Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator

Similar documents
Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Integrated Circuit Design for High-Speed Frequency Synthesis

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

A Multiphase Compensation Method with Dynamic Element Matching Technique in Σ- Fractional-N Frequency Synthesizers

/$ IEEE

Bluetooth based Synthesizer for Wireless Sensor Measurement Applicable in Health Net Environment

An analytical phase noise model of charge pump mismatch in sigma-delta frequency synthesizer

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

768 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010

264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 58, NO. 2, FEBRUARY 2011

A Segmented DAC based Sigma-Delta ADC by Employing DWA

ECEN620: Network Theory Broadband Circuit Design Fall 2012

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

Sigma-Delta Fractional-N Frequency Synthesis

MOST wireless communication systems require local

THE USE of multibit quantizers in oversampling analogto-digital

ACTIVE SWITCHED-CAPACITOR LOOP FILTER. A Dissertation JOOHWAN PARK

ECEN620: Network Theory Broadband Circuit Design Fall 2014

2. ADC Architectures and CMOS Circuits

FREQUENCY synthesizers based on phase-locked loops

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Energy Efficient and High Speed Charge-Pump Phase Locked Loop

Design of a Frequency Synthesizer for WiMAX Applications

FRACTIONAL-N FREQUENCY SYNTHESIZER DESIGN FOR RFAPPLICATIONS

A GHz Wideband Sub-harmonically Injection- Locked PLL with Adaptive Injection Timing Alignment Technique

A New Phase-Locked Loop with High Speed Phase Frequency Detector and Enhanced Lock-in

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

THE serial advanced technology attachment (SATA) is becoming

Multiple Reference Clock Generator

6.776 High Speed Communication Circuits Lecture 23. Design of Fractional-N Frequency Synthesizers and Bandwidth Extension Techniques

Modeling And Implementation of All-Digital Phase-Locked Loop Based on Vernier Gated Ring Oscillator Time-to-Digital Converter

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet

A MASH ΔΣ time-todigital converter based on two-stage time quantization

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

A Frequency Synthesis of All Digital Phase Locked Loop

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline

Section 1. Fundamentals of DDS Technology

A Compact, Low-Power Low- Jitter Digital PLL. Amr Fahim Qualcomm, Inc.

A High Dynamic Range Digitally- Controlled Oscillator (DCO) for All-DPLL systems is. Samira Jafarzade 1, Abumoslem Jannesari 2

CHAPTER. delta-sigma modulators 1.0

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

High Performance Digital Fractional-N Frequency Synthesizers

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER

EE247 Lecture 24. EE247 Lecture 24

BANDPASS delta sigma ( ) modulators are used to digitize

RECENT advances in integrated circuit (IC) technology

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

DESIGN OF A MODULAR FEEDFORWARD PHASE/FREQUENCY DETECTOR FOR HIGH SPEED PLL

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

Available online at ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2

ECEN620: Network Theory Broadband Circuit Design Fall 2014

On Pulse Position Modulation and Its Application to PLLs for Spur Reduction Chembiyan Thambidurai and Nagendra Krishnapura

THE phase-locked loop (PLL) is a very popular circuit component

note application Fractional-N Synthesizers David Owen

A single-slope 80MS/s ADC using two-step time-to-digital conversion

Introduction to CMOS RF Integrated Circuits Design

High Performance Digital Fractional-N Frequency Synthesizers. IEEE Distinguished Lecture Lehigh Valley SSCS Chapter

Fabricate a 2.4-GHz fractional-n synthesizer

THE UNIVERSITY OF NAIROBI

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Summary Last Lecture

A Low Area, Switched-Resistor Loop Filter Technique for Fractional-N Synthesizers Applied to a MEMS-based Programmable Oscillator

Receiver Architecture

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop

IN RECENT years, the phase-locked loop (PLL) has been a

A Straightforward - Fractional-N Phase-Locked Loop HDL Design for RF Applications

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

INF4420 Phase locked loops

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop

Design & Implementation of an Adaptive Delta Sigma Modulator

Lecture 7: Components of Phase Locked Loop (PLL)

Power Efficient Digital LDO Regulator with Transient Response Boost Technique K.K.Sree Janani 1, M.Balasubramani 2

Flying-Adder Frequency and Phase Synthesis Architecture

Minimizing Spurious Tones in Digital Delta-Sigma Modulators

A Random and Systematic Jitter Suppressed DLL-Based Clock Generator with Effective Negative Feedback Loop

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology

ALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS

Self-Biased PLL/DLL. ECG minute Final Project Presentation. Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas

I must be selected in the presence of strong

Low Power Phase Locked Loop Design with Minimum Jitter

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL

Designing of Charge Pump for Fast-Locking and Low-Power PLL

Biju Viswanath Rajagopal P C Ramya Nair S R Jobin Cyriac. QuEST Global

MULTI-BIT DELTA-SIGMA MODULATION TECHNIQUE FOR FRACTIONAL-N FREQUENCY SYNTHESIZERS WOOGEUN RHEE

Gert Veale / Christo Nel Grintek Ewation

Dr. K.B.Khanchandani Professor, Dept. of E&TC, SSGMCE, Shegaon, India.

