Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

Similar documents
Chapter 2: Fourier Representation of Signals and Systems

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Example Message bandwidth and the transmitted signal bandwidth

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

UNIT IV DIGITAL MODULATION SCHEME

Communications II Lecture 7: Performance of digital modulation

Signals and communications fundamentals

Communication Systems. Department of Electronics and Electrical Engineering

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier)

ECS455: Chapter 4 Multiple Access

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Analog/Digital Communications Primer

Communication Systems. Communication Systems

LECTURE 1 CMOS PHASE LOCKED LOOPS

6.976 High Speed Communication Circuits and Systems Lecture 19 Basics of Wireless Communication

Principles of Communications

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

Solution of ECE 342 Test 2 S12

Introduction to OFDM

Modulation exercises. Chapter 3

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

EECE 301 Signals & Systems Prof. Mark Fowler

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications

TELE4652 Mobile and Satellite Communications

Connection. Input II EEx ia IIC without SC red. Composition

Multiuser Interference in TH-UWB

Multipath. Introduction. Theory. Multipath 7.1

Modulation Introduction

Deblurring Images via Partial Differential Equations

Receiver Architectures

Signal Characteristics

MX629. DELTA MODULATION CODEC meets Mil-Std DATA BULLETIN. Military Communications Multiplexers, Switches, & Phones

University of Toronto Electrical & Computer Engineering ECE 316, Winter 2015 Thursday, February 12, Test #1

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

Lecture 5: DC-DC Conversion

Double Side Band Suppressed Carrier

arxiv: v1 [physics.optics] 9 May 2016

Optical phase locked loop for transparent inter-satellite communications

Negative frequency communication

Lecture 11. Digital Transmission Fundamentals

Analog Circuits EC / EE / IN. For

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First

COMM702: Modulation II

FROM ANALOG TO DIGITAL

EE.351: Spectrum Analysis and Discrete-Time Systems MIDTERM EXAM, 2:30PM 4:30PM, November 4, 2004 (closed book)

Digital Encoding And Decoding

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Sensing, Computing, Actuating

6.776 High Speed Communication Circuits Lecture 17 Noise in Voltage Controlled Oscillators

dm t t A cos 2 10 t 10

The Comparisonal Analysis of the Concept of Rectangular and Hexagonal Pilot in OFDM

Mobile Communications Chapter 2: Wireless Transmission

Digital Communications - Overview

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing

EEM 306 Introduction to Communications

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Accurate Tunable-Gain 1/x Circuit Using Capacitor Charging Scheme

COURSE OUTLINE. Introduction Signals and Noise Filtering: Band-Pass Filters 1 - BPF1 Sensors and associated electronics. Sensors, Signals and Noise 1

Channel Estimation for Wired MIMO Communication Systems

An Open-Loop Class-D Audio Amplifier with Increased Low-Distortion Output Power and PVT-Insensitive EMI Reduction

6.003: Signals and Systems

A WIDEBAND RADIO CHANNEL MODEL FOR SIMULATION OF CHAOTIC COMMUNICATION SYSTEMS

L A-B-C dei Segnali Spread-Spectrum

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29,

Synchronization of single-channel stepper motor drivers reduces noise and interference

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes

EECE 301 Signals & Systems Prof. Mark Fowler

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s

ECMA st Edition / June Near Field Communication Wired Interface (NFC-WI)

EEO 401 Digital Signal Processing Prof. Mark Fowler

Active Filters - 1. Active Filters - 2

Sound. Audio DSP. Sound Volume. Sinusoids and Sound: Amplitude

EECS 380: Wireless Communications Weeks 5-6

Performance Limitations of an Optical Heterodyne CPFSK Transmission System Affected by Polarization Mode Dispersion in a Single Mode Fiber

Sound. Audio DSP. Sinusoids and Sound: Amplitude. Sound Volume

Development of Temporary Ground Wire Detection Device

Chapter 1: Introduction

3. Carrier Modulation Analog

Primary Side Control SMPS with Integrated MOSFET

Lecture 19: Lowpass, bandpass and highpass filters

State Space Modeling, Simulation and Comparative Analysis of a conceptualised Electrical Control Signal Transmission Cable for ROVs

Digital Communications: An Overview of Fundamentals

Design of Power Factor Correction Circuit Using AP1662

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Comparative Analysis of the Large and Small Signal Responses of "AC inductor" and "DC inductor" Based Chargers

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Transcription:

Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions 2.2-2.7 and 3.1-3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial Communicaions, 2nd ed., John iley & Sons, Inc., 2007. ISBN-13 978-0-471-43222-7. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 1 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 2 / 44 Communicaion Sysem Communicaion Sysems: Foundaional Theories Modulaion Theory: piggy-back inormaion-bearing signal on a carrier signal inormaion source ransmier receiver inormaion consumpion Deecion Theory: esimaing or deecing he inormaion-bearing signal in a reliable manner Probabiliy and Random Processes: model channel noise and uncerainy a receiver channel Fourier Analysis: view signal and sysem in anoher domain o gain new insighs inormaion source ransmier receiver inormaion consumpion channel Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 3 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 4 / 44

