University of Manchester. CS3282: Digital Communications 06. Section 9: Multi-level digital modulation & demodulation

Similar documents
Digital Modulation Schemes

EE4601 Communication Systems

University of Manchester CS3282: Digital Communications Section 8: Carrier Modulated Transmission

COSC 3213: Computer Networks I: Chapter 3 Handout #4. Instructor: Dr. Marvin Mandelbaum Department of Computer Science York University Section A

Digital Communication

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Wireless Communication Fading Modulation

Amplitude Frequency Phase

Columbia University. Principles of Communication Systems ELEN E3701. Spring Semester May Final Examination

Chapter 4. Part 2(a) Digital Modulation Techniques

Digital Modulators & Line Codes

ECE5713 : Advanced Digital Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

ENSC327 Communication Systems 27: Digital Bandpass Modulation. (Ch. 7) Jie Liang School of Engineering Science Simon Fraser University

EE3723 : Digital Communications


Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Objectives. Presentation Outline. Digital Modulation Revision

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

Principles of Communications

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK)

Digital modulation techniques

CHAPTER 2 DIGITAL MODULATION

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Objectives. Presentation Outline. Digital Modulation Lecture 01

Chapter 14 MODULATION INTRODUCTION

BER Performance Comparison between QPSK and 4-QA Modulation Schemes

EXPERIMENT NO. 4 PSK Modulation

Thus there are three basic modulation techniques: 1) AMPLITUDE SHIFT KEYING 2) FREQUENCY SHIFT KEYING 3) PHASE SHIFT KEYING

Problem Sheets: Communication Systems

Digital Communication System

Digital Communication

Principles of Communications

Revision of Lecture 3

Revision of Previous Six Lectures

Chapter 6 Passband Data Transmission

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

ECE 4203: COMMUNICATIONS ENGINEERING LAB II

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

Performance measurement of different M-Ary phase signalling schemes in AWGN channel

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

Revision of Wireless Channel

Downloaded from 1

TELE4652 Mobile and Satellite Communications

Exercise 3-2. Digital Modulation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. PSK digital modulation

Chapter 7. Multiple Division Techniques

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Other Modulation Techniques - CAP, QAM, DMT

Digital Communication System

Revision of Previous Six Lectures

Design of a Transceiver for 3G DECT Physical Layer. - Rohit Budhiraja

3/26/18. Lecture 3 EITN STRUCTURE OF A WIRELESS COMMUNICATION LINK

Data Encoding g(p (part 2)

UNIT TEST I Digital Communication

Department of Electronic and Information Engineering. Communication Laboratory. Phase Shift Keying (PSK) & Quadrature Phase Shift Keying (QPSK)

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

Spread spectrum. Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices. Exercise session 7 : Spread spectrum 1

T325 Summary T305 T325 B BLOCK 3 4 PART III T325. Session 11 Block III Part 3 Access & Modulation. Dr. Saatchi, Seyed Mohsen.

Point-to-Point Communications

Swedish College of Engineering and Technology Rahim Yar Khan

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Problem Sheet 1 Probability, random processes, and noise

Internal Examination I Answer Key DEPARTMENT OF CSE & IT. Semester: III Max.Marks: 100

= 36 M symbols/second

EITG05 Digital Communications

Digital Modulation. Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica

Lecture #11 Overview. Vector representation of signal waveforms. Two-dimensional signal waveforms. 1 ENGN3226: Digital Communications L#

Modulation and Coding Tradeoffs

Problems from the 3 rd edition

Communication Channels

Department of Electronic and Information Engineering. Communication Laboratory

Communication Theory

Mobile Communications

Amplitude Modulation, II

Signal Encoding Techniques

AM, PM and FM mo m dula l ti t o i n

Wireless Communication

Basic Concepts in Data Transmission

comparasion to BPSK, to distinguish those symbols, therefore, the error performance is degraded. Fig 2 QPSK signal constellation

EXPERIMENT WISE VIVA QUESTIONS

Code No: R Set No. 1

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

I-Q transmission. Lecture 17

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

Department of Electronics and Communication Engineering 1

MODULATION METHODS EMPLOYED IN DIGITAL COMMUNICATION: An Analysis

(Refer Slide Time: 01:45)

OFDM Systems For Different Modulation Technique

21. Orthonormal Representation of Signals

C06a: Digital Modulation

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 6 Passband Data Transmission

EXAMINATION FOR THE DEGREE OF B.E. Semester 1 June COMMUNICATIONS IV (ELEC ENG 4035)

