Fundamentals of Power Semiconductor Devices

Similar documents
Fundamentals of Power Semiconductor Devices

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

Power Semiconductor Devices

Semiconductor Devices

Advanced Power MOSFET Concepts

Power MOSFET Zheng Yang (ERF 3017,

FUNDAMENTALS OF MODERN VLSI DEVICES

Solid State Devices- Part- II. Module- IV

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

NAME: Last First Signature

MOSFET short channel effects

Introduction to semiconductor technology

I E I C since I B is very small

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

Power Electronics. P. T. Krein

Semiconductor Devices Lecture 5, pn-junction Diode

Analog and Telecommunication Electronics

Tradeoffs and Optimization in Analog CMOS Design

UNIT 3: FIELD EFFECT TRANSISTORS

1. Introduction Device structure and operation Structure Operation...

Insulated Gate Bipolar Transistor (IGBT)

CHAPTER I INTRODUCTION

Contents. 1.1 Brief of Power Device Design Current Status of Power Semiconductor Devices Power MOSFETs... 3

ADVANCED POWER RECTIFIER CONCEPTS

Three Terminal Devices

Department of Electrical Engineering IIT Madras

FET(Field Effect Transistor)

Semiconductor Physics and Devices

Unit III FET and its Applications. 2 Marks Questions and Answers

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

PHYSICS OF SEMICONDUCTOR DEVICES

Section 2.3 Bipolar junction transistors - BJTs

Power MOSFET Basics. Table of Contents. 2. Breakdown Voltage. 1. Basic Device Structure. 3. On-State Characteristics

Power Semiconductor Devices for Variable Frequency Drives

2 Marks - Question Bank. Unit 1- INTRODUCTION

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

SYED AMMAL ENGINEERING COLLEGE

Lesson Plan. Electronics 1-Total 51 Hours

CHAPTER 8 The PN Junction Diode

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Power Devices and ICs Chapter 15

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

Wide Band-Gap Power Device

THE METAL-SEMICONDUCTOR CONTACT

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

Mechanis m Faliures. Group Leader Jepsy 1)Substrate Biasing 2) Minority Injection. Bob 1)Minority-Carrier Guard Rings

Today s subject MOSFET and IGBT

IGBTs (Insulated Gate Bipolar Transistor)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

UNIT 3 Transistors JFET

ELECTRO-THERMAL TRANSIENT SIMULATION OF SILICON CARBIDE POWER MOSFET

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

Cathode Emitter versus Carrier Lifetime Engineering of Thyristors for Industrial Applications

USING F-SERIES IGBT MODULES

Bibliography 331. Hempel, H-P., Power Semiconductor Handbook, Semikron International, Nuremberg,

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar)

UNIT II JFET, MOSFET, SCR & UJT

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

Power Bipolar Junction Transistors (BJTs)

UNIT I PN JUNCTION DEVICES

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Switching and Semiconductor Switches

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

CHAPTER 8 The PN Junction Diode

Lecture 23 Review of Emerging and Traditional Solid State Switches

EC 307 Power Electronics & Instrumentation

Questions on JFET: 1) Which of the following component is a unipolar device?

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

Lecture - 18 Transistors

Session 3: Solid State Devices. Silicon on Insulator

Appendix: Power Loss Calculation

Semiconductor Detector Systems

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

The Art of ANALOG LAYOUT Second Edition

EE/COE 152: Basic Electronics. Lecture 3. A.S Agbemenu.

ECE 3040 Dr. Alan Doolittle.

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

ELEC-E8421 Components of Power Electronics


Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

ELECTRONIC DEVICES AND CIRCUITS

PHYS 3050 Electronics I

Comparison of Different Cell Concepts for 1200V- NPT-IGBT's

Some Key Researches on SiC Device Technologies and their Predicted Advantages

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

FEM simulation of IGBTs under short circuit operations

Analysis on IGBT Developments

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

Radio Frequency Electronics

Transcription:

