Influence of Physical Parameters on Fabric Hand

Similar documents
Effect of different processing stages on mechanical and surface properties of cotton knitted fabrics

Table A.1 Abbreviations of the fabrics fibre contents.

Men s Underwear Knitted Material Properties Test and Analysis

The Effect of Finishing upon Textile Mechanical Properties at Low Loading

A COMPARATIVE EVALUATION OF THE LOW STRESS MECHANICAL PROPERTIES COTTON/SPANDEX AND POLYESTER/SPANDEX BLEND KNITS

Fashion Design. Fibers & Fabrics

Studies on elastane-cotton core-spun stretch yarns and fabrics: Part II Fabric low-stress mechanical characteristics

This is the published version of a paper presented at Euroinvent ICIR Citation for the original published paper:

CHAPTER V SUMMARY AND CONCLUSIONS

Effect of crease behaviour, drape and formability on appearance of light weight worsted suiting fabrics

Bagging Phenomenon on Jersey Knitted Fabrics ABSTRACT

RELATIONSHIP BETWEEN THE PHYSICAL PROPERTIES AND HAND OF JEAN FABRIC

UNIT 3: Textiles and Fabric # Assignment

AQA GCSE Design and Technology 8552

Effect of residual extensibility of polyester filament yarn on low-stress mechanical properties of fabric

Keywords: Eri silk fibre, Wool fibre, Intimate blending, Box-Behnken designing method, Fabric comfort, Fabric handle.

HAPTEX. System Requirements and Architectural Design

An experimental study on fabric softness evaluation Peihua Zhang College of Textiles, Donghua University, Shanghai, People s Republic of China, and

Apparel and Sport Fabric File Fabric Descriptions. Denim: twill weave made of single hard-twisted yarns with colored warp and

Effect of material and fabric parameters on fatigue value of weft knitted fabrics

PROPERTY ANALYSIS OF SKIRTS MADE FOR READY-TO-WEAR COLLECTION.PART I: TENSILE TESTING OF SEWING THREADS AND WOVEN FABRICS

CHAPTER IV RESULTS AND DISCUSSION

Chapter 44: Fabrics and Their Care. Objectives: Compare different types of fibers, fabric construction, methods, and finishes.

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

A detailed analysis on physical and comfort properties of bed linen woven fabrics

Changes in Fabric Handle Resulting from Different Fabric Finishing

Analysis of Mechanical Properties of Fabrics of Different Raw Material

Low stress mechanical behaviour of fabrics obtained from different types of cotton/nylon sheath/core yarn

Textiles: Secret Life of Fabrics

Copyright : 2006, Emerald Group Publishing Ltd

CHAPTER 4 COMPARISON OF DYNAMIC ELASTIC BEHAVIOUR OF COTTON AND COTTON / SPANDEX KNITTED FABRICS

Comfort properties of mulberry and tassar silk fabrics

Review. Directions: After watching Design: All About Textiles, answer the following questions.

Optimising fabric quality, finishing processes and machinery through the use of fabric objective measurement. Irene Slota CSIRO

SCHMETZ. Needle ABc. Needles for Household Sewing Machines

Plain P Most simple and most common type of construction P Inexpensive to produce, durable P Flat, tight surface is conducive to printing and other fi

Innovative solutions for textile problems Fabric objective measurement

ROUND ROBIN FORMABILITY STUDY

EFFECT OF STITCH TYPE ON AIR PERMEABILITY 0F SUMMER OUTERWEAR KNITTED FABRICS

Seam Performance of the Inseam of a Military Trouser in Relation to Garment Fit

Effect of seamed viscose fabrics on drape coefficient

EFFECT OF FINISHING AGENTS ON STIFFNESS AND DRAPE OF KHADI FABRIC FOR THEIR UTILITY IN GARMENT DESIGNING

WOOL AND ALPACA FIBRE BLENDS. L. Wang, X. Wang, X. Liu School of Engineering and Technology, Deakin University Geelong, VIC 3217, Australia

Drape analysis of fabrics used for outerwear

EFFECT OF SEWING PARAMETERS AND WASH TYPE ON THE DIMENSIONAL STABILITY OF KNITTED GARMENTS

UNIT 1: Fashion Basics and Textiles

Influence of the Spinning Process Parameters on Strength Characteristics of Cotton Yarns

