TSH300 Ultra Low-Noise High-Speed Operational Amplifier Pin Connections (top view) + - Description Applications Order Codes OUT

Similar documents
Obsolete Product(s) - Obsolete Product(s)

Part Number Temperature Range Package Conditioning Marking TSH330ID. SO8 Tube TSH330I -40 C to +85 C TSH330IDT SO8 Tape&Reel TSH330I

TSV321-TSV358-TSV324. General Purpose, Input/Output Rail-to-Rail Low Power Operational Amplifiers. Description. Applications

Non-inverting input 1. Part Number Temperature Range Package Packing Marking. 4558C MC4558CPT TSSOP8 Tape & Reel MC4558IN

TSM100 SINGLE OPERATIONAL AMPLIFIER AND SINGLE COMPARATOR

Part Number Temperature Range Package Packing Marking. DIP14 Tube LM2902N LM2902D/DT SO-14 Tube or Tape & Reel

MC33172 MC Low power dual bipolar operational amplifiers. Features. Description

TSH110-TSH111-TSH112-TSH113-TSH114

TSM106. Dual Operational Amplifier and Voltage Reference. Operational Amplifier: Voltage Reference: PIN CONNECTIONS (top view) DESCRIPTION ORDER CODES

TS931ILT/AILT/BILT SOT23-5L Tape & Reel

DIP14 Tube LM2901N LM2901D/LM2901DT SO-14 Tube or Tape & Reel

Inverting Input 1. Non-inverting Input 1

MC Low noise quad operational amplifier. Features. Description

LF253 LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

Obsolete Product(s) - Obsolete Product(s)

LMV321-LMV358-LMV324. Low cost low power input/output rail-to-rail operational amplifiers. Features. Applications. Description LMV321ILT (SOT23-5)

TS522. Precision low noise dual operational amplifier. Features. Description

TS mW Stereo Headphone Amplifier. Description. Applications. Order Codes

TS982. Wide bandwidth dual bipolar operational amplifier. Features. Applications. Description

TEB1033 TEF1033-TEC1033

LF253, LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

TS27L4. Very low power precision CMOS quad operational amplifiers. Features. Description

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

1.8 V input/output, rail-to-rail, low power operational amplifiers. Reference. TS185x TS1851 TS1852 TS1854. TS185xA TS1851A TS1852A TS1854A

LM2903W. Low-power, dual-voltage comparator. Features. Description

LM158,A-LM258,A LM358,A

LMV321, LMV358, LMV324

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

TS3704. Micropower quad CMOS voltage comparators. Features. Description

UA748 PRECISION SINGLE OPERATIONAL AMPLIFIER

TL062. Low power JFET dual operational amplifiers. Features. Description + -

TSV611, TSV611A, TSV612, TSV612A

OPERATIONAL AMPLIFIERS

TSH103. Low cost triple video buffer/filter for standard video. Features. Applications. Description

LM2901. Low power quad voltage comparator. Features. Description

LM248, LM348. Four UA741 quad bipolar operational amplifiers. Description. Features

TSM104W/A QUAD OPERATIONAL AMPLIFIER AND PROGRAMMABLE VOLTAGE REFERENCE OPERATIONAL AMPLIFIERS

LM2903H. Low-power dual voltage comparator. Features. Description

TS881. Rail-to-rail 0.9 V nanopower comparator. Description. Features. Applications

Order code Temperature range Package Packaging Marking

TL061 TL061A - TL061B

UA741 GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

RT2904WH. RobuST low-power dual operational amplifier. Applications. Features. Description

TSM103/A DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE

TSC1021. High-side current sense amplifier. Features. Description. Applications

Features. Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking


TS391. Low-power single voltage comparator. Features. Description

Obsolete Product(s) - Obsolete Product(s)

TSV6390, TSV6390A, TSV6391, TSV6391A

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) STG3684

TL081 TL081A - TL081B

Obsolete Product(s) - Obsolete Product(s)