В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer

Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device Characteristics 5 1.3 Unipolar Power Devices 8 1.4 Bipolar Power Devices 10 1.5 MOS-Bipolar Power Devices 11 1.6 Ideal Drift Region for Unipolar Power Devices 14 1.7 Charge-Coupled Structures: Ideal Specific On-Resistance 16 1.8 Summary 21 Problems 21 References 22 Chapter 2 Material Properties and Transport Physics 23 2.1 Fundamental Properties 23 2.1.1 Intrinsic Carrier Concentration 25 2.1.2 Bandgap Narrowing 26 2.1.3 Built-in Potential 30 2.1.4 Zero-Bias Depletion Width 32 2.1.5 Impact Ionization Coefficients 32 2.1.6 Carrier Mobility 34 2.2 Resistivity 51 2.2.1 Intrinsic Resistivity 51 2.2.2 Extrinsic Resistivity 51 2.2.3 Neutron Transmutation Doping 55 2.3 Recombination Lifetime 59

xvi FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICES 2.3.1 Shockley-Read-Hall Recombination 60 2.3.2 Low-Level Lifetime 63 2.3.3 Space-Charge Generation Lifetime 65 2.3.4 Recombination Level Optimization 66 2.3.5 Lifetime Control 75 2.3.6 Auger Recombination 80 2.4 Ohmic Contacts 82 2.5 Summary 84 Problems 84 References 86 Chapter 3 Breakdown Voltage 91 3.1 Avalanche Breakdown 92 3.1.1 Power Law Approximations for the Impact Ionization Coefficients 92 3.1.2 Multiplication Coefficient 94 3.2 Abrupt One-Dimensional Diode 95 3.3 Ideal Specific On-Resistance 100 3.4 Abrupt Punch-Through Diode 101 3.5 Linearly Graded Junction Diode 104 3.6 Edge Terminations 107 3.6.1 Planar Junction Termination 108 3.6.2 Planar Junction with Floating Field Ring 120 3.6.3 Planar Junction with Multiple Floating Field Rings 130 3.6.4 Planar Junction with Field Plate 132 3.6.5 Planar Junction with Field Plates and Field Rings 137 3.6.6 Bevel Edge Terminations 137 3.6.7 Etch Terminations 148 3.6.8 Junction Termination Extension 149 3.7 Open-Base Transistor Breakdown 155 3.7.1 Composite Bevel Termination 159 3.7.2 Double-Positive Bevel Termination 159 3.8 Surface Passivation 162 3.9 Summary 162 Problems 163 References 164 Chapter 4 Schottky Rectifiers 167 4.1 Power Schottky Rectifier Structure 168 4.2 Metal-Semiconductor Contact 169 4.3 Forward Conduction 171 4.4 Reverse Blocking 179 4.4.1 Leakage Current 180 4.4.2 Schottky Barrier Lowering 181 4.4.3 Prebreakdown Avalanche Multiplication 184

Contents xvii 4.4.4 Silicon Carbide Rectifiers 185 4.5 Device Capacitance 187 4.6 Thermal Considerations 188 4.7 Fundamental Tradeoff Analysis 192 4.8 Device Technology 194 4.9 Barrier Height Adjustment 194 4.10 Edge Terminations 197 4.11 Summary 198 Problems 199 References 200 Chapter 5 P-i-N Rectifiers 203 5.1 One-Dimensional Structure 204 5.1.1 Recombination Current 205 5.1.2 Low-Level Injection Current 206 5.1.3 High-Level Injection Current 208 5.1.4 Injection into the End Regions 217 5.1.5 Carrier-Carrier Scattering Effect 219 5.1.6 Auger Recombination Effect 219 5.1.7 Forward Conduction Characteristics 221 5.2 Silicon Carbide P-i-N Rectifiers 230 5.3 Reverse Blocking 232 5.4 Switching Performance 236 5.4.1 Forward Recovery 236 5.4.2 Reverse Recovery 244 5.5 P-i-N Rectifier Structure with Buffer Layer 262 5.6 Nonpunch-Through P-i-N Rectifier Structure 263 5.7 P-i-N Rectifier Tradeoff Curves 270 5.8 Summary 274 Problems 275 References 276 Chapter 6 Power MOSFETs 279 6.1 Ideal Specific On-Resistance 280 6.2 Device Cell Structure and Operation 282 6.2.1 The V-MOSFET Structure 283 6.2.2 The VD-MOSFET Structure 284 6.2.3 The U-MOSFET Structure 285 6.3 Basic Device Characteristics 286 6.4 Blocking Voltage 289 6.4.1 Impact of Edge Termination 289 6.4.2 Impact of Graded Doping Profile 290 6.4.3 Impact of Parasitic Bipolar Transistor 291 6.4.4 Impact of Cell Pitch 293

