cyber-physical system has a minimum-complexity design that delivers an equivalent capability A complexity-based design process will try to find the theoretical minimum A good complexity-based design process can also lead to a reduction in organizational complexity of the design organization There are several ways of proving success for a new complexity management approach Measure some agreed-upon complexity metric for a system designed by old and new way Build a system that is more complex than we know we can build today Demonstrate cost reduction during design, integration, & test of a complex system Demonstrate schedule compression during design, integration, & test of a complex system... the last is simplest and most controlled, although META will use a complexity metric also Complexity reduction, schedule compression, etc. do not come for free Additional constraints and overhead are imposed on the design The META-designed aircraft, for instance, is likely to be less weight-optimized Capability Similarly, integrated circuits, automobiles, model-generated software, etc. sacrifice optimality in exchange for faster time to market, higher reliability, and lower NRE costs Theoretical Minimum

11 Comparison of some common complexity metrics between electromechanical and software systems Software Systems SLOC (Source Lines of Code) Function Points Cyclomatic Complexity Kolmogorov Complexity Length of Correctness Certificate Electromechanical Systems SWaP (Size, Weight, and Power) Information Content Length of Correctness # components (desired + undesired interactions) (Length of System Blueprint) Certificate Pro s: Easily observable Linearly additive Con s: No info on microstructure Poor cost correlation Pro s: Relatively easy to observe Provides incentives for abstraction Limited empirical data shows good cost correlation Clear traceability to design heuristics Con s: Dynamical coupling? Heterogeneiety of components? Definition of component? Pro s: Theoretical appeal and wide range of applicability Limited empirical data shows excellent cost correlation Con s: Challenging to observe Not easily additive Unclear what heuristics would evolve to minimize this metric Pro s: Rigorously correct metric Potentially possible to estimate Con s: Difficult to compute precisely for all but the simplest systems Source: Flowe et al. (2009); UTRC (2009). Source: Suh (1990); Hoult & Muter (1993); Collopy & Eames (2009).

12 Hierarchical abstraction is pervasive in many of the most complex systems, but not in aerospace/defense platforms Information Networks Integrated Circuits Biological Systems Exhibit consistent behavior in spite of tremendous heterogeneiety of components Internet Application Layer (Data) Designed by manual lay-out, analogous to that employed in aerospace & defense design flows today Intel 4004 Intel Pentium 4 Functional Level (Architecture) Designed using model-based hierarchical layer composition methods and supporting tools Encode the design of a highly complex system in ~25,000 genes by re-use of conserved processes & functions at lower levels of abstraction Anteroposterior & Dorsoventral Axes, Compartments (Body Plans) Transport Layer (Sessions) Register Transfer Level (Blocks) Signaling, Matrix, Junctions, Epithelia (Multicellularity) Network Layer (Packets) Logic Level (Logic Gates) Nucleus, Organelles, Sexual Reproduction (Eukaryotic Functions) Data Link Layer (Frames) Circuit Level (Transistors) Metabolic Pathways (Prokaryotic Functions) Physical Layer (Bits) Physical Level Proteins Source: Weste et al. (2000) Source: Kirschner & Gerhart (2005)

13 A model-based, hierarchical composition approach can lead to lowercomplexity designs and better, more adaptable architectures

14 Testing to Exhaustion With a model-based representation of the entire cyber-physical system, resulting designs can be proven correct-by-construction Stochastic Formal Methods

15 The META program builds the enabling tools and models, and culminates in the rapid development of a complex DoD platform Phase 1a: Design Flow Development Complexity metric for cyber-physical systems Observable and objective Enables hardware-software trades Develop cost and schedule parametrics Determine scope of applicability Power and thermal management Avionics, controls, payload, and data bus Aerostructure and structural components Engines & weapons as discrete components Development of model-based design flow Optimal deployment of hierarchical abstraction Optimization with respect to complexity metric Selection/development of modeling language Development of composition rule-set Design of supporting tool Stochastic model-based verification techniques Develop stochastic formal methods Sensitivity analysis to model accuracy Non-proprietary design toolset Phase 1b: Toolset Implementation Implementation of supporting software toolset Requirements for component characterization Hypothetical end-to-end system development Employing notional component library Validate result with respect to program metrics Phase 2: Component & Manufacturing Model Library Development Specification of demo system domain Tactical aircraft, rotorcraft, etc. Component selection for library inclusion Component characterization Component testing as needed to develop model to specified level of accuracy Static component attributes (size, weight, etc.) Component interfaces (physical, data, power) Spurious interactions (vibration, thermal, EMI) Component dynamics (dynamic response) Quantitfication of model uncertainty Hypothetical end-to-end system development Employing real component library Validate result with respect to program metrics Development of demo system specifications Timely for Phase 3 performer bid Standard modeling language Model data set for a given class of systems Supplier consortium (à la AUTOSAR) Phase 3: Rapid Development Demo Design, manufacturing, integration, verification Confirm through standard developmental tests Short flight test program (~3 months) Tactical UAV Attack helicopter/uav Next gen long range strike Next gen MRAP Next gen UGV/tank Document resultant program metrics Detailed monitoring of level of effort by task Resultant schedule and cost metrics Demonstrated system reliability vs. model Quantify performance differences Capture and quantify maintainability, adaptability, and other architectural attributes Platform transition to service partner Systems engineering (SE) curriculum infusion DDR&E/SE promulgation of SE standard