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter 5. Analog Transmission

Chapter 3 Data Transmission COSC 3213 Summer 2003

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

BER Performance with GNU Radio

CT-516 Advanced Digital Communications

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27)

Transcription:

University of Manchester CS3282: Digital Communications 06 Section 9: Multi-level digital modulation & demodulation 2/05/06 CS3282 Sectn 9 1

9.1. Introduction: So far, mainly binary signalling using ASK, FSK & PSK. Bandwidth efficiency up to 2 b/s/ Hz at base-band. Multiplying by carrier doubles bandwidth, Max bandwidth efficiency of binary ASK & PSK is 1 b/s/hz. i.e. about 3.1 kb/s over 300-3400 khz telephone link. Less than one tenth of what we know to be achievable. With binary MSK & QPSK maximum is 2 b/s/hz. To increase band-width efficiency further, use multi-level modulation where each symbol represents more than one bit. 2/05/06 CS3282 Sectn 9 2

9.2. Multi-level ASK & Gray coding: Most obvious multi-level technique, rarely used, is 'M-ary ASK. Modulates amplitude of carrier with M different amplitudes. To encode N bits/symbol, choose M=2 N rather than M=2. To encode 3 bits/symbol, could have 8 rect symbols of heights 0, A, 2A, 3A, 4A, 5A, 6A & 7A for 000, 001, 010, 011, etc. Consider 'bit-error prob.', P B, with this new signalling strategy. Compare with binary ASK with same voltage separation (A). Noise level giving 1 bit-error with binary signalling could change 000 to 001 (1 bit-error) or 011 to 100 (3 bit-errors). Better to use a 3-bit Gray-code as follows. 2/05/06 CS3282 Sectn 9 3

Voltage 100 7A 101 6A Modulates carrier 111 5A 110 4A 010 3A Added noise 011 2A 001 A 000 t 2/05/06 CS3282 Sectn 9 4

Noise changing ka to (k-1)a or (k+1)a results in only 1 bit-error. Neglect possibility of noise changing 3A to 5A or A Then no. of bit-errors / s no. of symbol errors /s. 'bit-error prob.' 'symbol error prob.' no. of bits / symbol. BER is number of bit-errors in a quantity of bits (e.g. 1 in 1000) Not per second..keeping same value of A for 8-ary ASK as for binary ASK increases power. To keep average power same, must reduce A. Increases P B as voltage between levels reduces. M-ary reduces bandwidth for given bit-rate but increases P B Note that noise power reduces as bandwidth reduces. 2/05/06 CS3282 Sectn 9 5

Detection of multi-level ASK Assume that after demodulation, the input Z to the threshold detector has possible 8 levels: 0, A, 2A, 3A,... The detector must have 8 thresholds: Z<A/2 : 000 A/2 < Z <3A/2 : 001 3A/2 < Z < 5A/2 : 011 Z > 15A/2 : 100 2/05/06 CS3282 Sectn 9 6

Matched filter detection for 8-ary ASK: Identical pulse shapes (e.g. rect) after demodulation. Amplitudes 0, A, 2A,, 7A, for s 0 (t), s 1 (t),, s 7 (t), Single matched filter H((ƒ)) matched to s 1 (t)-s 0 (t). Equal to s 2 (t)-s 1 (t), s 3 (t)-s 2 (t), etc. Responses of H((ƒ)) to s 0 (t), s 1 (t), s 3 (t)... are a 0 (t), a 1 (t) Output z(t) of matched filter sampled at t=t & decision made Define 7 thresholds γ 0.5 = (a 1 (T)+a 0 (T))/2 γ 1.5 = (a 2 (T)+a 1 (T))/2,..., γ 6.5 =(a 7 (T)+a 6 (T))/2. With rect symbols of duration T, γ 0.5 = A 2 T/2, γ 1.5 = 3A 2 T/2, γ 2.5 = 5A 2 T/2, etc. 2/05/06 CS3282 Sectn 9 7

Received symbol is decided to be: s 0 (t) if z(t) < γ 0.5 s 1 (t) if γ 0.5 z(t) < γ 1..5 s 2 (t) if γ 1.5 z(t) < γ 2..5 s 6 (t) if γ 5.5 z(t) < γ 6..5 s 7 (t) if γ 6.5 z(t) z(t) Multilevel threshhold detectr 000 001 011 010 110 111 101 100 2/05/06 CS3282 Sectn 9 8

Matched filter detection of QPSK Apply 2 matched filters: to in-phase signal after mult by cos(2π f C t) to quad signal after x by sin 2/05/06 CS3282 Sectn 9 9

