Preliminary Datasheet Revision: January 2016

Similar documents
Advance Datasheet Revision: January 2015

Advance Datasheet Revision: April 2015

Advance Datasheet Revision: May 2013

Advance Datasheet Revision: October Applications

Product Datasheet Revision: January 2015

Preliminary Datasheet Revision: July 2014

Product Datasheet Revision: April Applications

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

8 11 GHz 1 Watt Power Amplifier

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

GHz Low Noise Amplifier

5W X Band Medium Power Amplifier. GaN Monolithic Microwave IC

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

5 6 GHz 10 Watt Power Amplifier

it to 18 GHz, 2-W Amplifier

GHz 10 Watt Power Amplifier

D1H010DA1 10 W, 6 GHz, GaN HEMT Die

5 6.4 GHz 2 Watt Power Amplifier

0.5-20GHz Driver. GaAs Monolithic Microwave IC

18-40 GHz Low Noise Amplifier

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications

= 25 C) Parameter 2.7 GHz 2.9 GHz 3.1 GHz 3.3 GHz 3.5 GHz Units Small Signal Gain db

= 25 C) Parameter 8.0 GHz 9.0 GHz 10.0 GHz 11.0 GHz Units Small Signal Gain db P OUT. = 25 dbm W Power P IN

CMD217. Let Performance Drive GHz GaN Power Amplifier

GHz GaAs MMIC Power Amplifier

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

11-15 GHz 0.5 Watt Power Amplifier

CMD GHz Distributed Driver Amplifier. Features. Functional Block Diagram. Description

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

2-22GHz LNA with AGC. GaAs Monolithic Microwave IC. Performance (db)

3 4 ACG1 ACG2. Vgg2 2 RFIN. Parameter Min Typ Max Units Frequency Range

4 Watt Ka-Band HPA Key Features Measured Performance Primary Applications Ka-Band VSAT Product Description

HMC-APH596 LINEAR & POWER AMPLIFIERS - CHIP. GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, GHz. Typical Applications. Features

ENGDA Wideband Distributed Amplifier, DIE, 0.8 to 20 GHz ENGDA Features. Typical Applications. Description. Functional Block Diagram

CMD GHz Driver Amplifier. Features. Functional Block Diagram. Description

MMA GHz 1W Traveling Wave Amplifier Data Sheet

TGA2622-CP 9 10 GHz 35 W GaN Power Amplifier

CGY2651UH/C1. Advance Information GHz 10 W Power Amplifier. Description. Features

GHz Ultra-wideband Amplifier

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

CMD GHz Distributed Low Noise Amplifier RFIN

PRELIMINARY DATASHEET

CMD GHz Low Noise Amplifier. Features. Functional Block Diagram. Description

PRELIMINARY DATASHEET

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

MMA M4. Features:

DC-20 GHz Distributed Power Amplifier

Electrical Characteristics (Ambient Temperature T = 25 o C) Units GHz db db db db db dbm dbm VDC VDC ma

Advanced Information: AI GHz Low Noise Amplifier. GaAs Monolithic Microwave IC

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

MECGaNLNACX. C- to X-Band GaN HEMT Low Noise Amplifier. Main Features. Product Description. Typical Applications. Measured Data

CMD GHz Low Noise Amplifier

Features. = +25 C, Vdd = 5V, Idd = 85mA*

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

3 4 ACG1 ACG2. 2 Vgg2 RFIN. Parameter Min Typ Max Units. Frequency Range DC - 24 GHz. Gain 18 db. Noise Figure 2.5 db. Output P1dB 25 dbm

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

33-47 GHz Wide Band Driver Amplifier TGA4522

TGA2594-HM GHz GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image.

9-10 GHz GaAs MMIC Core Chip

CMD GHz Active Frequency Doubler. Features. Functional Block Diagram. Description

MMA GHz, 0.1W Gain Block

MMA R4 30KHz-50GHz Traveling Wave Amplifier Data Sheet October 2012

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Primary Applications Defense & Aerospace Broadband Wireless. Product Description

Gallium Nitride MMIC 5W DC 10.0 GHz Power Amplifier

TGA2578-CP 2 to 6 GHz, 30W GaN Power Amplifier

DC-12 GHz Tunable Passive Gain Equalizer

MMA GHz, 0.1W Gain Block Data Sheet

Features. = +25 C, Vdd= 2V [1], Idd = 55mA [2]