16 Some Tough Questions for Our Discussion Are formal methods/enabling modeling technologies mature enough to support META goals? Why is META likely now? What do we need to support a revolution? Proof by construction what are its limits? Will any of these methods scale up for adaptive systems? What are the hard questions I m not asking? For more information, Bellman@aero.org June 17, 2010

DESIGN TECHNOLOGY FOR THE TRILLION-DEVICE FUTURE

DESIGN TECHNOLOGY FOR THE TRILLION-DEVICE FUTURE DESIGN TECHNOLOGY FOR THE TRILLION-DEVICE FUTURE Alberto Sangiovanni-Vincentelli The Edgar L. and Harold H. Buttner Chair of EECS, University of California at Berkeley The Emerging IT Scene! The Cloud!

More information

A New Approach to the Design and Verification of Complex Systems

A New Approach to the Design and Verification of Complex Systems A New Approach to the Design and Verification of Complex Systems Research Scientist Palo Alto Research Center Intelligent Systems Laboratory Embedded Reasoning Area Tolga Kurtoglu, Ph.D. Complexity Highly

More information

Stevens Institute of Technology & Systems Engineering Research Center (SERC)

Stevens Institute of Technology & Systems Engineering Research Center (SERC) Stevens Institute of Technology & Systems Engineering Research Center (SERC) Transforming Systems Engineering through a Holistic Approach to Model Centric Engineering Presented to: NDIA 2014 By: Dr. Mark

More information

Challenges and Innovations in Digital Systems Engineering

Challenges and Innovations in Digital Systems Engineering Challenges and Innovations in Digital Systems Engineering Dr. Ed Kraft Associate Executive Director for Research University of Tennessee Space Institute October 25, 2017 NDIA 20 th Annual Systems Engineering

More information

Proposed Curriculum Master of Science in Systems Engineering for The MITRE Corporation

Proposed Curriculum Master of Science in Systems Engineering for The MITRE Corporation Proposed Curriculum Master of Science in Systems Engineering for The MITRE Corporation Core Requirements: (9 Credits) SYS 501 Concepts of Systems Engineering SYS 510 Systems Architecture and Design SYS

More information

Software-Intensive Systems Producibility

Software-Intensive Systems Producibility Pittsburgh, PA 15213-3890 Software-Intensive Systems Producibility Grady Campbell Sponsored by the U.S. Department of Defense 2006 by Carnegie Mellon University SSTC 2006. - page 1 Producibility

More information

DEFENSE ACQUISITION UNIVERSITY EMPLOYEE SELF-ASSESSMENT. Outcomes and Enablers

DEFENSE ACQUISITION UNIVERSITY EMPLOYEE SELF-ASSESSMENT. Outcomes and Enablers Outcomes and Enablers 1 From an engineering leadership perspective, the student will describe elements of DoD systems engineering policy and process across the Defense acquisition life-cycle in accordance

More information

UNIT-III LIFE-CYCLE PHASES

UNIT-III LIFE-CYCLE PHASES INTRODUCTION: UNIT-III LIFE-CYCLE PHASES - If there is a well defined separation between research and development activities and production activities then the software is said to be in successful development

More information

Credible Autocoding for Verification of Autonomous Systems. Juan-Pablo Afman Graduate Researcher Georgia Institute of Technology

Credible Autocoding for Verification of Autonomous Systems. Juan-Pablo Afman Graduate Researcher Georgia Institute of Technology Credible Autocoding for Verification of Autonomous Systems Juan-Pablo Afman Graduate Researcher Georgia Institute of Technology Agenda 2 Introduction Expert s Domain Next Generation Autocoding Formal methods

More information

Manufacturing Readiness Assessment Overview

Manufacturing Readiness Assessment Overview Manufacturing Readiness Assessment Overview Integrity Service Excellence Jim Morgan AFRL/RXMS Air Force Research Lab 1 Overview What is a Manufacturing Readiness Assessment (MRA)? Why Manufacturing Readiness?