Exercise: A binary ASK transmitter & receiver communicate at 1000 b/s with P B = 10-9. To increase bit-rate to 3000 b/s over same channel, binary ASK is replaced by 8-ary ASK with same average transmitter power. Estimate new P B. Assume there is no MF. Solution: With 0 and A rectangular pulses without a MF, if P B = 10-9 = Q(A/(2σ)), A/(2σ) 6 Av power =E B x (1/T) = (A 2 /2)T/T = A 2 /2 With 8-ary ASK (0, B, 2B,... 7B), av energy per symbol is: Av{0, B 2 T, (2B) 2 T,..., (7B) 2 T} = (140/8)B 2 = 17.5B 2 T So av power = 17.5B 2 Same av power, so 17.5B 2 = A 2 /2 & B = A / 5.9 Same noise power, so Prob of symbol error 2Q(B/(2σ)) = 2Q((A/35) / (2σ)) = 2Q(6/5.9) = 2Q(1.02) 0.24 2/05/06 CS3282 Sectn 9 10

Solution continued Note that Prob of symbol error 2Q(B/(2σ)) because a noise spike > B/2 or < -B/2 will cause a symbol error for 6 out of 8 symbols. It would be more accurate to replace 2 by (14/8) since the minimum voltage gives a symbol error only when a noise spike >B/2 and the max voltage only for -ve noise spike <-B/2. Assuming Grey coding used, P B (Symbol error prob) /3 = 0.08 2/05/06 CS3282 Sectn 9 11

Another exercise: A binary ASK transmitter & receiver communicate at 1000 b/s with P B =10-9. To reduce channel bandwidth required for same 1000 b/s, binary ASK is replaced by an 8-ary ASK with same transmitter power. Estimate new P B. 2/05/06 CS3282 Sectn 9 12

Advantage of multi-level signalling over binary is increase in bandwidth efficiency (b/s per Hz). Disadvantage is increase in P B for given transmission power. Multi-level ASK is effective where noise is relatively low so that we can safely reduce voltage between detection thresholds without incurring large increases in bit-errors. Works with modem transmissions over telephone lines. 2/05/06 CS3282 Sectn 9 13

9.3. Orthogonality: Increase in P B incurred by changing from binary to multi-level signalling avoided if additional bits are conveyed by signalling which is 'orthogonal' to the original binary signalling. Achieved with change from PSK to '4-phase' PSK ( QPSK). Can also be achieved with multi-level FSK. Orthogonality is definitely not present with multi-level ASK. Signals a(t) and b(t) are orthogonal over a period R seconds if: R 0 a( t) b( t) dt = 0 cos(2πf C t) & sin(2πf C t) orthogonal if R integer multiple of 1/(2f C ). When R=1/(2f C ), R is duration of one half-cycle of the carrier. 2/05/06 CS3282 Sectn 9 14

Remember that cos(2πf C t) sin(2πf C t) = 0.5sin(4πf C t) & examine following graph noting the equal area of 0.5sin(4πf C t) above & below t axis in range 0 < t < 1/(2f C ). This also applies for the range 0 < t < 1/ f C. V sin(2πf C t) 1/(4f C ) 1/(2f C ) 1/f C t sin(4πf C t) cos(2πf C t) 2/05/06 CS3282 Sectn 9 15

QPSK can transmit 2 bits/ symbol without increasing P B over what is obtained, for given E B /N 0, with binary PSK at 1 bit / symbol. Made possible by orthogonality of in-phase & quadrature components of sinusoidal carrier. Orthogonality requires suitable choice of T as integer multiple of 1/(2f C ) & detector that integrates over one or more symbol intervals. Use vector-demodulator with low-pass filters removing spectral power above 2f C B/2 where B is bandwidth of QPSK signal This will recover complex base-band of QPSK signal with real & imag parts invisible to each other. QPSK still works even if exact orthogonality not achieved, But lowest possible bit-error probability requires orthogonality. 2/05/06 CS3282 Sectn 9 16

Binary FSK can be extended to multi-level FSK without increasing P B if frequencies & symbol interval chosen such that all FSK symbols are orthogonal. It may be shown graphically that: (i) cos(2πf 0 t + φ) & cos(2πf 1 t) orthogonal over integer multiple of 1/ f 1 - f 0 for any φ. (ii) cos(2πf 0 t) & cos(2πf 1 t) orthogonal over integer multiple of 1/(2 f 1 - f 0 ). Binary MSK orthogonal at 1/T b/s with f 1 = f 0 ± 1/(2T). Multi-level MSK at 1/T baud: use f 0, f 1, f 2, f 3... at 1/(2T) spacing. 2/05/06 CS3282 Sectn 9 17