PRELIMINARY DATASHEET

Gallium Nitride MMIC 15W GHz Power Amplifier

8-18 GHz Wideband Low Noise Amplifier

9-10 GHz LOW NOISE AMPLIFIER

CHA2098b RoHS COMPLIANT

Product Data Sheet August 5, 2008

VD1N, VD2N, VD3N are available externally but are internally interconnected

TGA4811. DC - 60 GHz Low Noise Amplifier

GaN/SiC Bare Die Power HEMT DC-15 GHz

1-22 GHz Wideband Amplifier

Parameter Frequency Typ Min (GHz)

= 25 C) Parameter 5.5 GHz 6.5 GHz 7.5 GHz 8.5 GHz Units Small Signal Gain db P OUT

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

TGA2814-CP 3.1 to 3.6 GHz, 80W GaN Power Amplifier

MMA R GHz, 0.1W Gain Block Data Sheet October, 2012

Features. = +25 C, Vdd= +8V *

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet

QPA1003D. 1 8 GHz 10 W GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

GHz GaAs MMIC Power Amplifier

TGA Watt Ka-Band HPA. Key Features. Measured Performance Bias conditions: Vd = 6 V, Idq = 3200 ma, Vg = -0.7 V Typical

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

9-10 GHz GaAs MMIC Core Chip

TGA2583-SM 2.7 to 3.7 GHz, 10 W GaN Power Amplifier

Transcription:

Preliminary Datasheet Revision: January 216 Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios SATCOM Terminals X = 3.65mm Y = 2.3mm Product Features RF frequency: 27 to 31 GHz Linear Gain: 2 db typ. Psat: 39 dbm typ. Die Size: 7.41 sq. mm..2um GaN HEMT Process Product Description The monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in SATCOM Terminals and point-to-point digital radios. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods. 4 mil SiC substrate DC Power: 28 VDC @ 6 ma Performance Characteristics (Ta = C) Specification Min Typ Max Unit Frequency 27 31 GHz Linear Gain 2 db Input Return Loss 1 2 db Output Return Loss 5 2 db P1db TBD dbm Psat 38 39 dbm PAE @ Psat 3 % Vd1, Vd2 28 V Vg1-3.5 V Vg2-3.5 V Id1 12 ma Id2 48 ma Export Information ECCN: 3A1.b.2.c HTS (Schedule B) code: 8542.33. Absolute Maximum Ratings (Ta = C) Parameter Min Max Unit Vd1,Vd2 2 28 V Id1 12 ma Id2 48 ma Vg1, Vg2-5 V Input drive level TBD dbm Assy. Temperature 3 deg. C (TBD seconds) 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 1

Input Return Loss (db) Output Return Loss (db) Gain (db) Pout (dbm), Gain (db), PAE% Preliminary Datasheet Revision: January 216 Measured Performance Characteristics (Typical Performance at C) Vd = 28. V, Id1 = 12mA, Id2 = 48 ma Linear Gain vs. Frequency * Power, Gain, PAE% vs. Frequency * 2 16 14 12 1 8 6 4 2 23 26 27 28 29 3 31 32 33 34 36 4 3 2 1 Linear Gain (db) Gain @ Pin=5 dbm 5 Psat (dbm) PAE% @ PSat Max PAE% 26 27 28 29 3 31 32 33 Input Return Loss vs. Frequency * Output Return Loss vs. Frequency * -5-5 -1 - -2 - -3-23 26 27 28 29 3 31 32 33 34 36-1 - -2 - -3-23 26 27 28 29 3 31 32 33 34 36 * Pulsed-Power On-Wafer, ** CW Fixtured 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 2

Pout (dbm) Pout (dbm) Pout (dbm), Gain (db), PAE% Pout (dbm), Gain (db), PAE% Preliminary Datasheet Revision: January 216 Measured Performance Characteristics (Typical Performance at C) Vd = 28. V, Id1 = 12 ma, Id2 = 48 ma Power, Gain, PAE% vs. Frequency Pulsed-Power On-Wafer Power, Gain, PAE% vs. Frequency CW Fixtured 4 3 2 1 Linear Gain (db) Gain @ Pin=5 dbm 5 Psat (dbm) PAE% @ PSat Max PAE% 26 27 28 29 3 31 32 33 4 3 2 1 Linear Gain (db) Gain @ Pin= dbm 5 P1dB (dbm) Psat (dbm) PAE% @ PSat PAE% Max 26 27 28 29 3 31 32 33 Output Power vs. Input Power Pulsed-Power On-Wafer Output Power vs. Input Power CW Fixtured 4 4 38 38 36 36 34 34 32 32 3 3 28 26 2 27 GHz 28 GHz 29 GHz 3 GHz 31 GHz 32 GHz 2 4 6 8 1 12 14 16 2 26 28 3 28 26 2 27 GHz 28 GHz 29 GHz 3 GHz 31 GHz 32 GHz 33 GHz 2 4 6 8 1 12 14 16 2 26 28 3 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 3