More information

Air Force Materiel Command

Air Force Materiel Command Air Force Materiel Command Developing, Fielding, and Sustaining America s Aerospace Force Track 2: Integration, Test and Verification Planning and Executing an Integration and Test Strategy for a Complex

More information

Strategic Considerations when Introducing Model Based Systems Engineering

Strategic Considerations when Introducing Model Based Systems Engineering Copyright 2015 by Christoph Bräuchle, Manfred Broy, Dominik Rüchardt. Permission granted to INCOSE to publish and use Strategic Considerations when Introducing Model Based Systems Engineering Christoph

More information

Executive Summary. Chapter 1. Overview of Control

Executive Summary. Chapter 1. Overview of Control Chapter 1 Executive Summary Rapid advances in computing, communications, and sensing technology offer unprecedented opportunities for the field of control to expand its contributions to the economic and

More information

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING Edward A. Addy eaddy@wvu.edu NASA/WVU Software Research Laboratory ABSTRACT Verification and validation (V&V) is performed during

More information

New Methods for Architecture Selection and Conceptual Design:

New Methods for Architecture Selection and Conceptual Design: New Methods for Architecture Selection and Conceptual Design: Space Systems, Policy, and Architecture Research Consortium (SSPARC) Program Overview Hugh McManus, Joyce Warmkessel, and the SSPARC team For

More information

Model Based Systems Engineering with MagicGrid

Model Based Systems Engineering with MagicGrid November 2, 2016 Model Based Systems Engineering with MagicGrid No Magic, Inc. System Model as an Integration Framework Need for Ecosystem 2 2012-2014 by Sanford Friedenthal 19 The modeling language is

More information

Instrumentation and Control

Instrumentation and Control Program Description Instrumentation and Control Program Overview Instrumentation and control (I&C) and information systems impact nuclear power plant reliability, efficiency, and operations and maintenance

More information

Incorporating a Test Flight into the Standard Development Cycle

Incorporating a Test Flight into the Standard Development Cycle into the Standard Development Cycle Authors: Steve Wichman, Mike Pratt, Spencer Winters steve.wichman@redefine.com mike.pratt@redefine.com spencer.winters@redefine.com 303-991-0507 1 The Problem A component

More information

Foundations Required for Novel Compute (FRANC) BAA Frequently Asked Questions (FAQ) Updated: October 24, 2017

Foundations Required for Novel Compute (FRANC) BAA Frequently Asked Questions (FAQ) Updated: October 24, 2017 1. TA-1 Objective Q: Within the BAA, the 48 th month objective for TA-1a/b is listed as functional prototype. What form of prototype is expected? Should an operating system and runtime be provided as part

More information

Technology Transition Assessment in an Acquisition Risk Management Context

Technology Transition Assessment in an Acquisition Risk Management Context Transition Assessment in an Acquisition Risk Management Context Distribution A: Approved for Public Release Lance Flitter, Charles Lloyd, Timothy Schuler, Emily Novak NDIA 18 th Annual Systems Engineering

More information

Automated Driving Systems with Model-Based Design for ISO 26262:2018 and SOTIF

Automated Driving Systems with Model-Based Design for ISO 26262:2018 and SOTIF Automated Driving Systems with Model-Based Design for ISO 26262:2018 and SOTIF Konstantin Dmitriev The MathWorks, Inc. Certification and Standards Group 2018 The MathWorks, Inc. 1 Agenda Use of simulation

More information

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Jeffery P. Holland, PhD, PE (SES) ERS Community of Interest (COI) Lead Director, US Army Engineer Research and Development

More information

Engineered Resilient Systems DoD Science and Technology Priority

Engineered Resilient Systems DoD Science and Technology Priority Engineered Resilient Systems DoD Science and Technology Priority Mr. Scott Lucero Deputy Director, Strategic Initiatives Office of the Deputy Assistant Secretary of Defense (Systems Engineering) Scott.Lucero@osd.mil

More information

Mid Term Exam SES 405 Exploration Systems Engineering 3 March Your Name

Mid Term Exam SES 405 Exploration Systems Engineering 3 March Your Name Mid Term Exam SES 405 Exploration Systems Engineering 3 March 2016 --------------------------------------------------------------------- Your Name Short Definitions (2 points each): Heuristics - refers

More information

Copyright 2016 Rockwell Collins, Inc. All rights reserved. LVC for Autonomous Aircraft Systems Testing

Copyright 2016 Rockwell Collins, Inc. All rights reserved. LVC for Autonomous Aircraft Systems Testing LVC for Autonomous Aircraft Systems Testing Challenges - T&E of Autonomous A/C Regulatory Restrictions Desired test or demonstration context may not be available Flight Test Complexity More complex than

More information

Systems Engineering Overview. Axel Claudio Alex Gonzalez

Systems Engineering Overview. Axel Claudio Alex Gonzalez Systems Engineering Overview Axel Claudio Alex Gonzalez Objectives Provide additional insights into Systems and into Systems Engineering Walkthrough the different phases of the product lifecycle Discuss

More information

Technology readiness applied to materials for fusion applications

Technology readiness applied to materials for fusion applications Technology readiness applied to materials for fusion applications M. S. Tillack (UCSD) with contributions from H. Tanegawa (JAEA), S. Zinkle (ORNL), A. Kimura (Kyoto U.) R. Shinavski (Hyper-Therm), M.