9.4. QPSK and orthogonality Constellation diagram below describes QPSK with 2-bits/ symbol. Each symbol is T second segment of sine-wave, of amplitude A. Same frequency f C Hz = 2πΩ C as carrier Phase lead of ±45 O, ± 135 with respect to carrier. Modulation achieved by applying pairs of bits to symbol allocation unit producing pair of voltages as described by table. Apply the two voltages obtained to vector-modulator. 1,0 1,1 0,0 0,1 In phase with cos Bit1 Bit2 VI VQ 0 0 A A 0 1 A -A 1 0 -A A 1 1 -A -A 2/05/06 CS3282 Sectn 9 18

Constellation below is alternative form for QPSK with phase leads of 0, 90, 180 & 270 O. Call it "St George's cross" QPSK constellation Pulse-shaping, to minimise ISI applied to voltages v I (t) & v Q (t) before they are multiplied by the carrier. 1,1 V Q 0,1 0,0 V I Bit1 Bit2 V I 0 0 A 0 0 1 0 A 1 0 0 -A 1 1 -A 0 V Q 1,0 (Different from notes.. Gray coded) 2/05/06 CS3282 Sectn 9 19

QPSK generation VI(t) Cos( 2 fc t ) Sin( 2 fc t ) VQ(t) Coherent QPSK detector for St. Andrew's constellation is 2 PSK detectors: 2/05/06 CS3282 Sectn 9 20

Derive Carrier Cos( 2 fc t ) Sin( 2 fc t ) MF Derive symbol timing MF Compare Compare 2/05/06 CS3282 Sectn 9 21

Coherent QPSK detector for right constellation a little different. Minimises 'Euclidean' distance between received symbol & each of 4 possibilities. Must examine I & Q components together, No longer have 2 independent PSK detectors. Can divide constellation into 4 regions, each region being represented by one symbol. Easy with 'St.George' QPSK constellation, Adaptable to more complicated constellations. 2/05/06 CS3282 Sectn 9 22

With binary PSK, the 2 symbols are not orthogonal. They are 'anti-podal' or 'bipolar'. QPSK, adds quadrature component to each binary PSK symbol. To achieve exact orthogonality, we must use a symbol interval, T, equal to an integer multiple of half the carrier period and use an integrator as a detector. The coherent detectors must use matched filters or correlation detectors for the shaped I and Q symbols. This makes Q-channel and the I-channel truly independent. Other forms of QPSK: π/4-qpsk, DQPSK, etc. See text-book. 2/05/06 CS3282 Sectn 9 23

Carrier derivation: Reasonable method for binary psk is to square incoming signal. With Acos(2πf C t) for 1 & -Acos(2πf C t) for 0, this gives A 2 cos 2 (2πf C t) = 0.5A 2 (1 + cos(2π2f C t) ). Removing constant part gives cosine of twice frequency needed. A normal PLL can be locked to this frequency. Frequency halving may then be carried out using 2 counter. Alternatively, use a modified PLL which squares its VCO output before it is multiplied by the incoming signal. Now twice the VCO frequency matches the incoming frequency. VCO will have half the incoming frequency as required. Clever!! 2/05/06 CS3282 Sectn 9 24

The halving in frequency, will leave us with a sign ambiguity. Known training signal sent from time to time to allow this ambiguity to be resolved. For QPSK, carrier derivation as above except that fourth power of incoming signal calculated to eliminate the modulation, & frequency 4 used. 2/05/06 CS3282 Sectn 9 25

Symbol timing recovery: Even when carrier has been derived, there remains the problem of determining when one symbol ends and the next one begins. The value of T, will be known. In some cases it may be possible to assume that symbols are locked to carrier, so that a symbol is say 1.5 carrier cycles. This is not always possible since very slight inaccuracy in any previous demodulation process, say from 900 MHz to some intermediate frequency, or Doppler shifts due to receiving signals from moving vehicles, and/or other effects can remove this synchronism. 2/05/06 CS3282 Sectn 9 26

