Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path

Similar documents
Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Diurnal Variation of VLF Radio Wave Signal Strength at 19.8 and 24 khz Received at Khatav India (16 o 46ʹN, 75 o 53ʹE)

DEVELOPMENT OF THE NEW ELF/VLF RECEIVER FOR DETECTING THE SUDDEN IONOSPHERIC DISTURBANCES

Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region

Chapter 1: Telecommunication Fundamentals

z-+ LIBRARY USP authorised users. Author Statement of Accessibility- Part 2- Permission for Internet Access DIGITAL THESES PRaTECT

VLF Monitoring System for Characterizing the Lower Region Ionospheric Layer

Radio Science, Volume 34, Number 4, Pages , July-August 1999

ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE

Measurement of VLF propagation perturbations during the January 4, 2011 Partial Solar Eclipse

arxiv: v1 [astro-ph.ep] 23 Mar 2016

Azimuthal dependence of VLF propagation

Data and Computer Communications Chapter 4 Transmission Media

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre

VLF & ULF Signals, Receivers & Antennas - Listening to the sounds of the atmosphere

UNIT Derive the fundamental equation for free space propagation?

Study of the morphology of the low-latitude D region ionosphere using the method of tweeks observed at Buon Ma Thuot, Dak Lak

Subionospheric early VLF perturbations observed at Suva: VLF detection of red sprites in the day?

Monitoring Solar flares by Radio Astronomy

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

Some studies of solar flare effects on the propagation of sferics and a transmitted signal

1. Introduction. 2. Materials and Methods

DETECTION OF TERRESTRIAL IONOSPHERIC PERTURBATIONS CAUSED BY DIFFERENT ASTROPHYSICAL PHENOMENA

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

The Effect of Changes in Lightning Waveform Propagation Characteristics on the UK Met Office Long Range Lightning Location Network (ATDnet)

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Polarization orientation of the electric field vector with respect to the earth s surface (ground).

Ionospheric Absorption

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antenna & Propagation. Basic Radio Wave Propagation

Antennas and Propagation. Chapter 5

CONSTRUCTING A LOW-COST ELF/VLF REMOTE SENSING TO OBSERVE TWEEK SFERICS GENERATED BY LIGHTNING DISCHARGES

Anomalous behaviour of very low frequency signals during the earthquake events

High-frequency radio wave absorption in the D- region

Lightning-associated VLF perturbations observed at low latitude: Occurrence and scattering characteristics

Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site

Antennas and Propagation. Chapter 5

Introduction To The Ionosphere

Lightning stroke distance estimation from single station observation and validation with WWLLN data

Chapter 1 Introduction

Study of small scale plasma irregularities. Đorđe Stevanović

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Dependence of Some Features of VLF Sferics on Source and Propagation Parameters

Antennas and Propagation

Large Solar Flares and their Ionospheric D-region Enhancements

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

Antennas and Propagation

VLF Data Acquisition and database storing

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

VLF-LF PROPAGATION MEASUREMENTS DURING THE 11 AUGUST 1999 SOLAR ECLIPSE. R. Fleury, P. Lassudrie-Duchesne ABSTRACT INTRODUCTION EXPERIMENTAL RESULTS

Data and Computer Communications. Tenth Edition by William Stallings

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere

Experiment 12: Microwaves

Plasma in the ionosphere Ionization and Recombination

9. Microwaves. 9.1 Introduction. Safety consideration

VLF REMOTE SENSING OF THE LOWER IONOSPHERE AND REAL TIME SIGNAL PROCESSING

PoS(2nd MCCT -SKADS)003

Ionospheric Signatures of Solar Flares

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc.

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves

Ionospheric Propagation

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

Space Weather and the Ionosphere

Daily and seasonal variations of TID parameters over the Antarctic Peninsula

If maximum electron density in a layer is less than n', the wave will penetrate the layer

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

SPATIAL AND TEMPORAL IONOSPHERIC MONITORING USING BROADBAND SFERIC MEASUREMENTS

Estimation of Pulse Repetition Frequency for Ionospheric Communication

1. Terrestrial propagation

SA11A Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide

Session2 Antennas and Propagation

Lightning stroke distance estimation from single station observation and validation with WWLLN data

A bluffer s guide to Radar

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation.