More information

M&S Requirements and VV&A: What s the Relationship?

M&S Requirements and VV&A: What s the Relationship? M&S Requirements and VV&A: What s the Relationship? Dr. James Elele - NAVAIR David Hall, Mark Davis, David Turner, Allie Farid, Dr. John Madry SURVICE Engineering Outline Verification, Validation and Accreditation

More information

William Milam Ford Motor Co

William Milam Ford Motor Co Sharing technology for a stronger America Verification Challenges in Automotive Embedded Systems William Milam Ford Motor Co Chair USCAR CPS Task Force 10/20/2011 What is USCAR? The United States Council

More information

System Architecture Module Exploration Systems Engineering, version 1.0

System Architecture Module Exploration Systems Engineering, version 1.0 System Architecture Module Exploration Systems Engineering, version 1.0 Exploration Systems Engineering: System Architecture Module Module Purpose: System Architecture Place system architecture development

More information

FOSS in Military Computing

FOSS in Military Computing FOSS in Military Computing Life-Cycle Support for FOSS-Based Information Systems By Robert Charpentier Richard Carbone R et D pour la défense Canada Defence R&D Canada Canada FOSS Project History Overview

More information

Our Acquisition Challenges Moving Forward

Our Acquisition Challenges Moving Forward Presented to: NDIA Space and Missile Defense Working Group Our Acquisition Challenges Moving Forward This information product has been reviewed and approved for public release. The views and opinions expressed

More information

ACE3 Working Group Session, March 2, 2005

ACE3 Working Group Session, March 2, 2005 ACE3 Working Group Session, March 2, 2005 Intensive s The Synergy of Architecture, Life Cycle Models, and Reviews Dr. Peter Hantos The Aerospace Corporation 2003-2005. The Aerospace Corporation. All Rights

More information

From Smart Machines to Smart Supply Chains: Some Missing Pieces

From Smart Machines to Smart Supply Chains: Some Missing Pieces From Smart Machines to Smart Supply Chains: Some Missing Pieces LEON MCGINNIS PROFESSOR EMERITUS STEWART SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING GEORGIA TECH Agenda Smart factory context Reality check

More information

Introduction to Systems Engineering

Introduction to Systems Engineering p. 1/2 ENES 489P Hands-On Systems Engineering Projects Introduction to Systems Engineering Mark Austin E-mail: austin@isr.umd.edu Institute for Systems Research, University of Maryland, College Park Career

More information

COMMERCIAL INDUSTRY RESEARCH AND DEVELOPMENT BEST PRACTICES Richard Van Atta

COMMERCIAL INDUSTRY RESEARCH AND DEVELOPMENT BEST PRACTICES Richard Van Atta COMMERCIAL INDUSTRY RESEARCH AND DEVELOPMENT BEST PRACTICES Richard Van Atta The Problem Global competition has led major U.S. companies to fundamentally rethink their research and development practices.

More information

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal. Part 3B Product Development Plan

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal. Part 3B Product Development Plan ARTES Competitiveness & Growth Full Proposal Requirements for the Content of the Technical Proposal Part 3B Statement of Applicability and Proposal Submission Requirements Applicable Domain(s) Space Segment

More information

Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications. The MathWorks, Inc.

Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications. The MathWorks, Inc. Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications Larry E. Kendrick, PhD The MathWorks, Inc. Senior Principle Technical Consultant Introduction What s MBD? Why do it? Make

More information

Model Based Systems Engineering (MBSE) Business Case Considerations An Enabler of Risk Reduction

Model Based Systems Engineering (MBSE) Business Case Considerations An Enabler of Risk Reduction Model Based Systems Engineering (MBSE) Business Case Considerations An Enabler of Risk Reduction Prepared for: National Defense Industrial Association (NDIA) 26 October 2011 Peter Lierni & Amar Zabarah

More information

2. CYBERSPACE Relevance to Sustainability? Critical Features Knowledge Aggregation and Facilitation Revolution Four Cases in the Middle East**

2. CYBERSPACE Relevance to Sustainability? Critical Features Knowledge Aggregation and Facilitation Revolution Four Cases in the Middle East** ` 17.181/17.182 SUSTAINABLE DEVELOPMENT Week 4 Outline Cyberspace and Sustainability 1. ISSUES left over from WEEK 3 Brief Review Some Empirical Views 2. CYBERSPACE Relevance to Sustainability? Critical

More information

NASA Technology Road Map: Materials and Structures. R. Byron Pipes

NASA Technology Road Map: Materials and Structures. R. Byron Pipes NASA Technology Road Map: Materials and Structures R. Byron Pipes John L. Bray Distinguished Professor of Engineering School of Materials Engineering, Purdue University bpipes@purdue.edu PMMS Center 1

More information

ASICs Concept to Product

ASICs Concept to Product ASICs Concept to Product Synopsis This course is aimed to provide an opportunity for the participant to acquire comprehensive technical and business insight into the ASIC world. As most of these aspects

