IRFR4105ZPbF IRFU4105ZPbF

Similar documents
IRFR540ZPbF IRFU540ZPbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRLR3915PbF IRLU3915PbF

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D

IRLR3110ZPbF IRLU3110ZPbF

V DSS R DS(on) max I D

IRF3808S IRF3808L HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

IRFR24N15DPbF IRFU24N15DPbF

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

IRFR3709ZPbF IRFU3709ZPbF

IRLS3034PbF IRLSL3034PbF

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max (mw)

IRFR3806PbF IRFU3806PbF

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRFS4127PbF IRFSL4127PbF

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRFR24N15D IRFU24N15D

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

V DSS R DS(on) max I D

IRFS3004-7PPbF HEXFET Power MOSFET

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

V DSS R DS(on) max I D

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRF530NSPbF IRF530NLPbF

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

IRLR8721PbF IRLU8721PbF

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

IRLR8726PbF IRLU8726PbF

SMPS MOSFET. V DSS R DS(on) max I D

l Advanced Process Technology TO-220AB IRF640NPbF

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

SMPS MOSFET. V DSS R DS(on) max (mω) I D

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

IRL1404SPbF IRL1404LPbF

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRFB260NPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

AUIRFR4105Z AUIRFU4105Z

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

Transcription:

Features l Advanced Process Technology l Ultra Low On-Resistance l 75 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax l Lead-Free Description This HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 75 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. G IRFR45ZPbF IRFU45ZPbF HEXFET Power MOSFET D S D-Pak IRFR45ZPbF PD - 95374B V DSS = 55V R DS(on) = 24.5mΩ I D = 3A I-Pak IRFU45ZPbF Absolute Maximum Ratings I D @ T C = 25 C Parameter Continuous Drain Current, V GS @ V (Silicon Limited) Units I D @ T C = C Continuous Drain Current, V GS @ V 2 A I DM Pulsed Drain Current c 2 P D @T C = 25 C Power Dissipation 48 W Linear Derating Factor.32 W/ C V GS Gate-to-Source Voltage ± 2 V E AS (Thermally limited) Single Pulse Avalanche Energyd 29 mj E AS (Tested ) Single Pulse Avalanche Energy Tested Value h 46 I AR Avalanche Currentc See Fig.2a, 2b, 5, 6 A E AR Repetitive Avalanche Energy g mj T J Operating Junction and -55 to 75 T STG Storage Temperature Range C Soldering Temperature, for seconds 3 (.6mm from case ) lbfyin (.Nym) Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 3.2 R θja Junction-to-Ambient (PCB mount) i 4 C/W R θja Junction-to-Ambient HEXFET is a registered trademark of International Rectifier. www.irf.com Max. 3 9/27/

IRFR/U45ZPbF Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units V (BR)DSS Drain-to-Source Breakdown Voltage 55 V V (BR)DSS / T J Breakdown Voltage Temp. Coefficient.53 V/ C Reference to 25 C, I D = ma R DS(on) Static Drain-to-Source On-Resistance 9 24.5 mω V GS = V, I D = 8A e V GS(th) Gate Threshold Voltage 2. 4. V V DS = V GS, I D = 25µA gfs Forward Transconductance 6 S V DS = 5V, I D = 8A I DSS Drain-to-Source Leakage Current 2 µa V DS = 55V, V GS = V 25 V DS = 55V, V GS = V, T J = 25 C I GSS Gate-to-Source Forward Leakage 2 na V GS = 2V Gate-to-Source Reverse Leakage -2 V GS = -2V Q g Total Gate Charge 8 27 I D = 8A Q gs Gate-to-Source Charge 5.3 nc V DS = 44V Q gd Gate-to-Drain ("Miller") Charge 7. V GS = V e t d(on) Turn-On Delay Time V DD = 28V t r Rise Time 4 I D = 8A t d(off) Turn-Off Delay Time 26 ns R G = 24.5 Ω t f Fall Time 24 V GS = V e L D Internal Drain Inductance 4.5 Between lead, D nh 6mm (.25in.) L S Internal Source Inductance 7.5 from package G and center of die contact S C iss Input Capacitance 74 V GS = V C oss Output Capacitance 4 V DS = 25V C rss Reverse Transfer Capacitance 74 pf ƒ =.MHz C oss Output Capacitance 45 V GS = V, V DS =.V, ƒ =.MHz C oss Output Capacitance V GS = V, V DS = 44V, ƒ =.MHz C oss eff. Effective Output Capacitance 8 V GS = V, V DS = V to 44V f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 3 MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 2 integral reverse (Body Diode)Ãc V SD Diode Forward Voltage.3 V t rr Reverse Recovery Time 9 29 ns Q rr Reverse Recovery Charge 4 2 nc Conditions V GS = V, I D = 25µA p-n junction diode. T J = 25 C, I S = 8A, V GS = V e T J = 25 C, I F = 8A, V DD = 28V di/dt = A/µs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com