Drain Current (ma) Drain Current (ma) PAE% PAE% Preliminary Datasheet Revision: January 216 Measured Performance Characteristics (Typical Performance at C) Vd = 28. V, Id1 = 12 ma, Id2 = 48 ma PAE% vs. Input Power Pulsed-Power On-Wafer PAE% vs. Input Power CW Fixtured 36 34 32 3 28 26 2 16 14 12 1 8 6 4 2 27 GHz 28 GHz 29 GHz 3 GHz 31 GHz 32 GHz 2 4 6 8 1 12 14 16 2 26 28 3 36 34 32 3 28 26 2 16 14 12 1 8 6 4 2 27 GHz 28 GHz 29 GHz 3 GHz 31 GHz 32 GHz 33 GHz 2 4 6 8 1 12 14 16 2 26 28 3 Stage Currents vs. Input Power Pulsed-Power On-Wafer Stage Currents vs. Input Power CW Fixtured 8 8 7 7 6 6 5 5 4 3 2 Id1 27 GHz Id1 29 GHz Id1 31 GHz Id2 27 GHz Id2 29 GHz Id2 31 GHz Id 128 GHz Id1 3 GHz Id1 32 GHz Id2 28 GHz Id2 3 GHz Id2 32 GHz 4 3 2 Id1 27 GHz Id1 29 GHz Id1 31 GHz Id1 33 GHz Id2 28 GHz Id2 3 GHz Id2 32 GHz Id1 28 GHz Id1 3 GHz Id1 32 GHz Id2 27 GHz Id2 29 GHz Id2 31 GHz Id2 33 GHz 1 1 2 4 6 8 1 12 14 16 2 26 28 3 2 4 6 8 1 12 14 16 2 26 28 3 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 4

Gain (db), Pout (dbm), PAE% AM-PM (Deg/dB), AM-AM (db/db) Gain (db), Pout (dbm), PAE% AM-PM (Deg/dB), AM-AM (db/db) Preliminary Datasheet Revision: January 216 Measured Performance Characteristics (Typical Performance at C) Vd = 28. V, Id1 = 12 ma, Id2 = 48 ma CW Fixtured Gain, Pout. PAE%, AM-AM & AM-PM vs. Pin @ 29 GHz * CW Fixtured Gain, Pout. PAE%, AM-AM & AM-PM vs. Pin @ 3 GHz * 5 Gain (db) PAE% AM-AM (db/db) Pout (dbm) AM-PM (Deg/dB) 1.5 1. 5 Gain (db) PAE% AM-AM (db/db) Pout (dbm) AM-PM (Deg/dB) 1.5 1. 4 1 4 1.75.75 3.5 3.5.. 2 2 -. -. 1 -.5 1 -.5 5 -.75 5 -.75-1 5 1 2 3-1 5 1 2 3 Pin (dbm) Pin (dbm) * In un-calibrated fixture with 2-tone input Thermal Properties Preliminary Thermal Properties with die mounted with 1mil 8/2* AuSn Eutectic to mil CuW Shim. Junction Temperature Tj Thermal Resistance θjc Shim Boundary Conditions Temperature Vd = 28V ºC 167.8 ºC 6.7 ºC/W Id1 + Id1a = 211.6 ma ** 47 ºC 2. ºC *** 7.2 ºC/W Id2 + Id2a = 772.1 ma ** 5 ºC.9 ºC 7.2 ºC/W Pin=29.93 dbm (.98 W) Pout=38.53 dbm (7.13 W) * Assumed thermal conductivity of 57 W/m/K ** Vd = 28. V, Idq1 = 12 ma, Id2q = 48 ma *** Max recommended. Reliability testing indicates that MTTF in excess of 1 6 hours can be achieved by ensuring Tj is kept below 2ºC. 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 5