Early-late gate method. Aims to adjust its sampling time to maximise samples obtained. There are 2 detectors, one fed with slightly early timing reference T + dt & the other with a slightly late timing reference T - dt. Outputs of the 2 detectors periodically compared to see which is producing the larger output. Timing then advanced or retarded slightly according to whether the output is larger at T+dT or T-dT. This should increase the larger output, and as this process is repeated it will be maximised. Further adjustments will cause the two samplers to settle around a situation where both produce approximately the same output, the true sampling point being equidistant between the early one T+dT and the late one T-dT. This true sampling point is used for a third accurate sampler. 2/05/06 CS3282 Sectn 9 27

SAMPLE MF T +dt T-dT SYMBOL TIMING COMPARATR SAMPLE Carrier T Early-late gate Symbol timing recovery SAMPLE 2/05/06 CS3282 Sectn 9 28

Non-coherently detected M-ary FSK: Have seen how binary FSK may be non-coherently detected & how it is advantageous to have f 1 - f 0 = 1/T Hz. Mag-spectrum for transmissions at f 0 has null at f 1 & vice-vsa. Non-phase synchronised binary FSK symbols: A cos(2πf 0 t + φ) & A cos(2πf 1 t) orthogonal over T seconds when f 1 - f 0 = 1/T regardless of φ. Exercise: Illustrate this graphically when f 0 =1/T, f 1 =2/T, φ=0 1/(2T) T f 0 t 2/05/06 CS3282 Sectn 9 29

If symbol rate is 1/T, min tone separation for non-coherent orthog FSK is 1/T Hz. Non-orthog FSK could be used, but effect of noise & ISI greater. Idea extended to M-ary FSK by introducing more tones. 8-ary FSK at 1800 b/s ( 600 baud) could have tones at 1000Hz (for 000) 1600Hz (001), 2200 Hz (011), 2800Hz (010), 3400Hz (100), 4000Hz (101), 4600Hz (111), 5400Hz (110). BER for this orthog scheme about the same as for binary FSK though bandwidth is wider. Exercise: Why are the symbols Gray-coded? 2/05/06 CS3282 Sectn 9 30

Coherently detected orthogonal M-ary FSK Where locally generated tones locked to the received tones can be generated at the receiver, greater efficiency can be obtained. MF1 cos(w1t) M-ary FSK MF2 Decision block cos(w2t)... MFM cos(wmt) 2/05/06 CS3282 Sectn 9 31

FSK symbols A cos(2πf 0 t) & A cos(2πf 1 t) orthog over symbol period T when f 1 - f 0 = 0.5/T. Exercise: Illustrate this when f 0 = 1/(2T) & f 1 =1/T. 1/(T) t 2/05/06 CS3282 Sectn 9 32

With coherent detection, min frequency spacing for orthog M-ary FSK is 0.5/T Hz. Significant saving in bandwidth with no increase in BER. M-ary MSK. For given SNR & required bit-rate below H-S limit, M-ary MSK with increasing M may approach any arbitrarily low BER. The lower BER, the higher M & the longer T. 2/05/06 CS3282 Sectn 9 33

Not necessarily best practical approach but shows it can be done in theory. If Eb/No < -1.6 db there is no bit-rate for which any given BER can be achieved by this or any other method. Binary MSK with Gaussian symbol shaping used in GSM mobile. 2/05/06 CS3282 Sectn 9 34

Combined amplitude and phase shift keying (QAM and APK) To approach bandwidth efficiency of modern computer modems, combination of ASK, FSK & PSK used. Most popular: M-ary amplitude-phase keying (APK) quadrature amplitude modulation (QAM). Extension of QPSK where different amplitudes (apart from +A, 0 and -A) used to modulate I & Q carriers. Consider 16-QAM system below with 4 bits per symbol: 2/05/06 CS3282 Sectn 9 35

Bit1 bit2 bit3 bit4 VI VQ Bit1 bit2 bit3 bit4 VI VQ 0 0 0 0 A A 1 0 0 0 3A A 0 0 0 1 A -A 1 0 0 1 3A -A 0 0 1 0 A 3A 1 0 1 0 3A 3A 0 0 1 1 A -3A 1 0 1 1 3A -3A 0 1 0 0 -A A 1 1 0 0-3A A 0 1 0 1 -A -A 1 1 0 1-3A -A 0 1 1 0 -A 3A 1 1 1 0-3A 3A 0 1 1 1 -A -3A 1 1 1 1-3A -3A 2/05/06 CS3282 Sectn 9 36

Applying VI & VQ (after shaping ) to vector-modulator gives a signal whose constellation diagram is shown below: Q (0010) 3A (0100) -A A (0000) A 3A I -A (0001) -3A (0011) 2/05/06 CS3282 Sectn 9 37