CHAPTER 7 DESIGN AND DEVELOPMENT OF MULTILAYERED HOSPITAL TEXTILES

INFLUENCE OF KNITS STRUCTURE ON FLAMMABILITY AND COMFORTABILITY

3D PRINTING ON TEXTILES: TESTING OF ADHESION

Subject: Fabric studies. Unit 5 - Other textile fabrics. Quadrant 1 e-text

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

Sports/Apparel 1 State Test Review

Review Article. Keywords: Fabric structure, Fibre structure, Fabric handle, Low-stress mechanical properties, Wool, Yam structure

Electronic supplementary material

Optimising fabric quality, finishing processes and machinery through the use of fabric objective measurement

FABRIC TO YARN ACTIVITY

The SEWING MACHINE NEEDLE ORGANIZER

TEXTILES, FABRICS, AND FINISHES. Textiles and Interior Design

Prediction of Certain Low Stress Mechanical Properties of Knitted Fabrics from Their Structural Parameters

Research Article Tensile Properties of Single Jersey and 1 1 Rib Knitted Fabrics Made from 100% Cotton and Cotton/Lycra Yarns

IMPACT OF REPEATED WASHINGS ON THE THERMAL INSULATION PROPERTIES OF WOVEN COTTON FABRIC

An online fabric database to link fabric drape and end-use properties

Ifluence of Yarn Texturing Technological Parameters and Fabric Structure on Tensile Properties of the Polipropylene Fabric

CHAPTER 7 DEVELOPMENT OF CHEMICAL BONDED NONWOVEN FABRICS MADE FROM RECLAIMED FIBERS FOR SOUND ABSORPTION BEHAVIOUR

UNIT 4: Textiles and Fabric # Assignment

FABRIC SETTING VER 3.0 APPLICATION

A NEURAL NETWORKS APPROACH IN THE SENSORIAL COMFORT OF WOOL LIGHT FABRICS BY SUBJECTIVE AND OBJECTIVE EVALUATIONS

Investigation on Thermal Properties of Double-Layered Weft Knitted Fabrics

Properties of Polyester, Nylon blended Air-Jet Textured Fabrics

Thermal Comfort Properties of Angora Rabbit/Cotton Fiber Blended Knitted Fabrics

The Impact of Sewing Threads Properties on Seam Pucker

Subject: Fabric Studies. Unit 2 Woven fabrics. Quadrant 1 e-text

Welcome To The SewingCourse.com

Keywords: Dry spun acrylic fiber;ultrafine heterosexual acrylic;environmentally friendly acrylic fiber; Performance research

Engineering of Tearing Strength for Pile Fabrics

FORENSIC SCIENCE. Trace Evidence

TEXTILES AND DESIGN 2/3 UNIT (COMMON) HIGHER SCHOOL CERTIFICATE EXAMINATION. Time allowed Three hours (Plus 5 minutes reading time)

Available from Deakin Research Online:

Elastic Properties of Spandex Plated Cotton Knitted Fabric


DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

The Influence of Technological Parameters on Quality of Fabric Assemble

Dorlastan in the Field of Warp Knitting

Year 11 Revision Tasks

Anisotropy of Woven Fabric Deformation after Stretching

The samples and methods discussed only touch the surface of these techniques and many more variations can be discovered by sampling.

RENEWABLE RESOURSE INTEGRATION IN BIODEGRADABLE COMPOSITES

HIGHER SCHOOL CERTIFICATE EXAMINATION TEXTILES AND DESIGN 2/3 UNIT (COMMON) Time allowed Three hours (Plus 5 minutes reading time)

APPLICATION OF SOYBEAN PROTEIN FIBERS IN WOVEN FABRICS

Influence of the Kind of Fabric Finishing on Selected Aesthetic and Utility Properties

CHAPTER 5 COMPARISON OF DYNAMIC ELASTIC BEHAVIOUR OF SPANDEX BACK PLATED COTTON FABRIC AND SPANDEX CORE COTTON SPUN YARN FABRIC

LESSON 15 TESTING OF TEXTILE FABRICS

*The type of stainless steel were 316L, the diameter of the fiber were 12 micron.