Low noise low drop voltage regulator with shutdown function. Part numbers

LM2902. Low power quad operational amplifier. Features. Description

TL074 TL074A - TL074B

TSC101. High side current sense amplifier. Features. Applications. Description

TSL channel buffers for TFT-LCD panels. Features. Application. Description

MC MC35171 LOW POWER SINGLE BIPOLAR OPERATIONAL AMPLIFIERS

TSB611. Low-power, rail-to-rail output, 36 V operational amplifier. Applications

LM139, LM239, LM339. Low-power quad voltage comparators. Features. Description

TL064. Low power JFET quad operational amplifier. Features. Description

OA1MPA, OA2MPA, OA4MPA

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING

TL062 TL062A - TL062B

TL082 TL082A - TL082B

STG3699AQTR LOW VOLTAGE 0.5Ω MAX QUAD SPDT SWITCH WITH BREAK-BEFORE-MAKE FEATURE

LM2904WH. Low-power dual operational amplifier. Description. Features

LM723CN. High precision voltage regulator. Features. Description

LM193, LM193A, LM293, LM293A, LM393, LM393A

LM224A, LM324A. Low-power quad operational amplifiers. Features. Description

LDRxxyy VERY LOW DROP DUAL VOLTAGE REGULATOR

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances

STG719 LOW VOLTAGE 4Ω SPDT SWITCH

Obsolete Product(s) - Obsolete Product(s)

TDA W MONO CLASS-D AMPLIFIER 1 FEATURES 2 DESCRIPTION. Figure 1. Package 25W OUTPUT POWER:

Part Number Temperature Range Package Packaging VRef (%) Marking TSM1014ID

TL064 TL064A - TL064B

TDA W AUDIO AMPLIFIER

74VHC20 DUAL 4-INPUT NAND GATE

Obsolete Product(s) - Obsolete Product(s)

. 2 SEPARATE STANDBY : REDUCED. . HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 3mV . HIGH VIDEO PERFORMANCES :

Low-power, 2.5 MHz, RR IO, 36 V BiCMOS operational amplifier. Description

TL081 TL081A - TL081B

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

TS507. High precision rail-to-rail operational amplifier. Applications. Description. Features. Pin connections (top view)

Low noise low drop voltage regulator with shutdown function. Part numbers

L2720/2/4 LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

TDA W MONO CLASS-D AMPLIFIER 18W OUTPUT POWER:

LM193, A LM293, A - LM393, A

TS27M2, TS27M2A, TS27M2B

TSC1021. High-side current sense amplifier. Applications. Description. Features

Obsolete Product(s) - Obsolete Product(s)

TSH24 HIGH PERFORMANCE QUAD BIPOLAR OPERATIONAL AMPLIFIER

TSX339. Micropower quad CMOS voltage comparators. Related products. Applications. Description. Features

MC33078 LOW NOISE DUAL OPERATIONAL AMPLIFIER

TL084 TL084A - TL084B

TL074. Low noise JFET quad operational amplifier. Features. Description

Transcription:

TSH3 Ultra Low-Noise High-Speed Operational Amplifier Structure: VFA 2 MHz bandwidth Input noise:.6 nv/ Hz Stable for gains > Slew rate: 23 V/µs Specified on 1Ω load Tested on V power supply Single or dual supply operation Minimum and maximum limits are tested in full production Description Pin Connections (top view) OUT 1 -VCC 2 +IN 3 + - SOT23- +VCC 4 -IN The TSH3 is a voltage feedback amplifier featuring ultra-low input voltage and current noise. This feature, associated with a large bandwidth, large slew rate and a good linearity, makes the TSH3 a good choice for high-speed data acquisition systems where sensitivity and signal integrity are the main priorities. The TSH3 is a single operator available in and the tiny SOT23-L plastic package, saving board space as well as providing excellent thermal performances. Applications High speed data acquisition systems Probe equipment Communication & video test equipment Medical instrumentation ADC drivers NC -IN +IN -VCC 1 2 3 4 _ + 8 7 6 NC +VCC NC Order Codes Part Number Temperature Range Package Packing Marking TSH3ILT SOT23-L Tape & Reel K38 TSH3ID -4 C to +8 C SO-8 Tube TSH3I TSH3IDT SO-8 Tape & Reel TSH3I Rev. 2 September 2 1/18 www.st.com 18