DISTORTION OF VLF RADIO WAVE FIELD VERTICAL METAL POLES.

Observing Lightning Around the Globe from the Surface

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

MIDLATITUDE D REGION VARIATIONS MEASURED FROM BROADBAND RADIO ATMOSPHERICS

Sferic signals for lightning sourced electromagnetic surveys

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data

The Earth s Atmosphere

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

Nighttime Ionospheric D-region Parameters. from VLF Phase and Amplitude

High Frequency Propagation (and a little about NVIS)

The MYTHOLOGIES OF WIRELESS COMMUNICATION. Tapan K Sarkar

Chapter 15: Radio-Wave Propagation

Chapter-15. Communication systems -1 mark Questions

Radio Propagation Fundamentals

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

14. COMMUNICATION SYSTEM

A first study into the propagation of 5 MHz (60 m) signals using the South African ionosonde network

Transcription:

Research Letters in Physics Volume 29, Article ID 216373, 4 pages doi:1.1155/29/216373 Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path Sushil Kumar School of Engineering and Physics, The University of the South Pacific, Private Mail Bag, Suva, Fiji Correspondence should be addressed to Sushil Kumar, kumar su@usp.ac.fj Received 15 April 29; Accepted 21 June 29 Recommended by Faramarz Farahi The amplitude and phase of 19.8 khz signal from navigational transmitter located in North West Cape, Australia, recorded at Suva, Fiji, have been utilized to determine the waveguide mode parameters. The propagation path is mixed over land and sea having Transmitter-Receiver Great Circle Path distance 6.7 Mm. The experimental values of the parameters were found to be consistent with the theoretical values calculated using the mode theory of VLF wave propagation in the waveguide. Copyright 29 Sushil Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Extremely Low Frequency (ELF: 3 3 Hz) and Very Low Frequency (VLF: 3 3 khz) signals propagate to great distances in the waveguide bounded by the Earth s surface (ground or sea) and the lower ionosphere ( 6 14 km), consisting of the D and E-regions. This atmospheric waveguide is known as the Earth-Ionosphere Waveguide (EIWG). The D and E-regions are too high for balloons and too low for the satellite measurements. Radio sounding does not work, particularly at night, since electron densities in this region are low to reflect high frequency radio waves with ionosondes and incoherent radars. Therefore, the lower ionosphere remains the least studied region of the Earth s atmosphere [1]. The conductivity of the D-region increases exponentially with height which may also vary with latitude and longitude along the propagation path. At ELF/VLF, the Earth s surface and the lower ionosphere act as good electrical conductors. Electromagnetic waves reflect when incident upon conducting boundaries and are guided along the conducting structures. The EIWG offers very little attenuation hence the guided ELF-VLF signals can be received literally around the world [2] and have long been used for long-distance communication, positioning and timings. Communications with submarines immersed in the conducting sea necessitated the use of VLF waves and later ELF waves, with their comparatively large skin depths in sea water [3]. Yokoyama and Tanimura [4] first observed diurnal variation of the amplitude of VLF (17.7 khz and 22.9 khz) signals propagated over long distances (>5 km). Diurnal variations of VLF transmitter signals show amplitude minima associated with phase steps during sunrise and sunset transitions between transmitter and receiver [4 6] which could not be explained by single mode propagation theory. Wait [2] suggested that multiple modes are needed to explain VLF propagation in the EIWG. Crombie [5] proposed a model based on two modes being present in the nighttime portion of the propagation path and only one mode in the daytime portion of the propagation path in the EIWG. Clilverd et al. [6] have presented some interesting long-term (199 1995) studies of VLF propagation over a long North-South path from Cutler (USA), Marine (NAA transmitter, 24 khz) to Faraday, Antarctica. They found the timings of the minima in the received signal strength to be remarkably consistent from year to year. They also found that the timings of minima were consistent with modal conversion taking place as the daynight boundary (terminator) crossed the propagation path, at specific, consistent locations. The stability and reproducibility of the received amplitude and phase of VLF navigational transmitter signals make VLF propagation a useful tool for long-range communication and navigation system.

