Total Ionizing Dose Test Report. No. 14T-RTAX4000S-CQ352-D7FLT1

Similar documents
Total Ionizing Dose Test Report. No. 14T-RTAX4000S-CQ352-D7FLT1

Total Ionizing Dose Test Report. No. 13T-RTAX4000D-CQ352-D6NR61

TOTAL IONIZING DOSE TEST REPORT (REV1) RT4G150 Lot: KRMLM. September 1 st J.J. Wang, Stephen Varela, Harvey Chen, Kevin Chou, Michael Traas

Quantum SA.45s CSAC Chip Scale Atomic Clock

1011GN-1200V 1200 Watts 50 Volts 32us, 2% L-Band Avionics 1030/1090 MHz

Using the Peak Detector Voltage to Compensate Output Voltage Change over Temperature

Quantum SA.45s CSAC Chip Scale Atomic Clock

0912GN-50LE/LEL/LEP 50 Watts 50 Volts 32us, 2% & MIDS MHz

LX V Octal Series Diode Pairs Array with Redundancy. Description. Features. Applications

TOTAL IONIZING DOSE TEST REPORT No. 03T-RT54SX32S-T25JS004 March 12, 2003

5 - Volt Fixed Voltage Regulators

1011GN-1600VG 1600 Watts 50/52 Volts 32us, 2% L-Band Avionics 1030/1090 MHz

UG0362 User Guide Three-phase PWM v4.1

Three-phase PWM. UG0655 User Guide

MMA051PP45 Datasheet. DC 22 GHz 1W GaAs MMIC phemt Distributed Power Amplifier

Reason for Change: Bend wafer fab will be closing over the next 24 months.

TOTAL IONIZING DOSE TEST REPORT No. 03T-RT54SX7S-T25KS006 April 25, 2003

APT80SM120B 1200V, 80A, 40mΩ

Ultrafast Soft Recovery Rectifier Diode

User Guide. NX A Single Channel Mobile PWM Switching Regulator Evaluation Board

500mA Negative Adjustable Regulator

APT80SM120J 1200V, 56A, 40mΩ Package APT80SM120J

SimpliPHY Transformerless Ethernet Designs

Silicon Carbide N-Channel Power MOSFET

QUAD POWER FAULT MONITOR

Very Low Stray Inductance Phase Leg SiC MOSFET Power Module

UG0640 User Guide Bayer Interpolation

Silicon Carbide Semiconductor Products

MPS Datasheet 100 MHz to 3 GHz RoHS Compliant 40 Watt Monolithic SPST PIN Switch

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP04 April 2, 2001

TOTAL IONIZING DOSE TEST REPORT No. 01T-RT54SX32-T6JP05 Jan. 4, 2001

SG2000. Features. Description. High Reliability Features. Partial Schematics HIGH VOLTAGE MEDIUM CURRENT DRIVER ARRAYS

DC-15 GHz Programmable Integer-N Prescaler

ENT-AN0098 Application Note. Magnetics Guide. June 2018

Trusted in High-Reliability Timing and Frequency Control

DC to 45 GHz MMIC Amplifier

DC-22GHz, 16dB Gain Low-Noise Wideband Distributed Amplifier

2-20GHz, 12.5dB Gain Low-Noise Wideband Distributed Amplifier

DC to 30GHz Broadband MMIC Low-Power Amplifier

Radiation Tolerant 8-channel Source Driver

DC to 30GHz Broadband MMIC Low-Noise Amplifier

DC to 30GHz Broadband MMIC Low-Noise Amplifier

DC to 30GHz Broadband MMIC Low-Power Amplifier

5-20GHz MMIC Amplifier with Integrated Bias

A Fault Tolerant PMAD System Using Radiation Hardened Highly Integrated AFE Circuits Sorin A. Spanoche and Mathieu Sureau

TOTAL IONIZATION DOSE TEST REPORT

Low-Jitter, Precision Clock Generator with Two Outputs

VSWR Testing of RF Power MOSFETs

Microsemi Mixed Signal Solutions for Space

Silicon carbide Semiconductor Products

HB0267 Handbook CoreDDS v3.0

Park and Inverse Park Transformations Hardware Implementation. User Guide

Total Ionizing Dose Test Report. Z-Series DC-DC Converter

MAX24305, MAX or 10-Output Any-Rate Timing ICs with Internal EEPROM

SyncServer S600/S650 Options, Upgrades and Antenna Accessories

High Speed Current Mode PWM

UT54ACS164245S/SE Schmitt CMOS 16-bit Bidirectional MultiPurpose Transceiver Datasheet