Absolute Maximum Ratings TSH3 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit V CC Supply Voltage (1) V id Differential Input Voltage (2) V in Input Voltage Range (3) 6 V +/-. V +/-2. V T oper Operating Free Air Temperature Range -4 to +8 C T stg Storage Temperature -6 to +1 C T j Maximum Junction Temperature 1 C R thja Thermal Resistance Junction to Ambient SOT23-L 2 1 C/W R thjc Thermal Resistance Junction to Case SOT23-L 8 28 C/W P max Maximum Power Dissipation (4) (@Ta=2 C) for Tj=1 C SOT23-L 83 mw ESD HBM: Human Body Model () (all packages) 1 kv MM: Machine Model (6) (all packages) 1 V CDM: Charged Device Model () 1. kv 1. All voltage values are measured with respect to the ground pin. 2. Differential voltage is between the non-inverting input terminal and the inverting input terminal. 3. The magnitude of input and output voltage must never exceed V CC +.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuits on amplifiers.. Human body model, 1pF discharged through a 1.kΩ resistor into P min of device. 6. This is a minimum value. Machine model ESD, a 2pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < Ω), into pin to pin of device. Table 2. Latch-up Immunity 2 ma Operating conditions Symbol Parameter Value Unit V CC Supply Voltage (1) 4. to. V V icm Common Mode Input Voltage -1. to +1.6 V 1. Tested in full production at V (±2.V) supply voltage. 2/18

TSH3 Electrical Characteristics 2 Electrical Characteristics Table 3. Electrical characteristics for V CC = ±2.V, T amb = 2 C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit DC performance V io Input Offset Voltage T amb -1.8. 1.8 Offset Voltage between both inputs T min. < T amb < T max.. mv V io V io drift vs. Temperature T min. < T amb < T max. -3.8 µv/ C I ib+ Non Inverting Input Bias Current T amb 3 46 DC current necessary to bias the input + T min. < T amb < T max. 33 µa I ib- Inverting Input Bias Current T amb -46-3 DC current necessary to bias the input - T min. < T amb < T max. -34 µa CMR Common Mode Rejection Ratio V ic = ±1V 6 88 2 log ( V ic / V io ) T min. < T amb < T max. 83 db SVR Supply Voltage Rejection Ratio V cc = 3.V to V 7 77 2 log ( Vcc/ Vio) T min. < T amb < T max. 74 db PSRR ICC Power Supply Rejection Ratio 2 log ( Vcc/ Vout) Positive Supply Current DC consumption with no input signal Gain = +, V cc =±1mV at 1kHz 76 db No load 1 19. T min. < T amb < T max. 1.3 Dynamic performance and output characteristics ma A VD Open Loop Gain Output Voltage/Input Voltage Gain in open loop of a VFA. R L = 1Ω,V out = ±1V 6 67 db T min. < T amb < T max. 66 db Bw SR V OH V OL I out Bandwidth Frequency where the gain is 3dB below the DC gain Gain Flatness @.1dB Band of frequency where the gain variation does not exceed.1db Slew Rate Maximum output speed of sweep in large signal High Level Output Voltage Low Level Output Voltage I sink Short-circuit output current entering op-amp. I source Output current coming out of the op-amp. Small Signal V out =2mVp-p RL = 1Ω Gain = + Gain = +2 3 Small Signal Vout=2mVp-p Gain = + V out = 2Vp-p, Gain = +2, R L = 1Ω 2 43 MHz 16 16 23 V/µs R L = 1Ω 1.39 1.4 V T min. < T amb < T max. 1.46 R L = 1Ω -1.4-1.39 V T min. < T amb < T max. -1.46 Output to GND 44 77 T min. < T amb < T max. 78 Output to GND -82-44 ma T min. < T amb < T max. -78 3/18

Electrical Characteristics TSH3 Table 3. Electrical characteristics for V CC = ±2.V, T amb = 2 C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit en in SFDR Equivalent Input Noise Voltage see application note on page 13 Equivalent Input Noise Current (+) see application note on page 13 Spurious Free Dynamic Range The highest harmonic of the output spectrum when injecting a filtered sine wave Noise and distortion F = 1kHz.6.77 (1) nv/ Hz F = 1kHz 3.3. (1) pa/ Hz V out = 2Vp-p, Gain = +, R L = 1Ω, F = 1MHz dbc 1. This parameter is guaranteed by design and evaluated using corner lots. This value is not tested in full production. 4/18

