Lecture 7: SPICE Simulation

Similar documents
Introduction to Full-Custom Circuit Design with HSPICE and Laker

HSPICE. Chan-Ming Chang

Lecture 3: Sizing & Simulation

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

SPICE Simulation Program with Integrated Circuit Emphasis

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

DIGITAL VLSI LAB ASSIGNMENT 1

NGSPICE- Usage and Examples

Digital Integrated Circuits

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Topic 2. Basic MOS theory & SPICE simulation

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Mentor Analog Simulators

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE

EEC 216 W08 Problem Set #1 Solutions

3.CMOS Inverter-homework

Introduction to PSpice

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

Elad Alon HW #1: Circuit Simulation EECS 141 Due Thursday, Aug. 30th, 5pm, box in 240 Cory

Experiment 2 Introduction to PSpice

Introduction to Matlab, HSPICE and SUE

WinSpice. The steps to performing a circuit simulation with WinSpice are:

Lab 3: Circuit Simulation with PSPICE

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit.

A Brief Handout for Introduction to

MOSFET: Mxxx nd ng ns nb modelname W=value L=value Ad As Pd Ps

Lecture 2: Static Design

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins)

Laboratory Lecture 4

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

Simulation Using WinSPICE

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

TTL LOGIC and RING OSCILLATOR TTL

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Previously: Two XOR Gates. Pass Transistor Logic. Cascaded Pass Gates

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Teaser. Pass Transistor Logic. Identify Function.

Lecture 11 Circuits numériques (I) L'inverseur

C H A P T E R 5. Amplifier Design

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence).

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models

Introduction to LT Spice IV with Examples

d. Why do circuit designers like to use feedback when they make amplifiers? Give at least two reasons.

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

Power and Energy. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Modeling MOS Transistors. Prof. MacDonald

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

Lecture 11 Digital Circuits (I) THE INVERTER

Combinational Logic Gates in CMOS

A brief introduction on HSPICE. Siavash Kananian Sharif University of Technology Electronics III

5. CMOS Gates: DC and Transient Behavior

Digital Electronic Circuits

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

Output Waveform Evaluation of Basic Pass Transistor Structure*

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

1.3 An Introduction to WinSPICE

8. Characteristics of Field Effect Transistor (MOSFET)

EEM411 DIGITAL ELECTRONICS

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

A COMPARATIVE ANALYSIS OF 180 NM PROCESS CMOS INVERTER

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Analysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision

EECE 481. MOS Basics Lecture 2

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

10V Drive Nch MOSFET. Data Sheet RSJ400N06. 1/ Rev.A. Dimensions (Unit : mm) Structure Silicon N-channel MOSFET

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Zero Steady State Current Power-on-Reset Circuit with Brown-Out Detector

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis.

Delay and Power Expressions for a CMOS Inverter Driving a Resistive-Capacitive Load

Chapter 2 Combinational Circuits

ELEC 2210 EXPERIMENT 12 NMOS Logic

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Design of High-Speed Op-Amps for Signal Processing

Introduction to SwitcherCAD

Basic Fabrication Steps

EECE 488: Short HSPICE. Tutorial. Last updated by: Mohammad Beikahmadi January Original presentation by: Jack Shiah

EE 230 Lab Lab 9. Prior to Lab

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

New Designs. Not Recommended for. 4V Drive Nch MOSFET RSD050N06. Data Sheet. 1/ Rev.B. Dimensions (Unit : mm)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Comparison of 32nm High-k Metal Gate Predictive Technology Model CMOS and MOSFET-Like CNFET compact Model Based Domino logic Circuits

Lecture 19: Design for Skew

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

A Short SPICE Tutorial

OrCAD PSpice - Tutorial. TA: 黃玉龍

PE2302C. N-Channel Enhancement Mode Power MOSFET 2302C DESCRIPTION GENERAL FEATURES. Application. Page 1

Transcription:

Lecture 7: SPICE Simulation Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design

Outline Introduction to SPICE DC Analysis Transient Analysis Subcircuits Optimization Power Measurement Readings 8.1-8.2 2

Introduction to SPICE Simulation Program with Integrated Circuit Emphasis Developed in 1970 s at Berkeley Many commercial versions are available HSPICE is a robust industry standard Has many enhancements that we will use Written in FORTRAN for punch-card machines Circuits elements are called cards Complete description is called a SPICE deck 3

Writing Spice Decks Writing a SPICE deck is like writing a good program Plan: sketch schematic on paper or in editor Modify existing decks whenever possible Code: strive for clarity Start with name, email, date, purpose Generously comment Test: Predict what results should be Compare with actual Garbage In, Garbage Out! 4

Example: RC Circuit * rc.sp * David_Harris@hmc.edu 2/2/03 * Find the response of RC circuit to rising input * Parameters and models.option post Vin R1 = 2K C1 = 100fF + Vout - * Simulation netlist Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0 R1 in out 2k C1 out gnd 100f * Stimulus.tran 20ps 1ns.plot v(in) v(out).end 5

Result (Graphical) 6

Sources DC Source Vdd vdd gnd 2.5 Piecewise Linear Source Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0 Pulsed Source Vck clk gnd PULSE 0 1.0 0ps 100ps 100ps 300ps 800ps PULSE v1 v2 td tr tf pw per v2 td tr pw tf v1 per 7

SPICE Elements Letter R C L K V I M D Q W X E G H F Element Resistor Capacitor Inductor Mutual Inductor Independent voltage source Independent current source MOSFET Diode Bipolar transistor Lossy transmission line Subcircuit Voltage-controlled voltage source Voltage-controlled current source Current-controlled voltage source Current-controlled current source 8

Units Letter Unit Magnitude a atto 10-18 f fempto 10-15 p pico 10-12 n nano 10-9 u micro 10-6 m milli 10-3 k kilo 10 3 x mega 10 6 g giga 10 9 Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15 9