Preliminary Datasheet Revision: January 216 Measured Performance Characteristics (Typical Performance at C) Vd = 28. V, Id1 = 12 ma, Id2 = 48 ma * Freq GHz S11 Mag S11 Ang S21 Mag S21 Ang S12 Mag S12 Ang S Mag S Ang 21..41-81.71.99 168.3.3 19..926 63.21 21.5.434-93.19 1. 3.6.5 47.23.899 54.83..2-14.8 1.471 137.9.5 16..89.83.5.467-116.6 1.834 121.1.6 1.54.854.52 23..475-128.1 2.32 12.9.5 61.56.826.65 23.5.482-139.6 2.914 83.87.7.13.769 12.66..482-2.1 3.663 62.8.4-4.91.716-2.67.5.481-164.9 4.598 4.41.7-31.63.632 -...461-179.7 5.734.48.4-143.3.5-36.91.5.434 165.9 6.986-1.97.3 178.3.429-58.84 26...5 8.5-38.85.6 55..314-88.63 26.5.349 132.4 9.319-67.97.1 17.1.27-121.9 27..297 1.6 1.11-97.. 96.81.5-163.9 27.5.2 98.12 1.73-126.2.9 136.1.131 4.9 28..149 69.3 1.92-4.8.7 31.74.84 13.7 28.5.99 58.6 1.95 177.5.11 96.23.77 1.7 29..46 38.65 1.81.6. 3.78.6 8. 29.5.3 27.5 1.64 1..2 61.65.61 121.2 3..38 47.28 1.38 98.7.17 34.8.6 163.1 3.5.59 44.3 1.31 73.57.13-6.347.92 175. 31..98 1.649 1.26 47.28. -1.165.169-171.7 31.5.6-13.69 1.11 19.54.14-54.31.2-177.4 32..28-41.7 9.96-9.783. -63.86.3 178.1 32.5.4-71.5 9.26-4..19-73.26.432 165.7 33..288-11.2 8.31-71..19-13.6.533 6.4 33.5.285-132.7 7.117-12.8.16-11..661 141.5 34..9-168. 5.761-132.5.12-1.7.746 128.7 34.5.2.2 4.472-9.6.2-1.1.85 117.4..219 14.3 3.475 175.7.5 76.73.836 16.4.5.7 62.23 2.65 2.2.13 85.79.846 97.96 36..329 29. 2.7 129.9.6-82.88.853 88.81 36.5.413 2.837 1.598.6.8 -.43.868 81.7 37..498 -.6 1.3 89.7.7 169.3.88 76.96 * Pulsed-Power On-Wafer 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 6

VG1 VD1 VG2 VD2 Preliminary Datasheet Revision: January 216 Die Size and Bond Pad Locations (Not to Scale) X = 365 µm µm Y = 23 µm DC Bond Pad = 1 x 1.5 µm RF Bond Pad = 1 x 1.5 µm Chip Thickness = 11 5 µm 761 µm 1161 µm 2161 µm 61 µm 365 µm 23 µm RFIN RFOUT 592 µm 59 µm Biasing/De-Biasing Details: Listed below are some guidelines for GaN device testing and wire bonding: a. Limit positive gate bias (G-S or G-D) to < 1V b. Know your devices breakdown voltages c. Use a power supply with both voltage and current limit. d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture. i. Apply negative gate voltage (-5 V) to ensure that all devices are off ii. Ramp up drain bias to ~1 V iii. Gradually increase gate bias voltage while monitoring drain current until 2% of the operating current is achieved iv. Ramp up drain to operating bias v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved e. To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable): i. Gradually decrease drain bias to V. ii. Gradually decrease gate bias to V. iii. Turn off supply voltages f. Repeat de-bias procedure for each amplifier stage 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 7

VG1 VD1 VG2 VD2 Preliminary Datasheet Revision: January 216 Suggested Bonding Arrangement =.1uF, 5V (Shunt) [4] =.1uF, V (Shunt) =.1uF, 5V (Shunt) = 1 pf, 5V (Shunt) =.1uF, V (Shunt) = 1 Ohms, 3V (Series) VG1 VD1 [4] VG2 VD2 [4] = 1 pf, V (Shunt) RF Input RF Output Substrate RFIN RFOUT Substrate Recommended Assembly Notes 1. Bypass caps should be 1 pf (approximately) ceramic (single-layer) placed no farther than 3 mils from the amplifier. 2. Best performance obtained from use of <1 mil (long) by 3 by.5 mil ribbons on input and output. 3. Part must be biased from both sides as indicated. 4. The.1uF, 5V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do NOT use the.1uf, 5V Capacitors. Mounting Processes Most NGAS GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 32 o C for 3 seconds. Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool. CAUTION: THE IMPROPER USE OF AuSn ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS. PLEASE ALSO REFER TO OUR GaN Chip Handling Application Note BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS! 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 8 Approved for Public Release: Northrop Grumman Case 16-****, 1/**/16