Electrical Characteristics TSH3 Figure 1. 2 Frequency response G=+, Figure 2. 2 Frequency response G=+7.8, 1 2 1 1 1 Gain=+ (Rfb=2Ω/Rg=Ω) - 1k 1M 1M 1M 1G Gain=+7.8 (Rfb=68Ω/Rg=1Ω) 1k 1M 1M 1M 1G Figure 3. 2 Frequency response G=+1.2, Figure 4. 3 Frequency response G=+19.9, 2 2 1 1 2 1 Gain=+1.1 (Rfb=91Ω/Rg=1Ω) 1k 1M 1M 1M 1G Figure. 2 Frequency response G=-, 1 Gain=+19.9 (Rfb=1Ω/Rg=27Ω) 1k 1M 1M 1M 1G Figure 6. 2 Frequency response G=-7.8, 1 1 1 1 Gain= - (Rfb=27Ω//1pF, Rg=43Ω) - 1k 1M 1M 1M 1G Gain= -7.8 (Rfb=39Ω//1pF, Rg=43Ω) - 1k 1M 1M 1M 1G /18

Electrical Characteristics TSH3 Figure 7. 3 Frequency response G=-1.2, Figure 8. 3 Frequency response G=-19.9, 2 2 2 1 2 1 1 Gain= -1.2 (Rfb=1Ω//1pF, Rg=43Ω) 1k 1M 1M 1M 1G 1 Gain= -2 (Rfb=1kΩ//1pF, Rg=47Ω) 1k 1M 1M 1M 1G Figure 9. 2 Frequency response G=+, SOT23-L Figure 1. Frequency response G=+7.8, SOT23-L 2 1 1 1 1 SOT23- Gain=+ (Rfb=2Ω/Rg=Ω) - 1k 1M 1M 1M 1G SOT23- Gain=+7.8 (Rfb=68Ω/Rg=1Ω) - 1k 1M 1M 1M 1G Figure 11. Frequency response G=+1.1, SOT23-L 2 Figure 12. Frequency response G=+19.9, SOT23-L 3 2 2 1 1 2 1 SOT23- Gain=+1.1 (Rfb=91Ω/Rg=1Ω) 1k 1M 1M 1M 1G SOT23-1 Gain=+19.9 (Rfb=1Ω/Rg=27Ω) 1k 1M 1M 1M 1G 6/18

Electrical Characteristics TSH3 Figure 13. Gain flatness, G=+, 14,2 Figure 14. Gain flatness, G=+7.8, 18, 14, 17,8 13,8 13,6 17,6 17,4 13,4 Gain=+ (Rfb=2Ω/Rg=Ω) 13,2 1k 1M 1M 1M 1G 17,2 Gain=+7.8 (Rfb=68Ω/Rg=1Ω) 17, 1k 1k 1M 1M 1M Figure 1. Gain flatness, G=+1.2, Figure 16. Gain flatness, G=+19.9, 2,4 26,2 2,2 26, 2, 2,8 19,8 19,6 Gain=+1.1 (Rfb=91Ω/Rg=1Ω) 2,6 2,4 Gain=+19.9 (Rfb=1Ω/Rg=27Ω) 1k 1k 1M 1M 1M 1k 1k 1M 1M 1M Figure 17. Gain flatness, G=+, SOT23-L Figure 18. Gain flatness, G=+7.8, SOT23-L 18, 14,2 17,8 14, 13,8 17,6 17,4 13,6 13,4 SOT23- Gain=+ (Rfb=2Ω/Rg=Ω) 1k 1M 1M 1M 1G SOT23-17,2 Gain=+7.8 (Rfb=68Ω/Rg=1Ω) 17, 1k 1k 1M 1M 1M 7/18

Electrical Characteristics TSH3 Figure 19. Gain flatness, G=+1.1, SOT23-L Figure 2. Gain flatness, G=+19.9, SOT23-L 2,4 26,2 2,2 26, 2, 19,8 19,6 SOT23- Gain=+1.1 (Rfb=91Ω/Rg=1Ω) 1k 1k 1M 1M 1M 2,8 2,6 2,4 SOT23- Gain=+19.9 (Rfb=1Ω/Rg=27Ω) 1k 1k 1M 1M 1M Figure 21. Input voltage noise e n (nv/vhz), 4, 4, 3, 3, 2, 2, 1, 1,, Gain=26dB Rg=27Ω Rfb=1Ω non-inverting input in short-circuit, 1 1k 1k 1k 1M 1M e n (nv/vhz) Figure 22. Input voltage noise (corner lot) 1,,9,8,7,6, Typ. Max.,4,3 Gain=26dB Rg=27Ω,2 Rfb=1Ω non-inverting input in short-circuit,1, 1 1k 1k 1k 1M 1M Figure 23. Input current noise i n (pa/vhz) 3 28 26 24 22 2 Gain=26dB Rg=27Ω Rfb=1Ω 1Ω to GND on non-inverting input 18 16 14 12 1 8 6 4 2 1 1k 1k 1k 1M 1M Figure 24. Input current noise (corner lot) i n (pa/vhz) 8 7 6 4 Typ. Max. 3 Gain=26dB 2 Rg=27Ω Rfb=1Ω 1 1Ω to GND on non-inverting input 1 1k 1k 1k 1M 1M 8/18