UT54ACS164245SEI Schmitt CMOS 16-bit Bidirectional MultiPurpose Transceiver Datasheet

RF MOSFET Power Devices Application Note Cost-Effective Low-Power Gain Matching of RF MOSFET Power Devices

MAICMMC40X120 Datasheet Power Core Module with SiC Power Bridge 1/2017

3MHz, 2.4A Constant Frequency Hysteretic Synchronous Buck Regulator. 100k PG LX7167A EN GND PGND

Product Specification PE94302

UT90nHBD Hardened-by-Design (HBD) Standard Cell Data Sheet February

LX MHz, 2.4A Step Down Converter. Features. Description. Applications LX7167

Radiation Lot Acceptance Testing (RLAT) of the RH1016MW UltraFast Precision Comparator for Linear Technology

Bidirectional Level Shifter

RHFAHC00. Rad-Hard, quad high speed NAND gate. Datasheet. Features. Applications. Description

Silicon carbide Semiconductor Products

Features. Applications GND. Micrel Inc Fortune Drive San Jose, CA USA tel +1 (408) fax + 1 (408)

Timing in Mission-Critical Systems

Microsemi Space Time and Frequency Products

LX MHz, 1A Synchronous Buck Converter. Description. Features. Applications LX7188

Prerelease product(s)

MT x 16 Analog Switch Array

Features. Description. Table 1. Device summary. Gold TO-257AA

CMOS Micro-Power Comparator plus Voltage Follower

Rad-Tolerant Current Mode PWM Controller

MT8809 8x8 Analog Switch Array

Extended TID, ELDRS and SEE Hardening and Testing on Mixed Signal Telemetry LX7730 Controller

Standard Products UT54ACTS220 Clock and Wait-State Generation Circuit. Datasheet November 2010

DATASHEET CD4027BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Dual J-KMaster-Slave Flip-Flop. FN3302 Rev 0.

UT54ACS162245SLV Schmitt CMOS 16-bit Bidirectional MultiPurpose Low Voltage Transceiver Datasheet

HMXCMP01 Radiation Hardened Comparator

Features. Applications

CMOS Quad Rail-to-Rail I/O Op Amp DESCRIPTION: FEATURES: Logic Diagram

ZL40212 Precision 1:2 LVDS Fanout Buffer

Prerelease product(s)

Features. Applications. Markets

Enhanced Low Dose Rate Sensitivity (ELDRS) Radiation Testing of the RH1498MW Dual Precision Op Amp for Linear Technology

DATASHEET CD4098BMS. Description. Features. Applications. Pinout. CMOS Dual Monostable Multivibrator. FN3332 Rev 0.00 Page 1 of 11.

Enhanced Low Dose Rate Sensitivity (ELDRS) Radiation Testing of the RH1814MW Quad Op Amp for Linear Technology

DS Input, 8-Output, Dual DPLL Timing IC with Sub-ps Output Jitter

DATASHEET CD4503BMS. Features. Applications. Functional Diagram. Pinout. CMOS Hex Buffer. FN3335 Rev 0.00 Page 1 of 8. December FN3335 Rev 0.

DATASHEET HCS132MS. Pinouts. Features. Description. Ordering Information. Functional Diagram. Radiation Hardened Quad 2-Input NAND Schmitt Trigger

SG1844/SG1845/SG3844/SG3845 Current Mode PWM Controller

DATASHEET CD4013BMS. Pinout. Features. Functional Diagram. Applications. Description. CMOS Dual D -Type Flip-Flop. FN3080 Rev 0.