THE ABRASION RESISTANCE OF WARP-KNITTED FABRICS USED IN CAR SEAT COVERS

FASHION DESIGN: STRAND 3. Textiles in Fashion

Study on the Characteristics of Fabric Made From Air Vortex Viscose Rayon Yarn

A BIOMIMIC THERMAL FABRIC WITH HIGH MOISTURE PERMEABILITY

CHAPTER 1 INTRODUCTION

ABC Pocket Guide. Home Sewing Machine Needles 130/705 H

Transcription:

Influence of Physical Parameters on Fabric Hand Mailis Mäkinen and Harriet Meinander Tampere University of Technology, SmartWearLab Christiane Luible and Nadia Magnenat-Thalmann University of Geneva, MIRALab Abstract In this paper we introduce one part of the early stage research in HAPTEX (HAPtic sensing of virtual TEXtiles, http://haptex.miralab.unige.ch) project. This study analyses both the factors that effect on fabric hand and subjective and objective assessments of it. In experimental study most common method, KES-F system, has been used to evaluate objectively fabric hand and drape of extensive collection of fabrics. 1. Introduction Identification of materials is not only knowledge of the technical specification, but also sensory evaluation. By touching you get such information you cannot get with other senses, e.g. perception of the surface of the product, its temperature, hardness and roughness. Textiles differ from other technical structures in that it must have sufficient strength and at the same time it has to be flexible, elastic and easy to pleat and shape. Very important criterion when you evaluate textiles in traditional use is that the fabric and the garment are comfortable in aesthetic and in physiological sense. The comfort sensation of a fabric has multidimensional attributes and is impossible to quantify through a single physical property. In order to find a method for the comfort evaluation of textiles, the concept of fabric hand is commonly used to assess fabrics. Term fabric handle or simply handle or hand is also used. Fabric hand refers to the total sensations experienced when a fabric is touched or manipulated in the fingers [1]. It is a complex parameter and is related to the fabric properties such as flexibility, compressibility, elasticity, resilience, density, surface contour (roughness, smoothness), surface friction and thermal character. Hand is often the fundamental aspect that determines the success or failure of a textile product. The role of drape in a garment is an important aspect of aesthetics. Drape can be defined as a property which characterises the shape of a fabric when it is hanging down of its own weight. Drape properties are needed when modelling the cloth in virtual environment. The aim of our study is to produce a database with extensive physical data on parameters that influence hand and drape of different types of fabrics. The objective measurements are performed with the KES-F system, which is the most common method for objective evaluation of fabric hand and drape. Additional information of deformations in the fabric with small forces is also needed and suitable test method has been investigated. 2. Factors effecting on the fabric hand In textiles raw material, yarn structure, planar structure and finishing treatments affect the fabric hand. Properties of yarns and fabric made from them are influenced by the degree of twist in the yarn. In woven and knitted fabrics the woven / knitted fabric type and the yarn /stitch densities affect to the fabric hand. By knitting it is not possible to produce so tight fabrics than by weaving. The density of knitted fabric depends on the gauge (needle density) of the knitting machine. Nonwoven fabrics differ from knitted or woven fabrics, because they are not based on yarns. They are based on webs of individual fibres, which can be bonded to each other by several means. The texture ranges from soft to harsh [1]. Finishing is an extremely complex subject because of the large number of changes that occur in fabric properties during a finishing sequence. The effects of many finishing operations are interactive. By using various