DC Analysis * mosiv.sp * Parameters and models.include '../models/ibm065/models.sp'.temp 70.option post * Simulation netlist *nmos Vgs g gnd 0 Vds d gnd 0 M1 d g gnd gnd NMOS W=100n L=50n V gs 4/2 I ds V ds * Stimulus.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2.end 10

I-V Characteristics nmos I-V V gs dependence Saturation 11

MOSFET Elements M element for MOSFET Mname drain gate source body type + W=<width> L=<length> + AS=<area source> AD = <area drain> + PS=<perimeter source> PD=<perimeter drain> 12

Transient Analysis * inv.sp * Parameters and models.param SUPPLY=1.0.option scale=25n.include '../models/ibm065/models.sp'.temp 70.option post * Simulation netlist Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 50ps 0ps 0ps 100ps 200ps M1 y a gnd gnd NMOS W=4 L=2 + AS=20 PS=18 AD=20 PD=18 M2 y a vdd vdd PMOS W=8 L=2 + AS=40 PS=26 AD=40 PD=26 * Stimulus.tran 0.1ps 80ps.end 13 a 8/2 4/2 y

Transient Results Unloaded inverter Overshoot Very fast edges 14

Subcircuits Declare common elements as subcircuits.subckt inv a y N=4 P=8 M1 y a gnd gnd NMOS W='N' L=2 + AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10' M2 y a vdd vdd PMOS W='P' L=2 + AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'.ends Ex: Fanout-of-4 Inverter Delay Reuse inv Shaping Loading Shape input Device Under Test Load 2 8 32 128 a b c d e X1 X2 X3 X4 1 4 16 64 Load on Load 512 X5 256 f 15

FO4 Inverter Delay * fo4.sp * Parameters and models ----------------------.param SUPPLY=1.0.param H=4.option scale=25n.include '../models/ibm065/models.sp'.temp 70.option post * Subcircuits ----------------------.global vdd gnd.include '../lib/inv.sp' * Simulation netlist ---------------------- Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps X1 a b inv * shape input waveform X2 b c inv M='H' * reshape input waveform 16

FO4 Inverter Delay Cont. X3 c d inv M='H**2' * device under test X4 d e inv M='H**3' * load x5 e f inv M='H**4' * load on load * Stimulus ----------------------.tran 0.1ps 280ps.measure tpdr * rising prop delay + TRIG v(c) VAL='SUPPLY/2' FALL=1 + TARG v(d) VAL='SUPPLY/2' RISE=1.measure tpdf * falling prop delay + TRIG v(c) VAL='SUPPLY/2' RISE=1 + TARG v(d) VAL='SUPPLY/2' FALL=1.measure tpd param='(tpdr+tpdf)/2' * average prop delay.measure trise * rise time + TRIG v(d) VAL='0.2*SUPPLY' RISE=1 + TARG v(d) VAL='0.8*SUPPLY' RISE=1.measure tfall * fall time + TRIG v(d) VAL='0.8*SUPPLY' FALL=1 + TARG v(d) VAL='0.2*SUPPLY' FALL=1.end 17

FO4 Results 18

Optimization HSPICE can automatically adjust parameters Seek value that optimizes some measurement Example: Best P/N ratio We ve assumed 2:1 gives equal rise/fall delays But we see rise is actually slower than fall What P/N ratio gives equal delays? Strategies (1) run a bunch of sims with different P size (2) let HSPICE optimizer do it for us 19

P/N Optimization * fo4opt.sp * Parameters and models ----------------------.param SUPPLY=1.0.option scale=25n.include '../models/ibm065/models.sp'.temp 70.option post * Subcircuits ----------------------.global vdd gnd.include '../lib/inv.sp' * Simulation netlist ---------------------- Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps X1 a b inv P='P1' * shape input waveform X2 b c inv P='P1' M=4 * reshape input X3 c d inv P='P1' M=16 * device under test 20

P/N Optimization X4 d e inv P='P1' M=64 * load X5 e f inv P='P1' M=256 * load on load * Optimization setup ----------------------.param P1=optrange(8,4,16) * search from 4 to 16, guess 8.model optmod opt itropt=30 * maximum of 30 iterations.measure bestratio param='p1/4' * compute best P/N ratio * Stimulus ----------------------.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod.measure tpdr * rising propagation delay + TRIG v(c)val='supply/2' FALL=1 + TARG v(d) VAL='SUPPLY/2' RISE=1.measure tpdf * falling propagation delay + TRIG v(c) VAL='SUPPLY/2' RISE=1 + TARG v(d) VAL='SUPPLY/2' FALL=1.measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay.measure diff param='tpdr-tpdf' goal = 0 * diff between delays.end 21

P/N Results P/N ratio for equal delay is 2.9:1 t pd = t pdr = t pdf = 17.9 ps (slower than 2:1 ratio) Big pmos transistors waste power too Seldom design for exactly equal delays What ratio gives lowest average delay?.tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=tpd MODEL=optmod P/N ratio of 1.8:1 t pdr = 18.8 ps, t pdf = 15.2 ps, t pd = 17.0 ps P/N ratios of 1.5:1 2.2:1 gives t pd < 17.2 ps 22

Power Measurement HSPICE can measure power Instantaneous P(t) Or average P over some interval.print P(vdd).measure pwr AVG P(vdd) FROM=0ns TO=10ns Power in single gate Connect to separate V DD supply Be careful about input power 23

Summary Various analysis with SPIC Optimization and measurement Useful tool for transistor-level delay, power, process variation evaluations Can be the gold model for gate-level and higher Can be useful for novel device and circuit studies Next lecture Combinational circuit design Reading 9.1-9.2.2 24