Electrical Characteristics TSH3 Figure 2. Distortion vs. V out, HD2 & HD3 (dbc) -2-2 -3-3 -4-4 - - -6-6 -7-7 -8-8 -9-9 HD2 HD3-1 1 2 3 4 Output Amplitude (Vp-p) Figure 27. Slew-rate 2, Gain=+, Rfb=2Ω S8 F=1MHz Figure 26. Distortion vs. V out, SOT23-L HD2 & HD3 (dbc) -2-2 -3-3 -4-4 - - -6-6 -7-7 -8-8 -9-9 HD3 HD2 Gain=+, Rfb=2Ω SOT23- F=1MHz -1 1 2 3 4 Output Amplitude (Vp-p) Figure 28. Reverse isolation vs. frequency Output Response (V) 1, 1,,, /SOT23- Gain=+ (Rfb=2Ω) 2 4 6 8 1 12 14 Time (ns) Isolation (db) -2-4 -6-8 Small Signal /SOT23- -1 1k 1M 1M 1M 1G Figure 29. Quiescent current vs. V cc Icc (ma) 1 1 - -1-1 Icc(+) Icc(-) /SOT23- Gain=+ (Rfb=2Ω) Input to mid-supply (+2.V) no load,, 1, 1, 2, 2, 3, 3, 4, 4,, Vcc (V) Figure 3. V out max vs. V cc Vout max. (Vp-p) 4 3 2 1 /SOT23 Gain=+ (Rfb=2Ω) -1 F=1MHz -2 1 2 3 4 9/18

Electrical Characteristics TSH3 Figure 31. V io vs. temperature 1, Figure 32. I bias vs. temperature 4,9,8,7 3 2 Ib(+) V IO (mv),6,,4 I BIAS (µa) 1-1,3,2,1, -4-2 2 4 6 8 1 12-2 -3-4 Ib(-) -4-2 2 4 6 8 1 12 Figure 33. Supply current vs. temperature 2 Figure 34. AVD vs. temperature 8 1 78 1 Icc(+) 76 74 I CC (ma) - -1-1 Icc(-) A VD (db) 72 7 68 66-2 -2-3 no Load In+/In- to GND -4-2 2 4 6 8 1 12 64 62 6-4 -2 2 4 6 8 1 12 Figure 3. Output rails vs. temperature 2 Figure 36. I out vs. temperature 1 8 1 V OH 6 4 Isource 2 V OH & OL (V) -1-2 V OL Iout (ma) -2-4 -6 Isink -3-8 -1-4 - -4-2 2 4 6 8-12 -14-16 Output: short-circuit -4-2 2 4 6 8 1 12 1/18

Electrical Characteristics TSH3 Figure 37. CMR vs. temperature 1 98 96 94 Figure 38. Bandwidth vs. temperature 7 6 6 CMR (db) 92 9 88 Bw (MHz) 4 4 86 3 84 82 8-4 -2 2 4 6 8 1 12 3 2 2 Gain=+2-4 -2 2 4 6 8 1 12 Figure 39. Slew-rate vs. temperature 28 Figure 4. I sink 9 8 Slew Rate (V/µs) 26 24 22 SR- SR+ Isink (ma) 7 6 4 3-1V + _ +2.V VOL without load Isink V 2 18 Gain=+2-4 -2 2 4 6 8 1 12 2 1-2, -1, -1, -,, Vout (V) RG -2.V Amplifier in open loop without load Figure 41. SVR vs. temperature 9 Figure 42. I source 8-1 + +2.V VOH without load 8-2 +1V _ Isource V SVR (db) 7 7 6 Isource (ma) -3-4 - -6 RG -2.V Amplifier in open loop without load 6-7 -4-2 2 4 6 8 1 12-8 -9,, 1, 1, 2, Vout (V) 11/18