finishing treatments different kind of end products can be produced from the same unfinished woven or knitted fabric. 3. Subjective and objective assessments of fabric hand Fabric hand is a generic term for descriptive characteristics of textiles obtained through tactile comparison. Fabric hand attributes can be obtained through subjective assessment or objective measurements. [2] Subjective assessment is the traditional method of describing fabric handle based on the experience and variable sensitivity of human beings [2]. Textiles are touched, squeezed, rubbed or otherwise handled to obtain information about physical parameters. In the clothing industry, professional trained handle experts sort out the fabric qualities. Objective assessment has a different primary goal: it is to predict fabric hand by testing relationships between sensory reactions and instrumental data. The most commonly used method is the Kawabata Evaluation System for fabrics (KES-F). Based on the results from KES- F measurement regression equations have been deduced for calculation of Primary hand values and Total hand value, which can be compared to the subjective assessment results [8]. However, although objective assessments are precise from a mechanical point of view, these methods have not been commonly used in the textile and clothing industry. Even today, many companies still use subjective evaluation to assess fabric properties. The main reason for this situation is the repetitive and lengthy process of measurement and the lack of knowledge for a good interpretation of the test results. 4. Factors effecting on subjective assessment In the subjective assessment process of textiles, fabric hand is understood as result of a psychological reaction through the sense of touch. There are variations in how individuals actually feel textiles because people do not have the same sensory perception of identical occurrences. Affecting aspects can be regrouped in sociological factors and the physiological factors. Research works that focused on the sociological aspects used traditional statistical methodologies applied to experiments on representative samples. Gender, age, education and cultural backgrounds were tested and studied as potential influencing factors. Female individuals in general respond more delicately and sensitively than male individuals and therefore have a finer assessment of a specific parameter [3] [4]. Beyond the sociological or psychological considerations, physiological factors of evaluators also have a direct impact on the subjective assessment. Different skin hydrations of individuals affect notably the feel of a textile [5]. A higher moisture level on the skin makes it more sensitive to the sense of touch. In order to ensure the reliability of subjective assessments it is critical to choose the right expressions for the description of a fabric handle parameter. People may use the same word meaning different hand values. For this reason it is preferable to use a paired comparison technique, the so-called bipolar pairs of sensory attributes, such as thin/thick or soft/harsh [6] [7]. For the same reason, fabric hand attributes are measured on specific scales thus avoiding the intrinsic weakness of descriptive terminology. 5. Testing methods and test fabrics 5.1 Kawabata Evaluation System of Textiles The KES-F system (Kawabata s hand evaluation system for fabrics) was developed in Japan by the Hand Evaluation and Standardization Committee (HESC, established in 1972) organized by Professor Kawabata [8]. In this fabric objective measurement method scientific principles are applied to the instrumental measurement and interpretation of fabric low stress mechanical and surface properties such as fabric extension, shear, bending, compression, surface friction and roughness. The fabric handle is calculated from measurements of these properties. Empirical equations for calculating Primary Hand values and Total Hand Values were put forward by Kawabata and Niwa [9].

The characteristic values (Table 1) are calculated from recorded curves obtained by each tester both warp and weft direction. Tensile properties (force-strain curve) and shear properties (forceangle curve) are measured by same machine. Bending properties (torque-angle curve) are measured bending first reverse sides against each other and after that the face sides against each other. Pressure-thickness curves are obtained by compression tester. The measurements of surface friction (friction coefficient variation curve) and surface roughness (thickness variation curve) are made with the same apparatus using different detectors. Characteristic values in KES-F system Tensile Shearing Bending Compression Surface Weight Thickness LT WT RT G 2HG 2HG5 B 2HB LC WC RC MIU MMD SMD W T Linearity of load-extension curve Tensile energy Tensile resilience Shear rigidity Hysteresis of shear force at 0.5º shear angle Hysteresis of shear force at 5º shear angle Bending rigidity Hysteresis of bending moment Linearity of pressure-thickness curve Compressional energy Compressional resilience Coefficient of friction Mean deviation of MIU, frictional roughness Geometrical roughness Weight per unit area Thickness at 0.5 gf/cm 2 5.2 Tests with tensile tester In reality, the fabric of a garment undergoes small extensions and relaxations. To better study this behaviour, some trials have also been performed with a tensile tester, Testometric M500. s are elongated at slow deformation rate to get the results closer to the static case. In that way it is possible to get a good view of the behaviour of the fabric for small forces and deformations. For the real time simulations of fabrics within the haptex project the hysteresis behaviour of fabrics is not directly taken into account. However to know the hysteresis behaviour of a fabric it is important to device an average curve between elongation and relaxation. The Table 1 : Characteristic values in KES-F system [8] actual strain-stress point evolves somewhere inside the hysteresis loop. Figure 1 : Step tensile curve of sample 20 in machine direction.