The Fourier Transorm (FT) Dirichle Condiions Noaion: G( ) = g() = g()e j2π G( )e +j2π g() G( ) G( ) = F [g()] g() = F 1 [G( )] For he Fourier ransorm o g() o exis, i is suicien ha: 1. he uncion g() is single-valued, wih inie number o minima or maxima in any inie inerval 2. he uncion g() has a inie number o disconinuiies in any inie inerval 3. he uncion g() is absoluely inegrable g() d < Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 5 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 6 / 44 Energy Signals Energy Signals and he Fourier Transorm The energy o a signal g() is given by: g() 2 d I g() represens a volage or a curren, hen we say ha his is he energy o he signal across a 1 ohm resisor. hy? Because a curren i() or volage v() exhibis he ollowing energy over a R ohm resisor. Pracical physically realizable signals (e.g., energy signals) obey: have Fourier ransorms. g() 2 d < E = i 2 ()Rd = v 2 () R d Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 7 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 8 / 44

FT Synhesis and Analysis Equaions FT Synhesis Equaion G( ) = g() = g()e j2π g() G( ) G( )e +j2π Since he FT is inverible boh g() and G( ) conain he same inormaion, bu describe i in a dieren way. g() = G( )e j2π d g() is he sum o scaled complex sinusoids e j2π = cos(2π) + jsin(2π) complex sinusoid Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 9 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 10 / 44 e j2π = cos(2π) + j sin(2π) FT Analysis Equaion cos(2π) G( ) = g()e j2π d 0 sin(2π) The analysis equaion represens he inner produc beween g() and e j2π. The analysis equaion saes ha G( ) is a measure o similariy beween g() and e j2π, he complex sinusoid a requency Hz. 0 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 11 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 12 / 44

G( ) and G( ) Imporance o FT Theorems and Properies g() = = G( )e j2π d G( ) e j(2π + G( )) d G( ) dicaes he relaive presence o he sinusoid o requency in g(). G( ) dicaes he relaive alignmen o he sinusoid o requency in g(). e live in he ime-domain. However, someimes viewing inormaion signals or sysem operaion as uncion o ime does no easily provide insigh. The Fourier ransorm convers a signal or sysem represenaion o he requency-domain, which provides anoher way o visualize a signal or sysem convenien or analysis and design. The properies o he Fourier ransorm provided valuable insigh ino how signal operaions in he ime-domain are described in he requency-domain. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 13 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 14 / 44 FT Theorems and Properies Time-Bandwidh Produc Propery/Theorem Time Domain Frequency Domain Noaion: g() G( ) g 1 () G 1 ( ) g 2 () G 2 ( ) Lineariy: c 1 g 1 () + c 2 g 2 () c 1 G 1 ( ) + ( c 2 ) G 2 ( ) 1 Dilaion: g(a) a G a Conjugaion: g () G ( ) Dualiy: G() g( ) Time Shiing: g( 0 ) G( )e j2π 0 Frequency Shiing: e j2πc g() G( c) Area Under g(): g(0) = G( )d Area Under G( ): g()d = G(0) d Time Diereniaion: g() j2πg( ) d Time Inegraion : g(τ)dτ 1 j2π G( ) Modulaion Theorem: g 1 ()g 2 () G 1(λ)G 2 ( λ)dλ Convoluion Theorem: g 1(τ)g 2 ( τ) G 1 ( )G 2 ( ) Correlaion Theorem: g 1()g2 ( τ)d G 1( )G 2 ( ) Rayleigh s Energy Theorem: g() 2 d = G( ) 2 d ime-duraion o a signal requency bandwidh = consan T larger -T/2 duraion Arec(/T) A T /2-4/T -3/T -2/T -1/T AT sinc(t) AT 0 1/T null-o-null bandwidh 2/T 3/T 4/T Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 15 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 16 / 44

Time-Bandwidh Produc ime-duraion o a signal requency bandwidh = consan LTI Sysems and Filering LTI Sysem impulse response he consan depends on he deiniions o duraion and bandwidh and can change wih he shape o signals being considered I can be shown ha: ime-duraion o a signal requency bandwidh 1 4π wih equaliy achieved or a Gaussian pulse. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 17 / 44 LTI Sysem requency response For sysems ha are linear ime-invarian (LTI), he Fourier ransorm provides a decoupled descripion o he sysem operaion on he inpu signal much like when we diagonalize a marix. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 18 / 44 LTI Sysems and Filering Dirac Dela Funcion g 1 (τ)g 2 ( τ) G 1 ( )G 2 ( ) The convoluion heorem provides a ilering perspecive o how a linear ime-invarian sysem operaes on an inpu signal. The LTI sysem scales he sinusoidal componen corresponding o requency by H( ) providing requency seleciviy. Deiniion: 1. δ() = 0, 0 2. The area under δ() is uniy: δ()d = 1 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 19 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 20 / 44