74AHC1G4212GW. 12-stage divider and oscillator

HEF4014B. 1. General description. 2. Features and benefits. 3. Applications. 4. Ordering information. 8-bit static shift register

Radiation Lot Acceptance Testing (RLAT) of the RH1009MH 2.5V Voltage Reference for Linear Technology

UT32BS1X833 Matrix-D TM 32-Channel 1:8 Bus Switch October, 2018 Datasheet

Transcription:

Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 December 16, 2014

Table of Contents I. Summary Table... 3 II. Total Ionizing Dose (TID) Testing... 3 A. Device-Under-Test (DUT) and Irradiation Parameters... 4 B. Test Method... 5 C. Design and Parametric Measurements... 6 III. Test Results... 8 A. Functionality... 8 B. Power Supply Current (ICCA and ICCI)... 8 C. Single-Ended 3.3 V LVTTL Input Logic Threshold (VIL/VIH)... 12 D. Output-Drive Voltage (VOL/VOH)... 13 E. Propagation Delay... 14 F. Transition Time... 15 Appendix A: DUT Bias Diagram... 27 Appendix B: Functionality Tests... 29 2 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

TOTAL IONIZING DOSE TEST REPORT 14T-RTAX4000S-CQ352-D7FLT1 December 16, 2014 CK Huang and J.J. Wang (408) 643-6136, 643-6302 chang-kai.huang@microsemi.com, jih-jong.wang@microsemi.com I. Summary Table The TID tolerance for each tested parameter is summarized below in Table 1. The overall tolerance is limited by the standby power-supply current (ICC). The room temperature annealing, allowed by 1019.8 to anneal down to ICC, is performed for approximately seven days. DUT is expected to pass the major specifications listed in Table 1 for 300 krad (SiO2) of irradiation. Table 1: Table Tolerances for Each Tested Parameter Parameter Tolerance 1. Gross Functionality Passed 300 krad (SiO 2 ) 2. Power Supply Current (ICCA/ICCI) Passed 300 krad (SiO 2 ) 3. Input Threshold (VIL/VIH) Passed 300 krad (SiO 2 ) 4. Output Drive (VOL/VOH) Passed 300 krad (SiO 2 ) 5. Propagation Delay Passed 300 krad (SiO 2 ) for 10% degradation criterion 6. Transition Time Passed 300 krad (SiO 2 ) II. Total Ionizing Dose (TID) Testing This testing is designed on the basis of an extensive database (for example, refer to the TID data of antifuse-based FPGAs at http://www.klabs.org and http://www.microsemi.com/soc) accumulated from the TID testing of many generations of antifuse-based FPGAs. Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 3

A. Device-Under-Test (DUT) and Irradiation Parameters Table 2 lists the DUT and irradiation parameters. During irradiation all inputs are grounded except for the inputs Burnin, oe_eaq, enable_hsb and the utilized clocks (Rclock1-3 and Hclock1-4). The inputs Burnin, oe_eaq and enable_hsb are set high to 3.3 V and a 1 khz clock is provided to all clocks for the design to remain stable during irradiation. During anneal each input and output is tied to ground or I through a 4.7 kω resistor. Appendix A: DUT Bias Diagram, contains the schematics of the irradiation-bias circuits. Table 2: DUT and Irradiation Parameters Part Number RTAX4000S Package CQFP352 Foundry United Microelectronics Corp. Technology 0.15 µm CMOS DUT Design MASTER_RTAX4000S_DESIGN_80_SP1 Die Lot Number D7FLT1 Quantity Tested 6 Serial Number 200 krad: 3989, 3991, 3993 300 krad: 4005, 4017, 4020 Radiation Facility Radiation Source Dose Rate (±5%) Irradiation Temperature Irradiation and Measurement Bias (I/A) I/O Configuration Defense Microelectronics Activity Co-60 10 krad (SiO 2 )/min Room Static at 3.3 V / 1.5 V Single ended: LVTTL Differential pair: LVPECL 4 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

B. Test Method 1. Pre-Irradiation Electrical Tests 2. Radiate to Specific Dose 3. Post-Irradiation Functional Test Pass 4. Post-Annealing Electrical Tests Fail Redo Test Using Less Total Dose Figure 1: Parametric Test Flow Chart The test method generally follows the guidelines in the military standard TM1019.8. Parametric Test Flow Chartis the flow chart showing the steps for parametric tests, irradiation, and post-irradiation annealing. The accelerated aging, or rebound test mentioned in TM1019.8, is unnecessary because there is no adverse time-dependent effect (TDE) in Microsemi SoC Products Group products manufactured by submicron CMOS technology. Elevated temperature annealing actually reduces the effects originated from radiation-induced leakages. As indicated by testing data in the following sections, the predominant radiation effects in RTAX4000S are due to radiation-induced leakages. Room temperature annealing is performed in this test; the duration is approximately seven days. Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 5