xviii FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICES 6.4.5 Impact of Gate Shape 296 6.4.6 Impact of Cell Surface Topology 298 6.5 Forward Conduction Characteristics 300 6.5.1 MOS Interface Physics 301 6.5.2 MOS Surface Charge Analysis 305 6.5.3 Maximum Depletion Width 310 6.5.4 Threshold Voltage 311 6.5.5 Channel Resistance 321 6.6 Power VD-MOSFET On-Resistance 327 6.6.1 Source Contact Resistance 329 6.6.2 Source Region Resistance 330 6.6.3 Channel Resistance 331 6.6.4 Accumulation Resistance 332 6.6.5 JFET Resistance 333 6.6.6 Drift Region Resistance 335 6.6.7 1ST Substrate Resistance 339 6.6.8 Drain Contact Resistance 339 6.6.9 Total On-Resistance 340 6.7 Power VD-MOSFET Cell Optimization 343 6.7.1 Optimization of Gate Electrode Width 343 6.7.2 Impact of Breakdown Voltage 345 6.7.3 Impact of Design Rules 348 6.7.4 Impact of Cell Topology 350 6.8 Power U-MOSFET On-Resistance 358 6.8.1 Source Contact Resistance 359 6.8.2 Source Region Resistance 361 6.8.3 Channel Resistance 361 6.8.4 Accumulation Resistance 362 6.8.5 Drift Region Resistance 363 6.8.6 N + Substrate Resistance 364 6.8.7 Drain Contact Resistance 365 6.8.8 Total On-Resistance 365 6.9 Power U-MOSFET Cell Optimization 368 6.9.1 Orthogonal P-Base Contact Structure 368 6.9.2 Impact of Breakdown Voltage 371 6.9.3 Ruggedness Improvement 372 6.10 Square-Law Transfer Characteristics 373 6.11 Superlinear Transfer Characteristics 377 6.12 Output Characteristics 381 6.13 Device Capacitances 385 6.13.1 Basic MOS Capacitance 386 6.13.2 Power VD-MOSFET Structure Capacitances 389 6.13.3 Power U-MOSFET Structure Capacitances 399 6.13.4 Equivalent Circuit 408

Contents xix 6.14 Gate Charge 409 6.14.1 Charge Extraction 409 6.14.2 Voltage and Current Dependence 417 6.14.3 VD-MOSFET vs. U-MOSFET Structure 421 6.14.4 Impact of VD-MOSFET and U-MOSFET Cell Pitch 423 6.15 Optimization for High Frequency Operation 426 6.15.1 Input Switching Power Loss 427 6.15.2 Output Switching Power Loss 432 6.15.3 Gate Propagation Delay 434 6.16 Switching Characteristics 436 6.16.1 Turn-On Transient 437 6.16.2 Turn-Off Transient 440 6.16.3 Switching Power Losses 443 6.16.4 [dv/dt] Capability 443 6.17 Safe Operating Area 447 6.17.1 Bipolar Second Breakdown 449 6.17.2 MOS Second Breakdown 451 6.18 Integral Body Diode 452 6.18.1 Reverse Recovery Enhancement 453 6.18.2 Impact of Parasitic Bipolar Transistor 453 6.19 High-Temperature Characteristics 454 6.19.1 Threshold Voltage 454 6.19.2 On-Resistance 455 6.19.3 Saturation Transconductance 456 6.20 Complementary Devices 457 6.20.1 The p-channel Structure 458 6.20.2 On-Resistance 458 6.20.3 Deep-Trench Structure 459 6.21 Silicon Power MOSFET Process Technology 460 6.21.1 Planar VD-MOSFET Process 460 6.21.2 Trench U-MOSFET Process 462 6.22 Silicon Carbide Devices 465 6.22.1 The Baliga-Pair Configuration 465 6.22.2 Planar Power MOSFET Structure 476 6.22.3 Shielded Planar Power MOSFET Structures 481 6.22.4 Shielded Trench-Gate Power MOSFET Structure 489 6.23 Summary 498 Problems 499 References 503 Chapter 7 Bipolar Junction Transistors 507 7.1 Power Bipolar Junction Transistor Structure 508 7.2 Basic Operating Principles 510 7.3 Static Blocking Characteristics 513