Exercise: Is this constellation Gray coded? If not, recode it. Exercise: Specify the 16 symbols in terms of amplitude & phase. Exercise: If bit-rate is 1200 b/s & carrier is 600 Hz, sketch waveform for 0000 0101 1010 1011. Exercise: Calculate average power of square 16-QAM when all symbols equally likely. What is peak voltage? Solution: As sine-wave of ampl A has power A 2 /2: avge power is: 4(2A 2 /2 + 18A 2 /2 + 10A 2 /2 +10A 2 /2)/16 = 5A 2 Watts. Peak voltage: Volts 2/05/06 CS3282 Sectn 9 38

Compare square 16-QAM with 16-PSK & 16-APK. Avge power & pk voltge of 16-PSK are B 2 /2 Watts & B volts resp. If B 2 = 10A 2, power for square 16-QAM & 16-PSK will be same. Pk voltage for 16-PSK is then B=3.16A Pk voltage for square 16-QAM is 4.24A, So 16-PSK better in this respect. What about sensitivity to noise when avge power equalised by making B=3.16A? Min distce between any 2 symbols for square-16 QAM is 2A. It is approx. B 2π/16 = 6.4Aπ/16 = 1.24A. Symbols closer for 16-PSK, hence effect of noise greater. 2/05/06 CS3282 Sectn 9 39

Q 16-PSK Q 16-APK I I B -A A 2A 3A 2/05/06 CS3282 Sectn 9 40

Exercise: Repeat for 16-APK & compare square 16-QAM, 16- PSK & 16-APK. Replace A in 16-APK diagram by C. Avge power is: 4( (2C) 2 /2 + (3C) 2 /2 + 2C 2 /2 + 8C 2 /2 ) /16 = 2.875C 2. Av power Pk voltage Min distance Square 16-QAM 5A 2 4.243A 2A 16-PSK B 2 /2 B πb/8 16-APK scheme 2.875C 2 3C C For same average power (i.e. same E B /N 0 ): C = 1.32A and B = 3.16A For same peak voltage: C = 1.414A and B = 4.243A Min distce on constellation diag ( measure of noise immunity): 2/05/06 CS3282 Sectn 9 41

Min distce Min distce for same av. power for same pk voltage Square 16-QAM 2A 2A 16-PSK 1.24A 1.667A 16-APK scheme 1.32A 1.414A Square QAM appears best in both circumstances. It has greatest minimum distance in both circumstances. I am slightly surprised by the peak voltage result and expected 16-PSK to be better than square-16-qam in this case. Check result please. 2/05/06 CS3282 Sectn 9 42

CCITT modem standards:- Version Bits per second Modulation Protocol Bell 103 300 FSK Async Bell 202 1200 FSK Async V22 1200/600 QPSK/FSK Async/sync V26bis 2400 QPSK Sync V27 4800/2400 8-DQPSK sync V29 9,600 16-APK sync V32 9,600 32-QAM/16-QAM sync V33 14,400 32-QAM sync V34 33,600 >1024-QAM sync V90 56,000 >1024-QAM sync 2/05/06 CS3282 Sectn 9 43

Problems: 9.1: A digital system transmits a 0Hz to 2MHz video signal sampled at 8MHz with a 16 bit analogue to digital converter. The signal is transmitted by 16-QAM with raised cosine spectrum pulse shaping with roll-off factor α (or r) equal to 0.5. What is the transmission bandwidth needed. Solution: Bit-rate = 128Mb/s. Four bits/symbol. This would give 4 bits/sec/hz if α=0, but as α = 0.5 the bandwidth efficiency is reduced by (1+α) = 1.5. This is because of the spectrum of the shaped pulse. See previous notes. It becomes 2.66 bits/sec per Hz. Therefore required bandwidth is 48 MHz. This is considerably greater than the analogue bandwidth. 2/05/06 CS3282 Sectn 9 44

9.2: An 8-ary ASK scheme uses a root-raised cosine spectrum filter in both transmitter and receiver, with α=0.33. What bandwidth is required for 64 kb/s? 9.3: What are the advantages and disadvantages of coherent detection as opposed to non-coherent detection for 8-FSK? 9.4: Devise a suitable constellation and symbol assignment for (a) 8-APK, (b) 32-QAM. 2/05/06 CS3282 Sectn 9 45

9.5: Compare the following circular-16 QAM scheme with the three schemes mentioned in the notes. Q D D I Circular 16-QAM 2/05/06 CS3282 Sectn 9 46