I D, Drain-to-Source Current (Α) I D, Drain-to-Source Current (A) Gfs, Forward Transconductance (S) I D, Drain-to-Source Current (A) IRFR/U45ZPbF V GS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V V GS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V. 4.5V 6µs PULSE WIDTH Tj = 25 C. V DS, Drain-to-Source Voltage (V) 4.5V 6µs PULSE WIDTH Tj = 75 C. V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 3 T J = 75 C 25 T J = 75 C 2 5 T J = 25 C T J = 25 C V DS = 25V 6µs PULSE WIDTH 4 5 6 7 8 9 V GS, Gate-to-Source Voltage (V) 5 V DS = 8.V 38µs PULSE WIDTH 2 3 4 I D, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) IRFR/U45ZPbF 2 8 V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd Ciss 2 6 2 I D = 8A V DS = 44V VDS= 28V VDS= V 6 8 4 2 Coss Crss V DS, Drain-to-Source Voltage (V) 4 FOR TEST CIRCUIT SEE FIGURE 3 5 5 2 25 3 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage. OPERATION IN THIS AREA LIMITED BY R DS (on). T J = 75 C. µsec T. J = 25 C V GS = V...5..5 2. V SD, Source-toDrain Voltage (V). Tc = 25 C Tj = 75 C Single Pulse msec msec V DS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) IRFR/U45ZPbF 3 25 2 2.5 2. I D = 8A V GS = V 5.5 5. 25 5 75 25 5 75 T J, Junction Temperature ( C).5-6 -4-2 2 4 6 8 2 4 6 8 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig. Normalized On-Resistance Vs. Temperature Thermal Response ( Z thjc )... D =.5.2..5.2. R R 2 R 3 R R 2 R 3 τ J τ J τ τ τ 2 τ 3 τ 2 τ 3 Ci= τi/ri Ci i/ri SINGLE PULSE ( THERMAL RESPONSE ) Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc E-6 E-5... t, Rectangular Pulse Duration (sec) τ C τ Ri ( C/W) τi (sec)..74.6.552.48.793 Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) IRFR/U45ZPbF V DS L 5V DRIVER 2 I D TOP 2.A 3.5A BOTTOM 8A 8 R G 2V V GS tp D.U.T IAS.Ω - V DD A Fig 2a. Unclamped Inductive Test Circuit 6 4 tp V (BR)DSS 2 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) I AS Fig 2b. Unclamped Inductive Waveforms Q G Fig 2c. Maximum Avalanche Energy Vs. Drain Current V Q GS Q GD 4.5 V G 4. Current Regulator Same Type as D.U.T. Charge Fig 3a. Basic Gate Charge Waveform 3.5 3. I D = 25µA 5KΩ 2V.2µF.3µF 2.5 V GS D.U.T. V - DS 2. -75-5 -25 25 5 75 25 5 75 3mA T J, Temperature ( C ) I G I D Current Sampling Resistors Fig 3b. Gate Charge Test Circuit Fig 4. Threshold Voltage Vs. Temperature 6 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRFR/U45ZPbF Duty Cycle = Single Pulse..5. Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25 C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax..E-6.E-5.E-4.E-3.E-2.E- tav (sec) Fig 5. Typical Avalanche Current Vs.Pulsewidth 3 25 2 5 5 TOP Single Pulse BOTTOM % Duty Cycle I D = 8A 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 5, 6: (For further info, see AN-5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 2a, 2b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 5, 6). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure ) P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc Fig 6. Maximum Avalanche Energy I av = 2DT/ [.3 BV Z th ] Vs. Temperature E AS (AR) = P D (ave) t av www.irf.com 7

IRFR/U45ZPbF - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 7. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V DS R D R G V GS D.U.T. - V DD V Pulse Width µs Duty Factor. % Fig 8a. Switching Time Test Circuit V DS 9% % V GS t d(on) t r t d(off) t f Fig 8b. Switching Time Waveforms 8 www.irf.com

D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) IRFR/U45ZPbF D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR2 WITH ASSEMBLY LOT CODE 234 AS SEMBLED ON WW 6, 2 IN THE ASSEMBLY LINE "A" Note: "P" in assembly line position indicates "Lead-Free" "P" in assembly line position indicates "Lead-F ree" qualification to the cons umer-level INTERNATIONAL RECTIFIER LOGO AS S E MBLY LOT CODE IRFR2 6A 2 34 PART NUMBER DATE CODE YEAR = 2 WEEK 6 LINE A OR INTERNATIONAL RECTIFIER LOGO AS S EMBL Y LOT CODE IRFR2 2 34 PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DESIGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR = 2 WEEK 6 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/datasheets/data/ auirfr45z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

IRFR/U45ZPbF I-Pak (TO-25AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-25AA) Part Marking Information EXAMPLE: THIS IS AN IRFU2 WITH ASSEMBLY LOT CODE 5678 ASSEMBLED ON WW 9, 2 IN THE ASSEMBLY LINE "A" Note: "P" in assembly line position indicates Lead-Free" INTERNATIONAL RECTIFIER LOGO AS S EMBL Y LOT CODE IRFU2 9A 56 78 PART NUMBER DATE CODE YEAR = 2 WEEK 9 LINE A OR INT ERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE IRFU2 56 78 PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR = 2 WEEK 9 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/datasheets/data/ auirfr45z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) IRFR/U45ZPbF TR TRR TRL 6.3 (.64 ) 5.7 (.69 ) 6.3 (.64 ) 5.7 (.69 ) 2. (.476 ).9 (.469 ) FEED DIRECTION 8. (.38 ) 7.9 (.32 ) FEED DIRECTION NOTES :. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-48 & EIA-54. 3 INCH NOTES :. OUTLINE CONFORMS TO EIA-48. 6 mm Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. ). Limited by T Jmax, starting T J = 25 C, L =.8mH R G = 25Ω, I AS = 8A, V GS =V. Part not recommended for use above this value. ƒ Pulse width.ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. Limited by T Jmax, see Fig.2a, 2b, 5, 6 for typical repetitive avalanche performance. This value determined from sample failure population. % tested to this value in production. When mounted on " square PCB (FR-4 or G- Material). For recommended footprint and soldering techniques refer to application note #AN-994 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 9245, USA Tel: (3) 252-75 TAC Fax: (3) 252-793 Visit us at www.irf.com for sales contact information.9/2 www.irf.com