xx FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICES 7.3.1 Open-Emitter Breakdown Voltage 514 7.3.2 Open-Base Breakdown Voltage 514 7.3.3 Shorted Base-Emitter Operation 516 7.4 Current Gain 520 7.4.1 Emitter Injection Efficiency 522 7.4.2 Emitter Injection Efficiency with Recombination in the Depletion Region 526 7.4.3 Emitter Injection Efficiency with High-Level Injection in the Base 528 7.4.4 Base Transport Factor 533 7.4.5 Base Widening at High Collector Current Density 536 7.5 Emitter Current Crowding 550 7.5.1 Low-Level Injection in the Base 551 7.5.2 High-Level Injection in the Base 555 7.5.3 Emitter Geometry 559 7.6 Output Characteristics 560 7.7 On-State Characteristics 565 7.7.1 Saturation Region 566 7.7.2 Quasisaturation Region 571 7.8 Switching Characteristics 574 7.8.1 Turn-On Transition 575 7.8.2 Turn-Off Transition 588 7.9 Safe Operating Area 607 7.9.1 Forward-Biased Second Breakdown 608 7.9.2 Reverse-Biased Second Breakdown 611 7.9.3 Boundary for Safe Operating Area 615 7.10 Darlington Configuration 616 7.11 Summary 619 Problems 619 References 621 Chapter 8 Thyristors 625 8.1 Power Thyristor Structure and Operation 628 8.2 Blocking Characteristics 631 8.2.1 Reverse-Blocking Capability 632 8.2.2 Forward-Blocking Capability 636 8.2.3 Cathode Shorting 641 8.2.4 Cathode Shorting Geometry 644 8.3 On-State Characteristics 651 8.3.1 On-State Operation 652 8.3.2 Gate-Triggering Current 654 8.3.3 Holding Current 657 8.4 Switching Characteristics 662 8.4.1 Turn-On Time : 663

Contents xxi 8.4.2 Gate Design 671 8.4.3 Amplifying Gate Design 672 8.4.4 [dv/dt] Capability 675 8.4.5 Turn-Off Process 683 8.5 Light-Activated Thyristors 685 8.5.1 [dl/dt] Capability 686 8.5.2 Gate Region Design 687 8.5.3 Optically Generated Current Density 688 8.5.4 Amplifying Gate Design 690 8.6 Self-Protected Thyristors 691 8.6.1 Forward Breakdown Protection 691 8.6.2 [dv/dt] Turn-On Protection 694 8.7 The Gate Turn-Off Thyristor Strueture 698 8.7.1 Basic Strueture and Operation 698 8.7.2 One-Dimensional Turn-Off Criterion 701 8.7.3 One-Dimensional Storage Time Analysis 703 8.7.4 Two-Dimensional Storage Time Model 704 8.7.5 One-Dimensional Voltage Rise Time Model 706 8.7.6 One-Dimensional Current Fall Time Model 709 8.7.7 Switching Energy Loss 721 8.7.8 Maximum Turn-Off Current 722 8.7.9 Cell Design and Layout 725 8.8 The Triac Structure 726 8.8.1 Basic Structure and Operation 728 8.8.2 Gate-Triggering Mode 1 729 8.8.3 Gate-Triggering Mode 2 730 8.8.4 [dv/dt] Capability 731 8.9 Summary 733 Problems 733 References 735 Chapter 9 Insulated Gate Bipolar Transistors 737 9.1 Basic Device Structures 741 9.2 Device Operation and Output Characteristics 745 9.3 Device Equivalent Circuit 748 9.4 Blocking Characteristics 748 9.4.1 Symmetric Structure Forward-Blocking Capability 748 9.4.2 Symmetric Structure Reverse-Blocking Capability 753 9.4.3 Symmetric Structure Leakage Current 754 9.4.4 Asymmetric Structure Forward-Blocking Capability 760 9.4.5 Asymmetric Structure Reverse-Blocking Capability 767 9.4.6 Asymmetric Structure Leakage Current 769 9.5 On-State Characteristics 776 9.5.1 On-State Model 776