2 Research Letters in Physics Purpose of this paper is to estimate the waveguide parameters from the observations of 19.8 khz during December 26, at Suva (18.1 S, 178.5 E), Fiji. This signal is transmitted by North West Cape, NWC (21.8 S, 114.1 E, 1 MW radiated power) VLF transmitter and propagates mostly in the West-East direction to Suva. The 1-minute averaged amplitude and phase data recorded at.1 second have been used for analysis. 2. Theoretical Background When a VLF wave is transmitted from a vertical antenna, a number of modes are excited in the EIWG. The electric field strength of the signal propagating in the waveguide can be represented by a superposition of discrete waveguide modes [2, 7] expressed as: E = E o h [ ( A m exp( α m d) exp iω m=1 t d v m ) +i arg A m ], where E o is a constant depending on radiated power and frequency of operation (ω), h is the height of EIWG, A m is the excitation factor of the m th mode, α m is the attenuation rate of the m th mode, d is the distance between transmitter and receiver, t is the time, and v m is the phase velocity of the m th mode. The EIWG attenuation during day is higher than during the night and higher order waveguide modes have a larger spatial attenuation rate and are less efficiently radiated. The waveguide parameters can be estimated involving two modes in the night and one mode in the day. At large distances from transmitter (>5 km), the mode 1 with lowest attenuation is dominant in the intensity. The diurnal change of the signal amplitude (E DN ) is defined as the ratio of nighttime to daytime signal strengths due to first mode. Using the expression of modal superposition (1), the value of E DN in terms of db can be obtained as: E DN (db) = h D [( A N1 (db) A D1 (db) ) (α D1 α N1 )d], h N (2) where N and D refer to night and day. A N (db) and A D (db) are the excitation factors in db given by A N (db) = 2 Log 1 (A N )anda D (db) = 2 Log 1 (A D )respectively. The diurnal phase shift normalized over 1 Mm (= 1 km) represented by φ DN (μsmm 1 ) is expressed as [7]: ( φ DN = 14 c c ), (3) 3 v N1 v D1 where c is the speed of light in free space and v is the phase velocity of VLF waves with mode 1 in the EIWG given by v = c 1 (λ o /2 h ) 2 1/2,whereλ o is free space wavelength of the transmitter signal. The modal interference spacing (D MS ) between the successive signal minima (fades) at receiver can be simply defined by considering the interference of two modes [5]: (1) D MS = λ 1 λ 2 λ 2 λ 1, (4) Amplitude (db) 6 4 2 Amplitude Phase SS 1 SS 2 SS 3 SR 1 SR 2 2 2 4 6 8 : 4: 8: 12: 16: 2: : Time (UT) Figure 1: Typical diurnal variation of amplitude and phase of NWC signal at Suva on 1 December 26. where λ 1 and λ 2 are the waveguide wavelengths of the first and second order modes, respectively. The Equation (4) can be simplified to as given by Crombie [5]: SR 3 Phase (degrees) D MS = 4 h2 λ o. (5) 3. Observational Data and Results Experimental set-up consists of a short (1.5 m) whip antenna, pre-amplifier, VLF service unit coupled with preamplifier, and Software based Phase and Amplitude Logger termed SoftPAL. The whip antenna receives the vertical electric field component of transverse magnetic (TM) mode of the VLF propagation. SoftPAL is a state of art data acquisition system recently (26) developed by AD Instruments, New Zealand, which can log amplitudes (in db above 1 μv/m) and phases (in degrees) of seven MSK (minimum shift key) VLF transmitter signals continuously with the time resolutions ranging from 1 milliseconds to 1 seconds, using a GPS based timing. Transmitter Receiver Great Circle Path (TRGCP) for NWC-Suva is 6.696 Mm. Typical diurnal variation of amplitude and phase of the signal on 1 December 26, as recorded by SoftPAL, is presented in Figure 1. The daytime signal strength is larger than the nighttime which could be mostly due to the higher attenuation of EIWG for the daytime VLF propagation [8]. However, the received intensity of the signal depends on a number of factors including the excitation of modes, path attenuation, surface conductivity, ionosphere height, and the direction of propagation. The attenuation of VLF signals for the east-to west propagation is greater than for the west-east propagation and the difference in the attenuation decreases as the frequency increases which probably disappears above about 2 khz [9]. Three amplitude minima labeled as SR 1, SR 2,SR 3 and SS 1,SS 2,SS 3, respectively, are observed during sunrise and sunset transition along the TRGCP. As seen from Figure 1, the phase retards during the night and the rapid change of phase takes place at the time of the amplitude minima. Since D-region ionization is controlled by solar radiation, the reflection height of VLF waves, that is, height