The final conclusion was that the appropriate way of measuring is step tensile (five loops) of progressive amplitude and 120 s wait between each loop. The constant rate of jaw is 10 mm/min and the maximum forces of each loops are 200, 400, 600, 800 and 1000 N/m (Figure 1). This measuring method allows better analyzing the actual strain-stress behaviour of the fabric, taking into account not only 1 but 5 hysteresis loops. 5.3 Fabric selection process A collection of samples was chosen for evaluating the HAPTEX system. The aim of the fabric selection process was to represent a range of very different fabrics in terms of fibres, structure and dimensions. The total number of samples was limited to 32 in a first selection process. For selecting the different kind of fabrics to be contained in the fabric properties database, three criteria were identified (Figure 2). 1. Criteria: FIBRE Natural fibres Man made fibres Animal fibers: Wool (WO) Silk (SE) Mohair (WM) Alpaka (WP) etc. Plant fibers: Cotton (CO) Linen (LI) Jute (JU) Hemp (HA) etc. Natural polymers: Viscose (CV) Modal (CMD) Cupro (CUP) Acetat (CA) etc. Synthetic polymers: Elastane (EL) Polyacryl (PAN) Polyamide (PA) Polyester (PE) etc. 2. Criteria: STRUCTURE Woven textiles Weft knitted Knitted textiles Warp knitted Nonwovens and Leathers 3. Criteria: DIMENSION Thickness: mm Weight: g/m 2 Choice of 32 samples for the HAPTEX project Figure 2 : Fabric selection process. 1. Criterion: Fibre The fibre has been chosen as the first criterion for the fabric selection process. Different fibre properties (natural/man made, staple/filament) influence on the fabric parameters. In today s clothing collections in stores, synthetic and blended fabric qualities play an important role.

Garments out of synthetic or blended fibres are less expensive and easier to care. This aspect is represented in the fabric selection. s 1-10 (Table 2) are made of natural fibres, samples 11-21 of blended fibres and samples 22-31 of synthetic fibres. 2. Criterion: Structure In the fabric selection process a variety of different fabric structure has been chosen: 23 woven fabrics, 7 knitted fabrics, one nonwoven and leather. The fabric structure has a high influence on the fabric properties, i.e. knitted textiles are mostly more elastic than woven fabrics. In the selection process fabrics with the same fibre composition different structures have been chosen to analyze the influence of the structure to the hand parameter. 3. Criterion: Dimension The third criterion of selection was based on the physical aspect and dimension of the fabrics, like thickness, yarn density and weight. Fabrics, composed of the same fibre and the same structure, can still be different among thickness and weight, caused by yarn number, yarn and loop densities or finishing treatments. To ensure a realistic virtual simulation of textiles for the Haptex project, it is important to study the characteristics of a broad range of fabrics. Therefore, each fabric group is represented in the selection. The described criteria for the selection process of the fabrics represent as most variety as possible in terms of physical parameters and expected haptic characteristics. Description Fibre content Structure Weight g/m2 Thickness mm 1. Denim 100% CO twill 380 1,60 2. Shirt cotton 100% CO combined twill 120 0,61 3. Cord 100% CO velveteen 330 1,76 4. Linen 100% LI plain weave 250 1,09 5. Gabardine 100% WO twill 175 0,55 6. Crepe 100% WO plain weave 145 0,93 7. Silk 100% SE plain weave 15 0,10 8. Natural silk (bourette) 100% SE plain weave 150 0,80 9. Wild silk (dupion) 100% SE plain weave 80 0,44 10. Jute 100% JU plain weave 300 1,44 11. Flannel 80% WO 20% PES twill 290 1,53 12. Denim 62% PES twill 275 1,13 35% CO 3% EL 13. Plaid 35% PES twill 270 1,14 35% AF 30% WO 14. Tweed 66% AF combined twill 270 3,90 14% WO 10% PES 10% CMD 15. Velvet 92% CO 8% CMD velvet 300 1,88 16. Lurex knit 70% PES 30 % PA held stitch knit 215 2,94 17. Crepe-jersey 85% PES 15% EL rib knit 135 0,73 18. Woven motorcyclist wear fabric, 72% PA 28 % PU plain weave 90 0,39 coated 19. Woven easy care fabric 65% PES 35 % CO twill 180 0,57 20. Warp knitted velour fabric 90% PA 10% EL warp knit velour 235 1,56 21. Weft knitted plain fabric 98% CLY 2% EL single jersey 172 1,21 22. Taffeta 100% CA plain weave 125 0,33 23. Crepe 100% PES plain weave 85 0,25 24. Satin 100% PES satin 125 0,30 25. Felt 100% PES nonwoven 155 1,25 26. Organza 100% PES plain weave 25 0,16 27. Fleece 100% PES weft knit 250 3,99 28. Woven upholstery 100% PES woven Jacquard 600 2,38 29. Woven outdoor leisure wear fabric 100% PES plain weave 90 0,20 30. Tulle 100% PA warp knitted tulle 10 0,30 31. Warp knitted tricot-satin 100% PA warp knitted tricot-satin 100 0,40 32. leather 100% Leather ---------------- 815 1,68 Table 2 : Specification of selected samples.