More information

The Army s Future Tactical UAS Technology Demonstrator Program

The Army s Future Tactical UAS Technology Demonstrator Program The Army s Future Tactical UAS Technology Demonstrator Program This information product has been reviewed and approved for public release, distribution A (Unlimited). Review completed by the AMRDEC Public

More information

Towards a multi-view point safety contract Alejandra Ruiz 1, Tim Kelly 2, Huascar Espinoza 1

Towards a multi-view point safety contract Alejandra Ruiz 1, Tim Kelly 2, Huascar Espinoza 1 Author manuscript, published in "SAFECOMP 2013 - Workshop SASSUR (Next Generation of System Assurance Approaches for Safety-Critical Systems) of the 32nd International Conference on Computer Safety, Reliability

More information

The Standards Community: The New Way of Doing Business

The Standards Community: The New Way of Doing Business The Engineering Society for Advancing Mobility in Land, Sea, Air and Space The Standards Community: The New Way of Doing Business Douglas A. Gregory Chair of SAE Aerospace Avionic Systems Division Chief

More information

GaN Reliability Report 2018

GaN Reliability Report 2018 GaN Reliability Report 2018 GaN-on-Silicon Reliability and Qualification Report A summary analysis of application-specific stress testing methodologies and results demonstrating the reliability of Gallium

More information

Vibration Tests: a Brief Historical Background

Vibration Tests: a Brief Historical Background Sinusoidal Vibration: Second Edition - Volume 1 Christian Lalanne Copyright 0 2009, ISTE Ltd Vibration Tests: a Brief Historical Background The first studies on shocks and vibrations were carried out at

More information

Revolutionizing Engineering Science through Simulation May 2006

Revolutionizing Engineering Science through Simulation May 2006 Revolutionizing Engineering Science through Simulation May 2006 Report of the National Science Foundation Blue Ribbon Panel on Simulation-Based Engineering Science EXECUTIVE SUMMARY Simulation refers to

More information

What is a Simulation? Simulation & Modeling. Why Do Simulations? Emulators versus Simulators. Why Do Simulations? Why Do Simulations?

What is a Simulation? Simulation & Modeling. Why Do Simulations? Emulators versus Simulators. Why Do Simulations? Why Do Simulations? What is a Simulation? Simulation & Modeling Introduction and Motivation A system that represents or emulates the behavior of another system over time; a computer simulation is one where the system doing

More information

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION)

CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 147 CHAPTER 6 EMI EMC MEASUREMENTS AND STANDARDS FOR TRACKED VEHICLES (MIL APPLICATION) 6.1 INTRODUCTION The electrical and electronic devices, circuits and systems are capable of emitting the electromagnetic

More information

The Drive for Innovation in Systems Engineering

The Drive for Innovation in Systems Engineering The Drive for Innovation in Systems Engineering D. Scott Lucero Office of the Deputy Assistant Secretary of Defense for Systems Engineering 20th Annual NDIA Systems Engineering Conference Springfield,

More information

RESEARCH OVERVIEW Methodology to Identify Opportunities for Flexible Design

RESEARCH OVERVIEW Methodology to Identify Opportunities for Flexible Design RESEARCH OVERVIEW Methodology to Identify Opportunities for Flexible Design Jennifer Wilds, Research Assistant wilds@mit.edu October 16, 2007 Advisors: D. Hastings and R. de Neufville Researcher s Background

More information

Graduate Programs in Advanced Systems Engineering

Graduate Programs in Advanced Systems Engineering Graduate Programs in Advanced Systems Engineering UTC Institute for Advanced Systems Engineering, University of Connecticut Mission To train the engineer of the next decade: the one who is not constrained

More information

Intermediate Systems Acquisition Course. Lesson 2.2 Selecting the Best Technical Alternative. Selecting the Best Technical Alternative

Intermediate Systems Acquisition Course. Lesson 2.2 Selecting the Best Technical Alternative. Selecting the Best Technical Alternative Selecting the Best Technical Alternative Science and technology (S&T) play a critical role in protecting our nation from terrorist attacks and natural disasters, as well as recovering from those catastrophic

More information

Leveraging Commercial Communication Satellites to support the Space Situational Awareness Mission Area. Timothy L. Deaver Americom Government Services

Leveraging Commercial Communication Satellites to support the Space Situational Awareness Mission Area. Timothy L. Deaver Americom Government Services Leveraging Commercial Communication Satellites to support the Space Situational Awareness Mission Area Timothy L. Deaver Americom Government Services ABSTRACT The majority of USSTRATCOM detect and track

More information

Welcome to 6.111! Introductory Digital Systems Laboratory

Welcome to 6.111! Introductory Digital Systems Laboratory Welcome to 6.111! Introductory Digital Systems Laboratory Handouts: Info form (yellow) Course Calendar Safety Memo Kit Checkout Form Lecture slides Lectures: Chris Terman TAs: Karthik Balakrishnan HuangBin