xxii FUNDAMENTALS OF POWER SEMICONDUCTOR DEVICES 9.5.2 On-State Carrier Distribution: Symmetric Structure 783 9.5.3 On-State Voltage Drop: Symmetric Structure 791 9.5.4 On-State Carrier Distribution: Asymmetric Structure 796 9.5.5 On-State Voltage Drop: Asymmetric Structure 803 9.5.6 On-State Carrier Distribution: Transparent Emitter Structure 808 9.5.7 On-State Voltage Drop: Transparent Emitter Structure 813 9.6 Current Saturation Model 815 9.6.1 Carrier Distribution: Symmetric Structure 820 9.6.2 Output Characteristics: Symmetric Structure 828 9.6.3 Output Resistance: Symmetric Structure 833 9.6.4 Carrier Distribution: Asymmetric Structure 834 9.6.5 Output Characteristics: Asymmetric Structure 844 9.6.6 Output Resistance: Asymmetric Structure 848 9.6.7 Carrier Distribution: Transparent Emitter Structure 849 9.6.8 Output Characteristics: Transparent Emitter Structure 853 9.6.9 Output Resistance: Transparent Emitter Structure 855 9.7 Switching Characteristics 856 9.7.1 Turn-On Physics: Forward Recovery 857 9.7.2 Turn-Off Physics: No-Load Conditions 865 9.7.3 Turn-Off Physics: Resistive Load 867 9.7.4 Turn-Off Physics: Inductive Load 876 9.7.5 Energy Loss per Cycle 904 9.8 Power Loss Optimization 907 9.8.1 Symmetric Structure 907 9.8.2 Asymmetric Structure 909 9.8.3 Transparent Emitter Structure 911 9.8.4 Comparison of Tradeoff Curves 912 9.9 Complementary (P-Channel) Structure 913 9.9.1 On-State Characteristics 915 9.9.2 Switching Characteristics 919 9.9.3 Power Loss Optimization 919 9.10 Latch-Up Suppression 920 9.10.1 Deep P + Diffusion 922 9.10.2 Shallow P + Layer 928 9.10.3 Reduced Gate Oxide Thickness 931 9.10.4 Bipolar Current Bypass 936 9.10.5 Diverter Structure 939 9.10.6 Cell Topology 943 9.10.7 Latch-Up Proof Structure 948 9.11 Safe Operating Area 951 9.11.1 Forward-Biased Safe Operating Area 952 9.11.2 Reverse-Biased Safe Operating Area 956 9.11.3 Short-Circuit Safe Operating Area 960

Contents xxiii 9.12 Trench-Gate Structure 966 9.12.1 Blocking Mode 967 9.12.2 On-State Carrier Distribution 969 9.12.3 On-State Voltage Drop 971 9.12.4 Switching Characteristics 973 9.12.5 Safe Operating Area 974 9.12.6 Modified Structures 978 9.13 Blocking Voltage Scaling 980 9.13.1 N-Base Design 981 9.13.2 Power MOSFET Baseline 982 9.13.3 On-State Characteristics 982 9.13.4 Tradeoff Curve 985 9.14 High Temperature Operation 986 9.14.1 On-State Characteristics 986 9.14.2 Latch-Up Characteristics 989 9.15 Lifetime Control Techniques 991 9.15.1 Electron Irradiation 991 9.15.2 Neutron Irradiation 993 9.15.3 Helium Irradiation 993 9.16 Cell Optimization 994 9.16.1 Planar-Gate Structure 995 9.16.2 Trench-Gate Structure 999 9.17 Reverse Conducting Structure 1006 9.18 Summary 1014 Problems 1015 References 1020 Chapter 10 Synopsis 1027 10.1 Typical H-Bridge Topology, 1027 10.2 Power Loss Analysis 1029 10.3 Low DC Bus Voltage Applications 1032 10.4 Medium DC Bus Voltage Applications 1037 10.5 High DC Bus Voltage Applications 1041 10.6 Summary 1045 Problems 1045 References 1047 Author's Biography 1049 Index 1053