5.4 Digitized output In its standard version the KES-F equipment provides analog output signals that have to be digitized in order to be stored in an electronic database. The principle of digitizing the output of Kawabata measurements is that similar curves as in analog form can be recorded using the measured values. The output parameters are the same as in analog form in the x- and y-axis. The sampling rates in various measurements can be fixed differently and according to requirements. E.g. in bending the sample rate is 20 Hz and in surface profiles and friction 1 khz. The program calculates the characteristic values in KES-F system (Table 1) printing them on the report page. 6. Results 6.1 KES-F results In figures 3 7 five parameters of KES-F measurements are illustrated in diagrams to clarify the comparison of different fabrics. It can be seen that tensile resilience (Figure 3) is the highest on tight woven fabrics (samples 5, 7, 18, 22, 23, 26, 29) and the lowest on knitted fabrics (samples 16, 21) and nonwoven (sample 25). Woven fabric for motorcyclist wear and leather (samples 18, 32) have the highest shear rigidity (Figure 4). Knitted fabrics (samples 16, 17, 20, 21) and also some woven fabrics, e.g. combined twill, crepe structure and loose woven fabric (samples 2, 6, 14) have quite low resistance to shear. Bending rigidity (Figure 5) is often different in machine/warp and cross/weft direction of the fabric. It can be due to the unbalanced fabric, i.e. warp and weft densities differ a lot or the yarn in the other system is much thicker. It is quite usual in woven fabrics that the warp density is higher than the weft density. Bending rigidity in denim fabric (sample 1) is clearly different in warp and weft directions. Also in leather (sample 32) the stiffness differ a lot in long and cross direction. The difference between the bending rigidity values e.g. in samples 22 and 23 is quite significant if you touch and bend these fabrics by fingers, although the difference in the diagrams seems so small. s that are compressed a lot (soft and voluminous fabrics) are returned back poorly and those with low compression (samples 7, 18, 29, 30) returned well (Figure 6). The woven or knitted structure or the unbalance of the fabric is influenced significantly to differences of the surface roughness in machine and cross direction (Figure 7). It is only natural that twill line in sample 1, corduroy structure (sample 3), wales in knitted structure (sample 16), unbalanced taffeta structure (sample 22) and tulle in warp knit (sample 30) affects significantly to the surface roughness. Roughness of the smooth fabrics, plain weave silk (sample7) and satin structure (sample 24), is quite low, but slightly different in warp and weft directions. Tensile resilience / % 90 80 70 60 50 40 30 20 10 0 Tensile resilience RT 5 7 16 18 21 22 23 25 26 29 RT machine direction RT cross direction Figure 3 : Tensile resilience of selected samples measured with KES-FB1 device. Shear rigidity / g/cm degree 35 30 25 20 15 10 5 0 Shear Rigidity G 2 6 14 16 17 18 20 21 32 G machine direction G cross direction Figure 4 : Shear rigidity of selected samples measured with KES-FB1 device.