More information

Scientific Certification

Scientific Certification Scientific Certification John Rushby Computer Science Laboratory SRI International Menlo Park, California, USA John Rushby, SR I Scientific Certification: 1 Does The Current Approach Work? Fuel emergency

More information

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1 EECS150 - Digital Design Lecture 28 Course Wrap Up Dec. 5, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

EECS 427 Lecture 21: Design for Test (DFT) Reminders

EECS 427 Lecture 21: Design for Test (DFT) Reminders EECS 427 Lecture 21: Design for Test (DFT) Readings: Insert H.3, CBF Ch 25 EECS 427 F09 Lecture 21 1 Reminders One more deadline Finish your project by Dec. 14 Schematic, layout, simulations, and final

More information

Instrumentation and Control

Instrumentation and Control Instrumentation and Control Program Description Program Overview Instrumentation and control (I&C) systems affect all areas of plant operation and can profoundly impact plant reliability, efficiency, and

More information

Prototyping: Accelerating the Adoption of Transformative Capabilities

Prototyping: Accelerating the Adoption of Transformative Capabilities Prototyping: Accelerating the Adoption of Transformative Capabilities Mr. Elmer Roman Director, Joint Capability Technology Demonstration (JCTD) DASD, Emerging Capability & Prototyping (EC&P) 10/27/2016

More information

Digital Systems Design

Digital Systems Design Digital Systems Design Digital Systems Design and Test Dr. D. J. Jackson Lecture 1-1 Introduction Traditional digital design Manual process of designing and capturing circuits Schematic entry System-level

More information

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks.

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Technology 1 Agenda Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Introduce the Technology Readiness Level (TRL) scale used to assess

More information

UNIT VIII SYSTEM METHODOLOGY 2014

UNIT VIII SYSTEM METHODOLOGY 2014 SYSTEM METHODOLOGY: UNIT VIII SYSTEM METHODOLOGY 2014 The need for a Systems Methodology was perceived in the second half of the 20th Century, to show how and why systems engineering worked and was so

More information

Aerospace Software* Cost and Timescale Reduction *and complex electronic hardware

Aerospace Software* Cost and Timescale Reduction *and complex electronic hardware Aerospace Software* Cost and Timescale Reduction *and complex electronic hardware Andrew Hawthorn Deputy Director, Intelligent Systems / Altran UK and SECT-AIR WP4 Lead on behalf of the SECT-AIR Consortium

More information

STM RH-ASIC capability

STM RH-ASIC capability STM RH-ASIC capability JAXA 24 th MicroElectronic Workshop 13 th 14 th October 2011 Prepared by STM Crolles and AeroSpace Unit Deep Sub Micron (DSM) is strategic for Europe Strategic importance of European

More information

System of Systems Software Assurance

System of Systems Software Assurance System of Systems Software Assurance Introduction Under DoD sponsorship, the Software Engineering Institute has initiated a research project on system of systems (SoS) software assurance. The project s

More information

Abstract of PhD Thesis

Abstract of PhD Thesis FACULTY OF ELECTRONICS, TELECOMMUNICATION AND INFORMATION TECHNOLOGY Irina DORNEAN, Eng. Abstract of PhD Thesis Contribution to the Design and Implementation of Adaptive Algorithms Using Multirate Signal

More information

Cyber Physical Systems: Next Generation of Embedded Systems

Cyber Physical Systems: Next Generation of Embedded Systems Institute for Software Integrated Systems Vanderbilt University Cyber Physical Systems: Next Generation of Embedded Systems Janos Sztipanovits ISIS, Vanderbilt University 27 September, 2010 Outline Cyber

More information

RFID for Continuous Monitoring in Dynamic Environments

RFID for Continuous Monitoring in Dynamic Environments RFID for Continuous Monitoring in Dynamic Environments Raymond Wagner, Ph.D. HDIAC Subject Matter Expert National Aeronautics and Space Administration (NASA), Johnson Space Center (EV8) July 18, 2018 Distribution

More information

Principled Construction of Software Safety Cases

Principled Construction of Software Safety Cases Principled Construction of Software Safety Cases Richard Hawkins, Ibrahim Habli, Tim Kelly Department of Computer Science, University of York, UK Abstract. A small, manageable number of common software

More information

A Knowledge-Centric Approach for Complex Systems. Chris R. Powell 1/29/2015

A Knowledge-Centric Approach for Complex Systems. Chris R. Powell 1/29/2015 A Knowledge-Centric Approach for Complex Systems Chris R. Powell 1/29/2015 Dr. Chris R. Powell, MBA 31 years experience in systems, hardware, and software engineering 17 years in commercial development

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO Exhibit R-2, RDT&E Budget Item Justification: PB 2013 Air Force DATE: February 2012 BA 3: Advanced Development (ATD) COST ($ in Millions) Program Element 75.103 74.009 64.557-64.557 61.690 67.075 54.973

