AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

Similar documents
-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

IRFR4105ZPbF IRFU4105ZPbF

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

IRFR540ZPbF IRFU540ZPbF

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF3808S IRF3808L HEXFET Power MOSFET

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLR3915PbF IRLU3915PbF

V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

IRLR3110ZPbF IRLU3110ZPbF

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRLS3034PbF IRLSL3034PbF

l Advanced Process Technology TO-220AB IRF640NPbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRFS4127PbF IRFSL4127PbF

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

IRFR3806PbF IRFU3806PbF

IRF530NSPbF IRF530NLPbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max (mw)

V DSS R DS(on) max I D

IRFR24N15DPbF IRFU24N15DPbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

l Advanced Process Technology TO-220AB IRF630N

SMPS MOSFET. V DSS R DS(on) max I D

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRL1404SPbF IRL1404LPbF

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRL8113 IRL8113S IRL8113L

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

SMPS MOSFET. V DSS R DS(on) max I D

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

IRFR3709ZPbF IRFU3709ZPbF

IRFS3004-7PPbF HEXFET Power MOSFET

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

IRL3714Z IRL3714ZS IRL3714ZL

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

IRFB260NPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFR24N15D IRFU24N15D

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

IRLR3717 IRLU3717 HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Transcription:

Features l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax AUTOMOTIVE MOSFET Description Specifically designed for Automotive applications, this HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Absolute Maximum Ratings Parameter I D @ T C = 25 C PD - 95880C HEXFET Power MOSFET V DSS = 55V R DS(on) = 3.3mΩ I D = 75A www.irf.com 1 G TO-220AB IRF3805 Continuous Drain Current, V GS @ 10V (Silicon Limited) D S D 2 Pak IRF3805S IRF3805 IRF3805S IRF3805L TO-262 IRF3805L Units I D @ T C = 100 C Continuous Drain Current, V GS @ 10V 160 A I D @ T C = 25 C Continuous Drain Current, V GS @ 10V (Package limited) 75 I DM Pulsed Drain Current c 890 P D @T C = 25 C Power Dissipation 330 W Linear Derating Factor 2.2 W/ C V GS Gate-to-Source Voltage ± 20 V E AS (Thermally limited) Single Pulse Avalanche Energyd 730 mj E AS (Tested ) Single Pulse Avalanche Energy Tested Value h 940 I AR Avalanche Currentc See Fig.12a, 12b, 15, 16 A E AR Repetitive Avalanche Energy g mj T J Operating Junction and -55 to 175 T STG Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) 10 lbfyin (1.1Nym) Mounting Torque, 6-32 or M3 screw i Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 0.45 C/W R θcs Case-to-Sink, Flat Greased Surface i 0.50 R θja Junction-to-Ambient i 62 R θja Junction-to-Ambient (PCB Mount) j 40 Max. 220 7/17/07

IRF3805/S/L Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units V (BR)DSS Drain-to-Source Breakdown Voltage 55 V Conditions V GS = 0V, I D = 250μA ΔV (BR)DSS /ΔT J Breakdown Voltage Temp. Coefficient 0.051 V/ C Reference to 25 C, I D = 1mA R DS(on) Static Drain-to-Source On-Resistance 2.6 3.3 mω V GS = 10V, I D = 75A e V GS(th) Gate Threshold Voltage 2.0 4.0 V V DS = V GS, I D = 250μA gfs Forward Transconductance 75 V V DS = 25V, I D = 75A I DSS Drain-to-Source Leakage Current 20 μa V DS = 55V, V GS = 0V 250 V DS = 55V, V GS = 0V, T J = 125 C I GSS Gate-to-Source Forward Leakage 200 na V GS = 20V Gate-to-Source Reverse Leakage -200 V GS = -20V Q g Total Gate Charge 190 290 I D = 75A Q gs Gate-to-Source Charge 52 nc V DS = 44V Q gd Gate-to-Drain ("Miller") Charge 72 V GS = 10V e t d(on) Turn-On Delay Time 20 V DD = 28V t r Rise Time 150 I D = 75A t d(off) Turn-Off Delay Time 87 ns R G = 2.6 Ω t f Fall Time 93 V GS = 10V e L D Internal Drain Inductance 4.5 Between lead, nh 6mm (0.25in.) L S Internal Source Inductance 7.5 from package and center of die contact C iss Input Capacitance 7960 V GS = 0V C oss Output Capacitance 1260 V DS = 25V C rss Reverse Transfer Capacitance 630 pf ƒ = 1.0MHz C oss Output Capacitance 4400 V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz C oss Output Capacitance 980 V GS = 0V, V DS = 44V, ƒ = 1.0MHz C oss eff. Effective Output Capacitance 1550 V GS = 0V, V DS = 0V to 44V f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 75 MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 890 integral reverse (Body Diode)Ãc p-n junction diode. V SD Diode Forward Voltage 1.3 V T J = 25 C, I S = 75A, V GS = 0V e t rr Reverse Recovery Time 36 54 ns T J = 25 C, I F = 75A, V DD = 28V Q rr Reverse Recovery Charge 47 71 nc di/dt = 100A/μs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com