Dirac Dela Funcion Dirac Dela Funcion can be inerpreed as he limiing case o a amily o uncions o uni area bu ha become narrower Siing Propery: 1 all uncions have uni area 1 g()δ( 0 )d = g( 0 ) Convoluion wih δ(): g() δ() = g() T 1 T 2 T 3 T 1 T 2 T 3 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 21 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 22 / 44 The Fourier Transorm and he Dirac Dela Fourier Transorms o Periodic Signals δ() 1 1 δ( ) e j2π 0 δ( 0 ) cos(2π 1 ) 1 2 δ( 1) + 1 2 δ( + 1) sin(2π 1 ) 1 2j δ( 1) 1 2j δ( + 1) g() = c n e j2πn 0 n= G( ) = c n δ( n 0 ) n= Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 23 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 24 / 44

Ideal Low-Pass Filers Ideal Low-Pass Filers H LP ( ) = { e j2π 0 B 0 > B STOPBAND PASSBAND STOPBAND -B B h LP () = 2Bsinc(2B( 0 )) H LP ( ) = { e j2π 0 B 0 > B -B B Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 25 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 26 / 44 Ideal Low-Pass Filers Ampliude Modulaion h LP () = 2Bsinc(2B( 0 )) 2B 0 1/B carrier: c() = A c cos(2π c ) message: m() assume bandwidh/max req o m() is Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 27 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 28 / 44

Ampliude Modulaion AM Three ypes sudied: 1. Ampliude Modulaion (AM) (yes, i has he same name as he class o modulaion echniques) 2. Double Sideband-Suppressed Carrier (DSB-SC) s AM () = A c [1 + k a m()] cos(2π c ) % Modulaion = 100 max(k a m()) Suppose k a m() < 1 c 3. Single Sideband (SSB) Then, m() can be recovered wih an envelope deecor. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 29 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 30 / 44 AM DSB-SC s AM () = A c [1 + k a m()] cos(2π c ) s DSB () = A c cos(2π c )m() Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 31 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 32 / 44

carrier carrier message message ampliude modulaion ampliude modulaion DSB-SC DSB-SC Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 33 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 34 / 44 DSB-SC carrier An envelope deecor will no be able o recover m(). message Coheren demodulaion is required. ampliude modulaion s() Produc Modulaor iler v () 0 Demodulaed Signal DSB-SC Local Oscillaor Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 35 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 36 / 44

Cosas Receiver Phase synchronizaion is required. Quadraure Ampliude Modulaion s() = A c m 1 () cos(2π c ) + A c m 2 () sin(2π c ) Coheren Demodulaion Produc Modulaor iler local oscillaor oupu Demodulaed Signal v () 0 Produc Modulaor iler DSB-SC wave -90 degree Phase Shier Volage-conrolled Oscillaor Phase Discriminaor Muliplexed Signal -90 degree Phase Shier Produc Modulaor Filer Circui or Phase Locking Produc Modulaor Filer Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 37 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 38 / 44 SSB SSB Modulaion: s SSB () = A c 2 m() cos(2π c) A c 2 ˆm() sin(2π c) Coheren Demodulaion: s() Produc Modulaor iler v () 0 Demodulaed Signal m() Produc Modulaor Band-pass iler s() Local Oscillaor Noe: Cosas receiver will work or SSB demodulaion. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 39 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 40 / 44

Comparisons o Ampliude Modulaion Techniques AM: Comparisons o Ampliude Modulaion Techniques DSB-SC: S() s AM () = A c [1 + k a m()] cos(2π c ) S AM ( ) = A c 2 [δ( c) + δ( + c )] + k aa c [M( c ) + M( + c )] 2 S() s DSB () = A c cos(2π c )m() S DSB ( ) = A c 2 [M( c) + M( + c )] S() S() S() highes power B T = lowes complexiy S() Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 41 / 44 S() Comparisons o Ampliude Modulaion Techniques SSB: lower power B T = S() higher complexiy S() Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 42 / 44 S() Comparisons o Ampliude Modulaion Techniques SSB: S() upper SSB s USSB () = A c 2 m() cos(2π c) A c 2 ˆm() sin(2π c) { Ac S USSB ( ) = 2 [M( c) + M( + c )] c 0 < c S() lower SSB s LSSB () = A c 2 m() cos(2π c) + A c 2 ˆm() sin(2π c) { 0 > c S LSSB ( ) = A c 2 [M( c) + M( + c )] c lowes power B T = highes complexiy Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 43 / 44 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 44 / 44