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

Transcription:

Behavior Model of Noise Phase in a Phase Locked Loop Employing Sigma Delta Modulator Tayebeh Ghanavati Nejad 1 and Ebrahim Farshidi 2 1,2 Electrical Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran Farshidi@scu.ac.ir Abstract. This paper proposes two techniques for fractional-n synthesizers to cancel the quantization noise and spurs. This technique has advantages over the dynamic element matching (DEM), also for recovering the input rising edges signals during the reset and improving the frequency effect, delay elements (Des) is inserted in the input and feedback signal paths of PFDs. Simulation results, has been performed to validate the claim. Keywords: Fractional-N, noise cancellation, spurs, delay elements. 1 Introduction Frequency synthesizers are the heart of each transmitter/receiver system. Almost every communications consumer product employs a frequency synthesizer often operating as a local oscillator providing the carrier frequency of interest. Mobile phones, radios, and televisions are a few among the many applications that incorporate frequency synthesizers. At its simplest, an Integer-N PLL fails to achieve wide tenability and fine resolution as it is limited by integer multiples (N) of a fixed crystal frequency. Additionally, its phase noise performance is degraded due to large value of N. Fractional-N PLLs, can solve this limitation by allowing for fractional multiplication 114

of reference frequency, by enabling the use of a high-frequency reference signal and much lower division values while still maintaining the required resolution. In this paper, two techniques are applied to reduce the previous problems. To achieve second order mismatch shaping, without DEM and thermometer coded, a second order binary weighted D/A differentiator (DAD) is used. In addition, delay elements (DEs) in the input and feedback signal paths of the PFDs is inserted to recover the input signal rising edges arriving during the reset and reduce the frequency effect. The rest of the paper is organized as follow: section II and III and IV describes the architecture of second order binary-weighted DAD and its unique advantages. Section V and VI describe linearization of PFD and effected it on phase noise. Section VII shows simulation results. Finally, section VIII concludes the paper. 2 Noise Cancelation In general, the characteristic of quantization noise must be randomized but in practice has definite. This problem can be solved by integrating the deference between I/O of the Δ modulator [9] and sum it with inversed signal through a DAC at output of CP. However these methods as well as other noise cancelation methods have two limits [12]: 1- A large-bit width high order Δ modulator needs for fractional-n PLL to give fine frequency resolution and fast locking time. But, to reduce complexity of the DAC, second quantizer must be used to reduce the input bits of it. Under this conditions, extra quantization noise, through second quantizer, add to the PLL [12]. To eliminate this noise, another Δ modulator is needed to shape it. This method appear to reduce the noise quantization but at the high cost of increasing the hardware [12]. 2- This mismatch of DACs elements adds extra phase noise to the circuit. To solve this problem, DEM methods is used to convert these mismatches to the white noise [1] [12]. The drawbacks of this method are high power dissipation of DSP and increase the area of circuit. Another method such as DAC full-segmented also is used, but doubles DACs units and increase hardware [12]. 115

3 Mash Structure The MASH architectures [10][11] have the simplest configuration, because they only required adders and registers to be implemented. The MASH modulation uses accumulators in a cascade configuration, the quantized output of each stage is processed by noise cancellation logic, Fig. 1. Since, for digital MASH architectures, the noise cancellation logic is perfect, the quantization noise is only that of the last accumulator (with a shaping order equal tothe modulator s order). Fig. 1. Digital mash sigma delta modulator[12] This architecture is inherently stable and the dynamic range consists of all the input quantization level. Moreover, the noise transfer function has the same high-frequency behavior as same multi loop architectures. Also, MASH 1-1-1 has the advantage of tapping out the unprocessed quantization error, Fig. 2 [12] and generation a cancellation signal from the unprocessed quantization error is much simpler. The previous methods needed 6 bit quantizer to limit the number of DAC s bit, 3 sequential differentiators to achieve noise cancellation signal e (1-z -1 ) 3 and high pass filter the second quantization noise, e 2. But this method does not require any of these [12]. The second order binary-weighted D/A differentiator was fully described in [12] and in this work, we will refer to it. The binary weighted D/A differentiator usually 116