Research Letters in Physics 3 of the EIWG, at night, increases by about 1 15 km from its daytime value. As a consequence of the increase in the reflection heights, the phase velocity of the wave decreases and the signal is delayed (retarded) at the receiver. The amplitude data for selected 15 days in December 26 are overplotted in Figure 2 to indicate the reproducibility of the amplitude values over a 24 hour period. The phase values are not plotted as the phase builds up over the day and deviates from reproducing similar values over the days. However, the stepwise phase advances coincides very well with the amplitude minima over any day and form of variation is almost the same. The signal variability is larger during the night than during the day indicating that propagation path is more stable in the day. The generation of successive minima at the receiver during sunrise and sunset transitions is generally accepted due to the destructive interference in the superposition of propagating modes with each other which may involve more than two modes in the night and dominant day mode at the terminator converted into a series of nighttime modes [6]. It can be seen from Figure 2 that the depth of fading varies from 2 22 db during sunrise and 3-4 db during sunset transitions along the TRGCP and fading is better shaped during sunrise transition. This could be due the less attenuation of waves propagating in the nighttime portion of the EIWG from transmitter to receiver, the shape of the lower ionospheric boundary and resulting scattering patterns, and the destructive interference of different number of modes at receiver during sunrise and sunset transitions. Also over the course of the propagation path, energy couples between modes which may result in the variation of depths of minima with the movement of the terminator between receiver and transmitter. Considering three different models for conductivity of the lower ionosphere, Devi et al. [1] carried out a waveguide mode analysis of 16 khz VLF wave travelling great distances, to study its propagation parameters. They showed that for waveguide height less than 7 km, the change in phase due to changes in the phase velocity is smaller when ionosphere is assumed to have finite conductivity than when it is infinitely conducting. Using the data from Figure 2, the values of E DN in db and diurnal phase change in degrees are estimated 7.5 db and 375,respectively. At 19.8 khz, the value of the nighttime EIWG height (h N ) = 9 km and the daytime EIWG height (h D ) = 75 km, is a reasonable approximation. The height of the EIWG changes during day and night due to photoionization of the upper boundary of the EIWG (ionosphere) in the day. At 19.8 khz, the value of first order mode differential excitation factor ( A N1 A D1 ) can be worked out about 13.5 db [11] and differential attenuation rate (α D1 - α N1 ) can be taken as 1. db/mm. The theoretical value of E DN from (2) is obtained as 5.7 db. The diurnal phase change of 375 at 19.8 khz in terms of φ DN corresponds to 7.85 μsmm 1. The theoretical value of φ DN from (3) is estimated 5.22 μsmm 1. The theoreticalvaluesofe DN and φ DN are about 25 3% lower than the experimental values. The phase velocities of VLF waves also depend on the mode of propagation. When multiple modes are present, the different modal phase velocities cause variations in the VLF signal along the signal path and in the value of φ DN. The difference in the experimental and Amplitude (db) 6 4 2 TRGCP in light Sunset Transmitter off for normal repairs TRGCP in dark Sunrise : 6: 12: 18: : Time (UT) Figure 2: Diurnal variations of the amplitude of NWC signal at Suva for selected 15 days in December 26. Lower values (about 1 db or less) of signal strength are when transmitter is off air for normal maintenance. theoretical values of the E DN and φ DN might be mainly due to the existence of higher modes (>1) particularly in the nighttime which have not been considered in the calculations for simplicity. Bainbridge and Inan [12] using the Long Wave Propagation Capability code for a long propagation path (NAA to Cheyenne, USA) found that the lowest order quasi-tm mode dominates during the daytime, but during the nighttime there are 4 to 5 significant modes with phase velocities ranging from.99 1.5 c and attenuation constants ranging from 1 db/mm. Using the amplitude and phase measurements of 16 khz signal from Rugby (UK) VLF transmitter in India having TRCGP of 6.681 Mm, Joshi and Iyer [13] estimated the values E DN and φ DN, 14. db and 7.85 μsmm 1,respectively.Thevalueofφ DN obtained here compares well with results of Joshi and Iyer [13], whereas the value of E DN is lower by about 5% when compared with their value of E DN. The day-to-day variability in the times of minima is less during sunrise as compared to that during sunset (Figure 2). Therefore, sunrise minima have been used to estimate the value of D MS using equation (5). From Figure 1, the separation between sunrise minima is found to be 77.5 minutes which corresponds to D MS of 2,15 km. The theoretical value of D MS from equation (5)for h = 9 km comes out 2,14 km which matches very well with the experimental value. The values of D MS estimated here both theoretically and experimentally are consistent with the results of Crombie [5] and Lynn [14] for the east-west VLF propagation in the frequency range of 13 22 khz. 4. Conclusions Preliminary results presented in this letter on the waveguide mode analysis of VLF waves at 19.8 khz over a long propagation path, indicate a good consistency between experimental and theoretical values of waveguide model parameters. Detailed study of these parameters during different seasons by considering more modes in the nighttime will further enhance the understanding of this subject and appropriate the waveguide parameters at 19.8 khz for NWC-Suva path.