C. Design and Parametric Measurements The DUT uses a high utilization generic design (Master_RTAX4000S_Design_80_SP1) to evaluate total dose effects for typical space applications. The schematics of this design are documented in Appendix B: Functionality Tests. The functionality is measured at 1 MHz and 50 MHz using the minimum and maximum power specifications shown in Table 3. Table 3: Minimum and Maximum Power Specifications for RTAX-D Devices Supply Voltage Minimum Recommended Maximum 1.5 V Core 1.4 V 1.5 V 1.6 V 3.3 V I/O 3.0 V 3.3 V 3.6 V 3.3 V DA I/O 3.0 V 3.3 V 3.6 V The functionality test design is subdivided into two blocks, the EAQ (Enhanced Antifuse Qualification) and the QBI (Qualification Burn-In). The EAQ block includes three 1458-bit shift registers and tests the I/Os registers (1560 I/Os and 520 I/Os) and RAM (1x16384 RAM). The QBI block tests all offered macros and I/O standards. The results from the functional tests are obtained from the following outputs: IO_Monitor_EAQ, RAM_Monitor_EAQ, Array_Monitor_EAQ, Global_Monitor_EAQ, C_test_mon_QBI, ALU_test_mon_QBI, Global_mon_QBI_TP, and Global_mon_QBI_BI. Details on the Functionality Test are shown in Appendix B. ICC is measured on the power supply of the logic-array (ICCA) and I/O (ICCI) respectively. The input logic threshold (VIL/VIH) is tested on single-ended inputs Shiftin1, Shiftin2, Shiftin3, Shiftin4, Shiftin5, Shiftin7, Shiftin8, zoom_sel_n_1, zoom_sel_n_0, zoom, TOG_n, SEU_sel, Set_n, Resetn, oe_eaq, enable_hsb, test_done_sel_2, IO_Pattern_Length_2, IO_Pattern_Length_1, IO_Pattern_Length_0, IO_Johnson, A_Johnson, A_Pattern_Length_1, and A_Pattern_Length_0. The output-drive voltage (VOL/VOH) is measured on single-ended outputs Array_out_EAQ_0, Array_out_EAQ_1, Array_out_EAQ_2, Global_Monitor_EAQ, Shiftout3, Shiftout7, Shiftout8, RAM_Monitor_EAQ, RAM_out_EAQ_0, RAM_out_EAQ_4, and RAM_out_EAQ_8. The propagation delays are measured on the outputs of five delay strings; each one comprises 1,170 NAND4-inverters. There are six delay measurements, one measurement for each delay string and a total delay measurement obtained from cascading all the delay strings. The propagation delay is defined as the time delay from the triggering edge at the HClock1 input to the switching edge at the output. The transition characteristics, measured on the output delay_out_seu4, are shown as oscilloscope captures. 6 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Table 4 lists the measured electrical parameters and the corresponding logic design. Parameters Table 4: Logic Design for Parametric Measurements Logic Design 1. Functionality IO_Monitor_EAQ, RAM_Monitor_EAQ, Array_Monitor_EAQ, Global_Monitor_EAQ, C_test_mon_QBI, ALU_test_mon_QBI, Global_mon_QBI_TP, and Global_mon_QBI_BI 2. ICC (ICCA/ICCI) DUT power supply 3. Input Threshold (VIL/VIH) Single ended inputs (Shiftin1, Shiftin2, Shiftin3, Shiftin4, Shiftin5, Shiftin7, Shiftin8, zoom_sel_n_1, zoom_sel_n_0, zoom, TOG_n, SEU_sel, Set_n, Resetn, oe_eaq, enable_hsb, test_done_sel_2, IO_Pattern_Length_2, IO_Pattern_Length_1, IO_Pattern_Length_0, IO_Johnson, A_Johnson, A_Pattern_Length_1, A_Pattern_Length_0) 4. Output Drive (VOL/VOH) Single-ended outputs (Array_out_EAQ_0, Array_out_EAQ_1, Array_out_EAQ_2, Global_Monitor_EAQ, Shiftout3, Shiftout7, Shiftout8, RAM_Monitor_EAQ, RAM_out_EAQ_0, RAM_out_EAQ_4, RAM_out_EAQ_8) 5. Propagation Delay String of NAND4-inverters measured from output delay_out_seu4 6. Transition Characteristic NAND4-inverter output (delay_out_seu4) Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 7