Power Supply Considerations TSH3 3 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 1nF can be added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 43. Circuit for power supply bypassing +VCC + 1microF 1nF + - 1nF 1microF + -VCC 12/18

Evaluation Boards TSH3 4 Evaluation Boards An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-L package. _SINGLE_HF: Board for the evaluation of a single high-speed op-amp in package. _DUAL_HF: Board for the evaluation of a dual high-speed op-amp in package. _S_MULTI: Board for the evaluation of a single high-speed op-amp in package in inverting and non-inverting configuration, dual and single supply. SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. Board material description: 2 layers FR4 (εr=4.6) epoxy 1.6mm copper thickness: 3µm Figure 44. Evaluation kit for high-speed op-amps 13/18

Noise Measurements TSH3 Noise Measurements The noise model is shown in Figure 4, where: en: input voltage noise of the amplifier inn: negative input current noise of the amplifier inp: positive input current noise of the amplifier Figure 4. Noise model R3 in+ + output N3 in- en _ HP377 Input noise: 8nV/ Hz R1 N2 R2 N1 The thermal noise of a resistance R is: where F is the specified bandwidth. 4kTR F On a 1Hz bandwidth the thermal noise is reduced to 4kTR where k is the Boltzmann's constant, equal to 1,374.1-23J/ K. T is the temperature ( K). The output noise eno is calculated using the Superposition Theorem. However eno is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1: eno = V1 2 + V2 2 + V3 2 + V4 2 + V 2 + V6 2 (Equation 1) eno 2 en 2 g 2 + inn 2 R2 2 + inp 2 R3 2 g 2 R2 = + (------- ) 2 4kTR1 + 4kTR2 + g 2 4kTR3 (Equation 2) R1 14/18

Noise Measurements TSH3 The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is: eno = ( Measured) 2 ( instrumentation) 2 (Equation 3) The input noise is called the Equivalent Input Noise as it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eno/g). After simplification of the fourth and the fifth term of Equation 2 we obtain: eno 2 = en 2 g 2 + inn 2 R2 2 + inp 2 R3 2 g 2 + g 4kTR2+ g 2 4kTR3 (Equation 4) Measurement of the input voltage noise en If we assume a short-circuit on the non-inverting input (R3=), from Equation 4 we can derive: eno = en 2 g 2 + inn 2 R2 2 + g 4kTR2 (Equation ) In order to easily extract the value of en, the resistance R2 will be chosen to be as low as possible. In the other hand, the gain must be large enough: R3=, gain: g=1 Measurement of the negative input current noise inn To measure the negative input current noise inn, we set R3= and use Equation. This time the gain must be lower in order to decrease the thermal noise contribution: R3=, gain: g=1 Measurement of the positive input current noise inp To extract inp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the inp contribution: R3=1Ω, gain: g=1 1/18

Package Mechanical Data TSH3 6 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SOT23-L package SOT23-L MECHANICAL DATA DIM. mm. mils MIN. TYP MAX. MIN. TYP. MAX. A.9 1.4 3.4 7.1 A1..1..9 A2.9 1.3 3.4 1.2 b.3. 13.7 19.7 C.9.2 3. 7.8 D 2.8 3. 11.2 118.1 E 2.6 3. 12.3 118.1 E1 1. 1.7 9. 68.8 e.9 37.4 e1 1.9 74.8 L.3. 13.7 21.6 16/18

Package Mechanical Data TSH3 6.2 package SO-8 MECHANICAL DATA mm. inch DIM. MIN. TYP MAX. MIN. TYP. MAX. A 1.3 1.7.3.69 A1.1.2.4.1 A2 1.1 1.6.43.6 B.33.1.13.2 C.19.2.7.1 D 4.8..189.197 E 3.8 4..1.17 e 1.27. H.8 6.2.228.244 h.2..1.2 L.4 1.27.16. k 8 (max.) ddd.1.4 1623/C 17/18

Revision History TSH3 7 Revision History Date Revision Description of Changes Sept. 2 1 Release of mature product datasheet Sept. 2 2 Update to ESD information in Table 1 on page 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners 2 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 18/18