4 Research Letters in Physics Acknowledgement Author is thankful to Faculty Research Committee (FST RC) for financial support in carrying out this work. References [1] S. A. Cummer and U. S. Inan, Ionospheric E region remote sensing with ELF radio atmospherics, Radio Science, vol. 35, no. 6, pp. 1437 1444, 2. [2] J. R. Wait, Electromagnetic Waves in Stratified Media, Pergamon Press, Oxford, UK, 1962. [3] R. Barr, D. L. Jones, and C. J. Rodger, ELF and VLF radio waves, Atmospheric and Solar-Terrestrial Physics, vol. 62, pp. 1689 1718, 2. [4] E. Yokoyama and I. Tanimura, Some long-distance transmission phenomena of low-frequency waves, Proceedings of Institute of Radio Engineers, vol. 21, no. 2, pp. 263 27, 1933. [5] D. D. Crombie, Further observations of sunrise and sunset fading of very-low-frequency signals, Radio Science, vol. 1, pp. 47 51, 1966. [6] M. A. Clilverd, N. R. Thomson, and C. J. Rodger, Sunrise effects on VLF signals propagating over a long north-south path, Radio Science, vol. 34, no. 4, pp. 939 948, 1999. [7] T. Kikuchi, Anomalous diurnal phase shifts of Omega VLF waves (1-14 khz) on the east-west low latitude and transequatorial paths, Atmospheric Terrestrial Physics, vol. 45, pp. 743 751, 1983. [8] S. Kumar, A. Kishore, and V. Ramachandran, Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance, Annales Geophysicae, vol. 26, no. 6, pp. 1451 1459, 28. [9] D.D.Crombie, Differences between the east-west and westeast propagation of VLF signals over long distances, Atmospheric and Terrestrial Physics, vol. 12, no. 2-3, pp. 11 117, 1958. [1] M. I. Devi, I. Khan, and D. N. M. Rao, A study of VLF wave propagation characteristics in the earth-ionosphere waveguide, Earth Planets and Space, vol. 6, no. 7, pp. 737 741, 28. [11] A. D. Watt, VLF Radio Engineering, Pergamon Press, Oxford, UK, 1967. [12] G. Bainbridge and U. S. Inan, Ionospheric D region electron density profiles derived from the measured interference pattern of VLF waveguide modes, Radio Science, vol. 38, no. 4, pp. 161 1621, 23. [13] H. P. Joshi and K. N. Iyer, Waveguide model analysis of VLF wave propagation at 16 khz, Atmospheric and Terrestrial Physics, vol. 5, no. 6, pp. 57 59, 1988. [14] K. J. W. Lynn, Frequency dependence of VLF modal interference effects observed on east-west propagation paths, Journal of Atmospheric and Terrestrial Physics, vol. 33, no. 6, pp. 951 958, 1971.

The Scientific World Journal Gravity Photonics Condensed Matter Physics Soft Matter Aerodynamics Fluids Submit your manuscripts at International International Optics Statistical Mechanics Thermodynamics Computational Methods in Physics Solid State Physics Astrophysics Physics Research International High Energy Physics International Superconductivity Atomic and Molecular Physics Biophysics Astronomy