More information

Reconsidering the Role of Systems Engineering in DoD Software Problems

Reconsidering the Role of Systems Engineering in DoD Software Problems Pittsburgh, PA 15213-3890 SIS Acquisition Reconsidering the Role of Systems Engineering in DoD Software Problems Grady Campbell (ghc@sei.cmu.edu) Sponsored by the U.S. Department of Defense 2004 by Carnegie

More information

A Level-Encoded Transition Signaling Protocol for High-Throughput Asynchronous Global Communication

A Level-Encoded Transition Signaling Protocol for High-Throughput Asynchronous Global Communication A Level-Encoded Transition Signaling Protocol for High-Throughput Asynchronous Global Communication Peggy B. McGee, Melinda Y. Agyekum, Moustafa M. Mohamed and Steven M. Nowick {pmcgee, melinda, mmohamed,

More information

Enhanced performance of delayed teleoperator systems operating within nondeterministic environments

Enhanced performance of delayed teleoperator systems operating within nondeterministic environments University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2010 Enhanced performance of delayed teleoperator systems operating

More information

Findings of the Artist2 Workshop Beyond Autosar

Findings of the Artist2 Workshop Beyond Autosar Findings of the Artist2 Workshop Beyond Autosar Werner Damm OFFIS Acknowledgements This presentation reports on Results of the NoE Artist2, Workshop Beyond Autosar (co-organized with Albert Benveniste,

More information

The Test and Launch Control Technology for Launch Vehicles

The Test and Launch Control Technology for Launch Vehicles The Test and Launch Control Technology for Launch Vehicles Zhengyu Song The Test and Launch Control Technology for Launch Vehicles 123 Zhengyu Song China Academy of Launch Vehicle Technology Beijing China

More information

Using MIL-STD-882D w/change 1 For Hazardous Materials Management

Using MIL-STD-882D w/change 1 For Hazardous Materials Management Using MIL-STD-882D w/change 1 For Hazardous Materials Management Karen Gill NDIA Environment, Energy Security, and Sustainability Symposium, Denver, CO June 2010 1 Driver DoD requires each acquisition

More information

Objectives. Designing, implementing, deploying and operating systems which include hardware, software and people

Objectives. Designing, implementing, deploying and operating systems which include hardware, software and people Chapter 2. Computer-based Systems Engineering Designing, implementing, deploying and operating s which include hardware, software and people Slide 1 Objectives To explain why software is affected by broader

More information

UNIT IV SOFTWARE PROCESSES & TESTING SOFTWARE PROCESS - DEFINITION AND IMPLEMENTATION

UNIT IV SOFTWARE PROCESSES & TESTING SOFTWARE PROCESS - DEFINITION AND IMPLEMENTATION UNIT IV SOFTWARE PROCESSES & TESTING Software Process - Definition and implementation; internal Auditing and Assessments; Software testing - Concepts, Tools, Reviews, Inspections & Walkthroughs; P-CMM.

More information

COTS and automotive EEE parts in Space Programs: Thales Alenia Space Return of Experience

COTS and automotive EEE parts in Space Programs: Thales Alenia Space Return of Experience COTS and automotive EEE parts in Space Programs: Thales Alenia Space Return of Experience Mission Needs, Trends and Opportunities Session" - ESA High End Digital Technology Workshop on 01-Oct.-2018 1 01/10/2018

More information

Jerome Tzau TARDEC System Engineering Group. UNCLASSIFIED: Distribution Statement A. Approved for public release. 14 th Annual NDIA SE Conf Oct 2011

Jerome Tzau TARDEC System Engineering Group. UNCLASSIFIED: Distribution Statement A. Approved for public release. 14 th Annual NDIA SE Conf Oct 2011 LESSONS LEARNED IN PERFORMING TECHNOLOGY READINESS ASSESSMENT (TRA) FOR THE MILESTONE (MS) B REVIEW OF AN ACQUISITION CATEGORY (ACAT)1D VEHICLE PROGRAM Jerome Tzau TARDEC System Engineering Group UNCLASSIFIED:

More information

Closing the Knowledge-Deficit in the Defense Acquisition System: A Case Study

Closing the Knowledge-Deficit in the Defense Acquisition System: A Case Study Closing the Knowledge-Deficit in the Defense Acquisition System: A Case Study Luis A. Cortes Michael J. Harman 19 March 2014 The goal of the STAT T&E COE is to assist in developing rigorous, defensible

More information

DoDI and WSARA* Impacts on Early Systems Engineering

DoDI and WSARA* Impacts on Early Systems Engineering DoDI 5000.02 and WSARA* Impacts on Early Systems Engineering Sharon Vannucci Systems Engineering Directorate Office of the Director, Defense Research and Engineering 12th Annual NDIA Systems Engineering

More information

Indiana K-12 Computer Science Standards

Indiana K-12 Computer Science Standards Indiana K-12 Computer Science Standards What is Computer Science? Computer science is the study of computers and algorithmic processes, including their principles, their hardware and software designs,