was used for Sigma-Delta D/A converters [12]. Fig. 2. Cancelation by MASH1-1[12] It is also suitable for cancelling the quantization noise in Fractional-N PLLs. The output of the DAD with binary weighted is a second order high-pass shaping function to multi-bit DAC mismatch without need to DSP [12]. Second order DAD can be implemented with four DAC elements in two stage cascaded differentiators to realize the (1-z -1 ) 2 function, as shown in Fig. 3 [12]. The mismatch from each DAC element is assumed to be a, b, a 2 and b 2, respectively[12]. As the signal swaps every other clock cycle at the first stage output, p 1 (n) and p 2 (n) will from complementary pairs. Subsequently, the only possible values at outputs of second stage differentiators, [(p 1 (n), -p 1 (n+1)] and [p 2 (n), -p 2 (n+1)], are either [(0,1), (1,0)] or [(1,0), (0,1)] [12]. Therefore, the errors at the output of the left DAC pair can only be [(0,a), (b,0)] or [(a,0), (0,b)]. Taking discrete Fourier transform of these sequences, the sum output noise at the left half of the second order DAC becomes [12]. If the mismatch between two DAC elements is identical, a=b, a second order shaping function can be achieved [12]. 117

Fig. 3. Shaping using second order DAD[12] Similar expressions can be derived for the right half of second order DAD. According to (3), as long as the differential mismatch between adjacent elements is minimized, second order mismatch shaping can be realized [12]. Consequently, the stringent requirement on the global matching of a traditional multi-bit DAC can be relaxed to the local matching between adjacent DAC elements [12]. This can be easily accomplished by routing symmetric adjacent with inter-digitated structure to minimize the process mismatch [12]. The multi-bit DAD can also be implemented with binary-weighted architecture without suffering from large differential non-linearity (DNL) in Fig. 4[12]. It is because gain error in each binary-weighted DAD element can be traded as the common-mode mismatch and filtered by second order high-pass function. There are three advantages of second order binary-weighted DAD over first order thermometercode or fully-segmented DAC with DEM [12]. First, the second order orcommon mode mismatch shaping can tolerate bigger mismatch due to process variation and routing parasitic. In fact, it offers 20dB more reduction in simulation with the same mismatch condition [12]. Second, the DAD implementation does not require DSP power compared to DEM implementations. Finally, the binary weighted DAD uses less DAC elements than a thermometer-coded DAC and it occupies half the area of a fully-segmented DAC[12]. 118

Fig. 4. Second order binary-weighted DAD in fractional-n PLL [12] 4 Linearization The phase/frequency detector with charge pump (PFD/CP) is a sequential phase detector with the ability of also locking the frequency that is mostly used for implementation of fractional-n PLLs, Fig. 5. Fig. 5. Proposed PFD 119

This type of phase/frequency detector, despite the most used in implementation of locked loops [13], presents non-ideal effects that degrade the PLL overall performance, as a consequence of a modulation in the VCO line of control, the most important of this problems is dead zone. This dead zone provides the rising of the jitter at the output of the loop that is an increase in phase noise of the PLL. In this work used an even number of inverters in the reset of the PFD flip-flops that do not change its logic state, but give rise to a delay in the signal large enough to cancel it. Also in this work used a continues-time linear model for sequential-type PFD [14]. In this model used delays in inputs of DFFs of the PFD. With this methods a frequency gate delays is derived. Fig. 6 shows the normalized PFD output up-dn as a function of phase difference between the two inputs. The mathematical expression of this method was presented in [14]. Fig. 6. Normalized PFD output[14] 5 Estimation of Delay The most important aspect of the design of this paper is without doubt the estimation of delay used in the PFD. The minimum delay that must be introduced in the reset path has been estimated as the average value of the time it takes the pulses in the output nodes up and dn to rise and fall [15]. The minimum CP on-time τ d is 120