III. Test Results The test results mainly compare the electrical parameter measured pre-irradiation with the same parameter, measured post-irradiation-and-annealing, or post-annealing. A. Functionality Every DUT passed the pre-irradiation and post-annealing functional tests. B. Power Supply Current (ICCA and ICCI) The logic-array power supply (A) is 1.5 V and the I/O power supply (I) is 3.3 V. Their standby currents, ICCA and ICCI, are monitored influx. Figure 2 Figure 7 show the influx ICCA and ICCI versus total dose for the DUTs. Referring to TM1019.8 subsection 3.11.2.c, the post-irradiation-parametric limit (PIPL) for the postannealing ICC should be defined as the addition of highest ICCI, ICCDA, and ICCDIFFA values in Table 2 Table 4 of the RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs datasheet, posted on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/documents/rtaxs_ds.pdf Therefore, the PIPL for ICCA is 600 ma, and the PIPL for ICCI is 60 ma. Table 5 summarizes the pre-irradiation, post-irradiation right after irradiation and before anneal, and postannealing ICCA and ICCI data. Table 5: Pre-irradiation, Post Irradiation, and Post-Annealing ICC DUT Total Dose ICCA (ma) ICCI (ma) Pre-Irrad Post-Irrad Post-Ann Pre-Irrad Post-Irrad Post-Ann 3989 200 krad 16 23 19 72 124 23 3991 200 krad 6 10 6 72 126 25 3993 200 krad 14 21 18 76 118 24 4005 300 krad 5 135 15 75 238 55 4017 300 krad 17 223 35 78 197 50 4020 300 krad 16 187 23 88 203 51 Based on these PIPL, the post-annealing DUT passes both the ICCA and ICCI specifications for 300 krad (SiO 2 ). 8 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 2: DUT 3989 Influx ICCI and ICCA Figure 3: DUT 3991 Influx ICCI and ICCA Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 9

Figure 4: DUT 3993 Influx ICCI and ICCA Figure 5: DUT 4005 Influx ICCI and ICCA 10 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 6: DUT 4017 Influx ICCI and ICCA Figure 7: DUT 4020 Influx ICCI and ICCA Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 11

C. Single-Ended 3.3 V LVTTL Input Logic Threshold (VIL/VIH) The input switching threshold, or trip point, is defined as the applied input voltage at which the output of the design (often just input and output buffers) starts to switch. VIH is the input trip point when the input is going high to low and VIL is the input trip point when the input is going low to high. The difference between the pre-irradiation and post-annealing data is usually negligibly small. The pre-irradiation and post-annealing single-ended VIL and VIH are tested and recorded as pass or fail. In each case, both the pre-irradiation and post-annealing passed with respect to the specification. 12 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