Bending rigidity / gcm/cm 4,500 4,000 3,500 3,000 2,500 2,000 1,500 1,000 0,500 0,000 Bending rigidityb 1 22 23 32 B machine direction B cross direction Figure 5 : Bending rigidity of selected samples measured with KES-FB2 device. Compressional resilience / % 96 94 92 90 88 86 84 82 80 Compressional resilience RC 7 18 29 30 Figure 6 : Compressional resilience of selected samples measured with KES-FB3 device. Geometrical roughness/ micron 30,000 25,000 20,000 15,000 10,000 5,000 0,000 Geometrical roughness SMD 1 3 7 16 22 24 30 RC SMD machine direction SMD cross direction 6.2. Transfer of the physical properties to the simulation engine The final demonstrator of Haptex should allow the user to choose a textile from the fabric database and sense a haptic feedback of virtual textiles according to their visual and haptic representation of mechanical properties. For a realistic virtual simulation of clothing, the simulation engine needs to be fed with parameters for the interpretation of the real world behaviour of fabrics. The easiest way to detect the right input parameters is to measure the properties of real fabrics and to apply them to the virtual simulation engine. Most of the parameters can be measured with standard measurement devices, such as the Kawabata Evaluation System. However, for certain parameters there are still no suitable measuring devices and they have to be approximated through other experiments. and plasticity parameters and the coefficient of friction are evaluated parameters from KES-F measurements. Standard experimental procedures do not yet exist for the measuring of deformation-speed dependant forces, such as viscosity. Mechanical parameters are divided into internal and external forces. Internal forces, such as elasticity, viscosity and plasticity, occur from surface deformations. External forces caused by environment interactions, consist in gravity, air viscosity, contact reaction, such as friction or other miscellaneous interactions. The surface deformations are divided into in-plane deformations (the 2D deformations along with the cloth surface plane in warp, weft and shear) and bending deformation (the 3D surface curvature for weft and warp). Both, in-plane and out-of-plane deformations, consist of elasticity, viscosity and plasticity parameters (Figure 8) [10]. Figure 7 : Geometrical roughness of selected samples measured with KES-FB4 device.

Gravity Friction External forces Weft Bending Warp Bending Out-of-plane deformations Weft Elongation Internal deformation modes Warp Elongation In- plane deformations Shear deformation Approximations from Kawabata measurements Not yet measurable parameters Set parameters Figure 8 : Mechanical properties in the simulation engine. 7. Discussion Virtual simulation of clothing needs parameters of the real world behaviour of fabrics. In this first laboratory test series database with physical data has been produced. The parameters have been measured with the standard version of KES-F equipment. However, there are still certain parameters which have to be approximated through other experiments. Therefore further study is necessary to refine physical parameters through more systematic analysis. The more exactly virtual simulation behavior is approximated to the behavior of real materials, the more processes of the garment manufacturing chain can be executed virtually.

References [1] Hatch, L. Kathryn, Textile Science. West Publishing Company, Minneapolis, USA, 1993, ISBN 0-314-90471-9. 472 pp. [2] Hui C. L., Neural Network Prediction of Human Psychological Perceptions of Fabric Hand, Textile Research J., Vol. 74, 2004. [3] Kweon S., Lee E., Choi J., A Comparative study on the Subjective Fabric Hand According to Gender for Winter Sleepwear Fabrics, Fibers and Polymers, Vol.5, No.1, 2004. pp 6-11. [4] Dillon P., Moody W., Bartlett R., Scully P., Morgan R., James C., Sensing the fabric, Lecture Notes In Computer Science; Vol. 2058, Proceedings of the First International Workshop on Haptic Human-Computer Interaction, 2000, pp. 205 218. [5] Alfons Hofer, Stoffe 2/ Stoffe und Mode, Bindungen, Gewebemusterung, DfV-Fachbuch, ISBN 3-87150-799-7. [6] Brand, R. H., Measurement of Fabric Aesthetics- Analysis of Aesthetic Components, Textile Res. J., Vol. 34, 1964 [7] Mahar, T. J., Wheelwright, P., Dhingra, R. C., and Postle, R., Measuring and Interpreting Fabric Low Stress Mechanical and Surface Properties, Part V: Fabric Hand Attributes and Quality Descriptors, Textile Res. J. 60, 1990, pp. 7-17. [8] Kawabata S., The standardization and analysis of hand evaluation, (2nd Edition). The hand evaluation and standardization committee, The Textile Machinery Society of Japan, Osaka, 1980, 96 pp. [9] Shishoo, R., Objective measurement of fabric handle: Dream or reality? In Proceedings of Avantex, International Symposium for High-Tech Apparel Textiles and Fashion Engineering with Innovation-Forum, Frankfurt, Germany, 27. November, 2000, 15pp. [10] Volino P., Magnenat-Thalmann N., Accurate Garment Prototyping and Simulation, Computer- Aided Design & Applications, Vol. 2, Nos. 1-4, 2005.