I D, Drain-to-Source Current (Α) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRF3805/S/L 1000 100 VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1000 VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 10 4.5V 60μs PULSE WIDTH Tj = 25 C 1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) 10 4.5V 60μs PULSE WIDTH Tj = 175 C 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 T J = 175 C 100.0 10.0 T J = 25 C 1.0 V DS = 20V 60μs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 8.0 V GS, Gate-to-Source Voltage (V) Gfs, Forward Transconductance (S) 200 160 120 80 40 0 T J = 25 C T J = 175 C V DS = 10V 380μs PULSE WIDTH 0 20 40 60 80 100 120 140 160 180 I D, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3

I D, Drain-to-Source Current (A) C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) IRF3805/S/L 14000 12000 10000 V GS = 0V, f = 1 MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 20 16 I D = 75A V DS = 44V VDS= 28V 8000 Ciss 12 6000 8 4000 2000 0 Coss Crss 1 10 100 V DS, Drain-to-Source Voltage (V) 4 0 0 50 100 150 200 250 300 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage I SD, Reverse Drain Current (A) 1000.0 T J = 175 C 100.0 10.0 T J = 25 C 1.0 V GS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 10000 1000 100 10 1 0.1 Tc = 25 C Tj = 175 C Single Pulse OPERATION IN THIS AREA LIMITED BY R DS (on) 100μsec 1msec 10msec 1 10 100 1000 V SD, Source-to-Drain Voltage (V) V DS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) IRF3805/S/L 240 200 LIMITED BY PACKAGE 2.0 I D = 75A V GS = 10V 160 1.5 120 80 1.0 40 0 25 50 75 100 125 150 175 T C, Case Temperature ( C) 0.5-60 -40-20 0 20 40 60 80 100 120 140 160 180 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 1 Thermal Response ( Z thjc ) D = 0.50 0.1 0.20 0.10 0.01 0.05 0.02 0.01 R 1 R 2 R 1 R 2 τ J τ J τ 1 τ τ 2 1 τ 2 τ C τ Ri ( C/W) τi (sec) 0.2387 0.001016 0.2105 0.012816 0.001 0.0001 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/ri Ci i/ri 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc Tc Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) IRF3805/S/L V DS L 15V DRIVER 1600 1200 I D TOP 15A 20A BOTTOM 75A R G 20V V GS tp D.U.T IAS 0.01Ω - V DD A 800 Fig 12a. Unclamped Inductive Test Circuit tp V (BR)DSS 400 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature ( C) I AS Fig 12b. Unclamped Inductive Waveforms Q G Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V Q GS Q GD 4.5 V G Current Regulator Same Type as D.U.T. Charge Fig 13a. Basic Gate Charge Waveform 4.0 3.5 3.0 2.5 I D = 250μA 50KΩ 12V.2μF.3μF 2.0 V GS D.U.T. V - DS 1.5-75 -50-25 0 25 50 75 100 125 150 175 3mA T J, Temperature ( C ) I G I D Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRF3805/S/L 10000 1000 100 10 Duty Cycle = Single Pulse 0.01 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ΔTj = 25 C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 800 600 400 200 0 TOP Single Pulse BOTTOM 1% Duty Cycle I D = 75A 25 50 75 100 125 150 175 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 15, 16). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure 11) P D (ave) = 1/2 ( 1.3 BV I av ) = DT/ Z thjc Fig 16. Maximum Avalanche Energy I av = 2DT/ [1.3 BV Z th ] Vs. Temperature E AS (AR) = P D (ave) t av www.irf.com 7

IRF3805/S/L - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =10V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V DS R D R G V GS D.U.T. - V DD 10V Pulse Width 1 µs Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit V DS 90% 10% V GS t d(on) t r t d(off) t f Fig 18b. Switching Time Waveforms 8 www.irf.com

IRF3805/S/L TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB packages are not recommended for Surface Mount Application. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead - Free" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER YEAR 0 = 2000 DATE CODE WEEK 19 LINE C www.irf.com 9

IRF3805/S/L D 2 Pak Package Outline (Dimensions are shown in millimeters (inches)) D 2 Pak Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" Note: "P" in assembly line position indicates "Lead-Free" OR INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE 10 www.irf.com F530S F530S PART NUMBER DATE CODE YEAR 0 = 2000 WEEK 02 LINE L

TO-262 Package Outline (Dimensions are shown in millimeters (inches)) IRF3805/S/L IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead-Free" OR INTERNATIONAL RECTIFIER LOGO INTERNATIONAL RECTIFIER LOGO AS S E MB LY LOT CODE AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = ASSEMBLY SITE CODE www.irf.com 11

IRF3805/S/L D 2 Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION TRL 1.85 (.073) 1.65 (.065) 10.90 (.429) 10.70 (.421) 11.60 (.457) 11.40 (.449) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by T Jmax, starting T J = 25 C, L = 0.26mH R G = 25Ω, I AS = 75A, V GS =10V. Part not recommended for use above this value. ƒ Pulse width 1.0ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from 0 to 80% V DSS. TO-220AB package is not recommended for Surface Mount Application. Limited by T Jmax, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. This is only applied to TO-220AB pakcage. ˆ This is applied to D 2 Pak, when mounted on 1" square PCB (FR- 4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 7/07 12 www.irf.com