More information

2. See Manual Part 1.4.1, (Identical Items, "Boilerplate" for all Manual Parts), Section A. Draft

2. See Manual Part 1.4.1, (Identical Items, Boilerplate for all Manual Parts), Section A. Draft 2159 Part 11.5.1 Recommended Environmental Requirements for Electrical and Electronic Railroad Signal System Equipment Revised 2159 (1 Pages) A. Purpose 1. This Manual Part recommends environmental requirements

More information

CHAPTER 1 INTRODUCTION TO THE GUIDE

CHAPTER 1 INTRODUCTION TO THE GUIDE CHAPTER 1 INTRODUCTION TO THE GUIDE In spite of the millions of software professionals worldwide and the ubiquitous presence of software in our society, software engineering has not yet reached the status

More information

Program Success Through SE Discipline in Technology Maturity. Mr. Chris DiPetto Deputy Director Developmental Test & Evaluation October 24, 2006

Program Success Through SE Discipline in Technology Maturity. Mr. Chris DiPetto Deputy Director Developmental Test & Evaluation October 24, 2006 Program Success Through SE Discipline in Technology Maturity Mr. Chris DiPetto Deputy Director Developmental Test & Evaluation October 24, 2006 Outline DUSD, Acquisition & Technology (A&T) Reorganization

More information

AMS Verification for High Reliability and Safety Critical Applications by Martin Vlach, Mentor Graphics

AMS Verification for High Reliability and Safety Critical Applications by Martin Vlach, Mentor Graphics AMS Verification for High Reliability and Safety Critical Applications by Martin Vlach, Mentor Graphics Today, very high expectations are placed on electronic systems in terms of functional safety and

More information

Presented at the 2017 ICEAA Professional Development & Training Workshop. TRL vs Percent Dev Cost Final.pptx

Presented at the 2017 ICEAA Professional Development & Training Workshop. TRL vs Percent Dev Cost Final.pptx 1 Presentation Purpose 2 Information and opinions presented are that of the presenter and do not represent an official government or company position. 3 1999 2001 2006 2007 GAO recommends DoD adopt NASA

More information

MODEL AND SIMULATION BASED SATELLITE ENGINEERING

MODEL AND SIMULATION BASED SATELLITE ENGINEERING 1st International Academy of Astronautics Latin American Symposium on Small Satellites: Advanced Technologies and Distributed Systems CUSTOM DESIGNED TECHNOLOGY MODEL AND SIMULATION BASED SATELLITE ENGINEERING

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Course Outcome of M.Tech (VLSI Design)

Course Outcome of M.Tech (VLSI Design) Course Outcome of M.Tech (VLSI Design) PVL108: Device Physics and Technology The students are able to: 1. Understand the basic physics of semiconductor devices and the basics theory of PN junction. 2.

More information

Air Force Institute of Technology. A Quantitative Analysis of the Benefits of Prototyping Fixed-Wing Aircraft

Air Force Institute of Technology. A Quantitative Analysis of the Benefits of Prototyping Fixed-Wing Aircraft CONTENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED Air Force Institute of Technology E d u c a t i n g t h e W o r l d s B e s t A i r F o r c e A Quantitative Analysis of the Benefits of Prototyping

More information

Adaptable C5ISR Instrumentation

Adaptable C5ISR Instrumentation Adaptable C5ISR Instrumentation Mission Command and Network Test Directorate Prepared by Mr. Mark Pauls U.S. Army Electronic Proving Ground (USAEPG) 21 May 2014 U.S. Army Electronic Proving Ground Advanced

More information

APPLICATION OF INTEGRATION READINESS LEVEL IN ASSESSING TECHNOLOGY INTEGRATION RISKS IN A DOD ACQUISITION PROGRAM

APPLICATION OF INTEGRATION READINESS LEVEL IN ASSESSING TECHNOLOGY INTEGRATION RISKS IN A DOD ACQUISITION PROGRAM 2013 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM SYSTEMS ENGINEERING (SE) MINI-SYMPOSIUM AUGUST 21-22, 2013 TROY, MICHIGAN APPLICATION OF INTEGRATION READINESS LEVEL IN ASSESSING TECHNOLOGY

More information

Impact of Technology Readiness Levels on Aerospace R&D

Impact of Technology Readiness Levels on Aerospace R&D Impact of Technology Readiness Levels on Aerospace R&D Dr. David Whelan Chief Scientist Boeing Integrated Defense Systems Presented to Department of Energy Fusion Energy Science Advisory Committee Who

More information

A Simulation Revolution is Needed to Solve the CAE Industry s Problems

A Simulation Revolution is Needed to Solve the CAE Industry s Problems A Simulation Revolution is Needed to Solve the CAE Industry s Problems Business Drivers Business Drivers The worldwide business environment is seeing a strong focus on strategic goals for improving competitiveness

More information