D. Output-Drive Voltage (VOL/VOH) The pre-irradiation and post-annealing VOL/VOH are listed in Table 6 and Table 7. The post-annealing data are within the specification limits; in each case, the radiation-induced degradation is within 10%. Pin \ DUT(Dose) 3989 Table 6: (200 krad) Pre- Rad Post- An Pre-Irradiation and Post-Annealing VOL (mv) 3991 (200 krad) Pre- Rad Post- An 3993 (200 krad) Pre- Rad 4005 (300 krad) 4017 (300 krad) 4020 (300 krad) Array_out_EAQ_0 153.8 191.8 192.0 188.2 190.9 208.4 207.3 187.0 195.5 165.6 196.2 153.8 Array_out_EAQ_1 153.4 194.0 190.9 179.3 187.1 215.9 205.6 182.3 195.2 164.4 196.0 153.4 Array_out_EAQ_2 149.9 192.9 186.3 179.9 170.6 196.8 210.5 177.0 197.7 164.9 188.9 149.9 Global_Monitor_EAQ 153.9 195.4 191.3 180.3 195.0 209.2 213.5 181.9 202.7 168.0 196.4 153.9 Shiftout3 151.5 195.6 188.7 184.6 195.2 194.9 208.3 188.5 198.1 164.6 195.3 151.5 Shiftout7 153.8 191.8 192.0 188.2 190.9 208.4 207.3 187.0 195.5 165.6 196.2 153.8 Shiftout8 143.1 185.8 179.4 178.8 186.8 211.5 203.7 183.2 189.3 152.1 182.6 143.1 RAM_Monitor_EAQ 146.7 189.2 182.8 183.9 187.9 198.3 205.5 186.0 192.6 154.2 191.8 146.7 RAM_out_EAQ_0 143.3 185.8 179.7 178.9 186.8 209.0 203.7 183.2 189.4 152.4 182.4 143.3 RAM_out_EAQ_4 146.0 186.9 181.7 182.7 186.7 196.8 203.2 184.8 191.2 149.9 188.2 146.0 RAM_out_EAQ_8 142.7 186.5 180.0 182.8 186.0 194.1 200.0 182.4 188.4 150.3 188.8 142.7 Post- An Pre- Rad Post- An Pre- Rad Post- An Pre- Rad Post- An Pin \ DUT(Dose) 3989 (200 krad) Pre- Rad Table 7: Post- An Pre-Irradiation and Post-Annealing VOH (V) 3991 (200 krad) Pre- Rad Post- An 3993 (200 krad) Pre- Rad 4005 (300 krad) 4017 (300 krad) 4020 (300 krad) Array_out_EAQ_0 2.76 2.71 2.72 2.72 2.73 2.70 2.70 2.72 2.71 2.75 2.71 2.76 Array_out_EAQ_1 2.76 2.71 2.72 2.73 2.71 2.71 2.70 2.72 2.71 2.75 2.71 2.76 Array_out_EAQ_2 2.76 2.72 2.72 2.72 2.72 2.71 2.70 2.72 2.71 2.75 2.72 2.76 Global_Monitor_EAQ 2.76 2.71 2.72 2.72 2.72 2.69 2.69 2.72 2.71 2.75 2.71 2.76 Shiftout3 2.76 2.71 2.72 2.72 2.72 2.71 2.70 2.72 2.71 2.75 2.71 2.76 Shiftout7 2.76 2.71 2.72 2.72 2.73 2.70 2.70 2.72 2.71 2.75 2.71 2.76 Shiftout8 2.76 2.72 2.72 2.72 2.72 2.69 2.70 2.72 2.71 2.76 2.72 2.76 RAM_Monitor_EAQ 2.76 2.71 2.72 2.72 2.71 2.70 2.69 2.72 2.71 2.76 2.71 2.76 RAM_out_EAQ_0 2.76 2.72 2.72 2.72 2.72 2.69 2.70 2.72 2.71 2.76 2.72 2.76 RAM_out_EAQ_4 2.76 2.71 2.72 2.72 2.71 2.70 2.69 2.72 2.71 2.76 2.71 2.76 RAM_out_EAQ_8 2.76 2.71 2.72 2.72 2.71 2.70 2.70 2.72 2.71 2.76 2.71 2.76 Post- An Pre- Rad Post- An Pre- Rad Post- An Pre- Rad Post- An Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 13

E. Propagation Delay Table 8 lists the pre-irradiation and post-annealing propagation delays. The results show small radiation effects; in any case the percentage change is well below 10% (except one read point of a sample shows 10.6% post-300 krad). Delay (µs) Table 8: Radiation-Induced Propagation Delay Degradations DUT Total Dose Pre-Rad Post- 100 krad Post- 200 krad Post- 300 krad Post-An 3989 200 krad 6.395 6.460 6.475-6.325 3991 200 krad 6.690 6.730 6.760-6.625 3993 200 krad 6.415 6.465 6.495-6.345 4005 300 krad 6.735 6.795 6.830 7.230 6.665 4017 300 krad 6.400 6.470 6.510 7.080 6.340 4020 300 krad 6.525 6.600 6.630 6.760 6.430 Radiation (%) DUT Total Dose Pre-Rad Post- 100 krad Post- 200 krad Post- 300 krad Post-An 3989 200 krad - 1.0% 1.3% - -1.1% 3991 200 krad - 0.6% 1.0% - -1.0% 3993 200 krad - 0.8% 1.2% - -1.1% 4005 300 krad - 0.9% 1.4% 7.3% -1.0% 4017 300 krad - 1.1% 1.7% 10.6% -0.9% 4020 300 krad - 1.1% 1.6% 3.6% -1.5% 14 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

F. Transition Time Figure 8a to Figure 19b show the pre-irradiation and post-annealing transition edges. In each case, the radiation-induced transition-time degradation is not observable. Figure 8a: DUT 3989 Pre-Irradiation Rising Edge Figure 8b DUT 3989 Post-Annealing Rising Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 15