introduced by feedback delay circuit. The propagation delay from the reset input to the output of the DFF is τ p. In Fig. 7 [15], τ p h and τ p l respectively, present the DFF reset propagation delay for high and low clock input levels. τ FB is the pulse width of FB signal, for the case that FB is lead (Fig()). DE is the delay that introduce in the input of the DFFs[14]. For case that FB is lead the pure on-time of CP is given by[15]. It can be observed that un-equal propagation delay result in an offset from the ideal on-time of the CP given by δ k. On the other hand when the FB pulse is lag fig(7). Both signals (FB and REF) are high when reset goes active. The pure on-time of CP is given by[15]. In this case the CP on-time is correct. In [15] a statistical method is used to determine the PSD noise due to reset delay mismatch in the PFD. Fig. 7. Reset delay mismatch (a) Early FB pulse (b) late FB pulse [15]Shaping 6 Simulation Results The simulation result of fractional-n PLL based on proposed method was simulated in Simulink Matlab and Matlab code. Included is the design of fully integrated 1.74GHz Δ-Fractional-N PLL frequency synthesizer. It takes advantage of a Δ modulator to get a very fine frequency resolution and relatively large loop bandwidth. This frequency synthesizer is a forth order charge pump PLL with 40MHz reference frequency. The loop band-with is about 100KHz, Fig. 8 shows complete block diagram of the proposed fractional-n synthesizer. Fig. 9 shows the 121

phase noise of the output of the PLL, we can see that the phase noise of the output is about -90dB at 1MHz offset frequency. Fig. 10 shows the output spectrum, we can see in the output spectrum, the spur tone was eliminated. Fig. 8. Complete block diagram of proposed fractional-n synthesizer 7 Conclusion A fractional-n frequency synthesizer based on Δ is presented. In this work, two techniques are applied to cancel quantization noise and spurs. First, it was used a Δmodulator with second order binary-weighted (DAD) to achieve second order mismatch shaping. Secondly, used delay elements (Des) in the input and feedback signal paths of PFD to recover the input rising edges signals during the rest and improve the frequency effect. With these methods, quantization noise and spurs are eliminated,it also reduced the number of elements and the circuit is compacted over 122

the previous methods like DEM. Fig. 9. Phase noise of the output Fig. 10. Spectrum output 123

References 1. E. Temporiti, G. Albasini, I. Bietti, and R. Castello, A 700-kHz bandwidth Δ_ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1446 1454, (2004). 2. A. Swaminathan, K.Wang, and I. Galton, A wide-bandwidth 2.4 GHz ISM band fractional-_ PLL with adaptive phase-noise cancellation, IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2639 2650, (2007). 3. S. E. Meninger and M. H. Perrott, A 1-MHz bandwidth 3.6-GHz 0.18-um CMOS fractional-_n synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise, IEEE J. Solid-StateCircuits, vol. 41, no. 4, pp. 966 980, (2006). 4. Z. Wang, An analysis of charge-pump phase-locked loops, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2128 2138, (2005). 5. F. M. Gardner, Charge-pump phase-locked loops, IEEE Trans. Commun., vol. COM-28, no. 11, pp. 1849 1858, (1980). 6. J. Hein and J. Scott, z-domain model for discrete-time PLLs, IEEE Trans. Circuits Syst., vol. 35, no. 11, pp. 1393 1400, (1988). 7. C.-Y. Yao, C.-T.Hsu, and C.-J. Chien, Stability analysis of fourth-order chargepump PLLs using linearized discrete-time models, IEICE Trans.Electron., vol. E90-C, no. 3, pp. 628 633, (2007). 8. P. K. Hanumolu, M. Brownlee, K. Mayaram, and U.-K.Moon, Analysis of chargepump phase-locked loops, IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 51, no. 9, pp. 1665 1674, (2004). 9. M. H. Perrott, M. D. Trott, and C. G. Sodini, A modeling approach for Δ_ fractional-n_ frequency synthesizers allowing straightforward noise analysis, IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1028 1038, Aug. 2002. 10. S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters. New York: IEEE Press, (1997). 124

11. B. D. Muer and M. Steyaert, CMOS Fractional-N Synthesizers. Boston, MA: Kluwer, (2003). 12. H.-Y. Jian, Z. Xu, and M.-C. F. Chang, Delta-sigma D/A converter using binaryweighted digital-to-analog differentiator for second order mismatch shaping, IEEE Trans. Circuits Syst. II, vol. 55, no. 1, pp.6 10, (2008). 13. Leung, G. C. T., and H. C. Luong, A 1-V 5.2GHz CMOS Synthesizer for WLAN Applications, IEEE Journal of Solid-State Circuits, Vol. 39, No. 11,, pp. 1873 1882, (2004). 14. Roger Yubtzuan Chen, Zong-Yi Yang Modeling the High-Frequency Degradation Of Phase/Frequency Detectors IEEE Trnas. On Circuits and Systems, Vol. 57, No. 5, (2010). 15. HimanshuArora, NikolausKlemmer, James C. Morizio, Patrick D. Wolf Enhanced Phase Noise Modeling of Fractional-NFrequency Synthesizers IEEE IEEE Trnas. On Circuits and Systems, Vol. 52, No. 2, (2005). 125