Figure 9a DUT 3991 Pre-irradiation Rising Edge Figure 9b DUT 3991 Post-Annealing Rising Edge 16 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 10a DUT 3993 Pre-Irradiation Rising Edge Figure 10b DUT 3993 Post-Annealing Rising Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 17

Figure 11a DUT 4005 Pre-Irradiation Rising Edge Figure 11b DUT 4005 Post-Annealing Rising Edge 18 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 12a DUT 4017 Pre-Irradiation Rising Edge Figure 12b DUT 4017 Post-Annealing Rising Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 19

Figure 13a DUT 4020 Pre-Irradiation Rising Edge Figure 13b DUT 4020 Post-Annealing Rising Edge 20 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 14a DUT 3989 Pre-Irradiation Falling Edge Figure 14b DUT 3989 Post-Annealing Falling Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 21

Figure 15a DUT 3991 Pre-Irradiation Falling Edge Figure 15b DUT 3991 Post-Annealing Falling Edge 22 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 16a DUT 3993 Pre-Irradiation Falling Edge Figure 16b DUT 3993 Post-Annealing Falling Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 23

Figure 17a DUT 4005 Pre-Irradiation Falling Edge Figure 17b DUT 4005 Post-Annealing Falling Edge 24 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure 18a DUT 4017 Pre-Irradiation Falling Edge Figure 18b DUT 4017 Post-Annealing Falling Edge Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 25

Figure 19a DUT 4020 Pre-Irradiation Falling Edge Figure 19b DUT 4020 Post-Annealing Falling Edge 26 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Appendix A: DUT Bias Diagram I CLOCK DUT6 Rclock1 Rclock2 Rclock3 Hclock1 Hclock2 Hclock3 Hclock4 A_Pattern_Length_0 A_Pattern_Length_1 A_Pattern_Length_2 Burnin ctest_done_sel_0 ctest_done_sel_1 ctest_done_sel_2 ctest_done_sel_3 ctest_done_sel_4 ctest_ok_sel_0 ctest_ok_sel_1 ctest_ok_sel_2 ctest_ok_sel_3 ctest_ok_sel_4 IO_Pattern_Length_0 IO_Pattern_Length_1 IO_Pattern_Length_2 oe_eaq zoom_sel_n_0 zoom_sel_n_1 enable_hsb IO_Johnson A_Johnson Resetn Set_n SEU_sel Shif tfrequency _0 Shif tfrequency _1 Shif tin1 Shif tin2 Shif tin3 Shif tin4 Shif tin5 Shif tin6 Shif tin7 Shif tin8 TOG_n zoom Array _Monitor_EAQ IO_Monitor_EAQ Global_Monitor_EAQ RAM_Monitor_EAQ RAM_out_EAQ_0 RAM_out_EAQ_1 RAM_out_EAQ_2 RAM_out_EAQ_3 RAM_out_EAQ_4 RAM_out_EAQ_5 RAM_out_EAQ_6 RAM_out_EAQ_7 RAM_out_EAQ_8 delay _out_eaq_0 delay _out_eaq_1 delay _out_eaq_2 delay _out_eaq_3 delay _out_eaq_4 delay _out_eaq_5 Array _out_eaq_0 Array _out_eaq_1 Array _out_eaq_2 IO_Outs_EAQ_516 IO_Outs_EAQ_517 IO_Outs_EAQ_518 IO_Outs_EAQ_519 Shif tout1 Shif tout2 Shif tout3 Shif tout4 Shif tout5 Shif tout6 Shif tout7 Shif tout8 PADN_LVPECL_0 PADP_LVPECL_0 PADN_LVPECL_1 PADP_LVPECL_1 delay _out_seu_0 delay _out_seu_1 delay _out_seu_2 delay _out_seu_3 delay _out_seu_4 Figure A1 I/O Bias During Irradiation Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 27

28 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 Figure A2 Power Supply, Ground and Special Pins Bias During Irradiation DUT1D B11 B14 B17 B5 B8 F11 F14 F17 F8 K11 K14 K17 N15 N17 B20 B23 B26 B29 B32 F20 F23 F26 F29 K20 K23 K26 N20 N22 E35 H31 H35 K27 L31 L35 P27 P31 P35 R24 U24 U27 U31 U35 AB24 AC27 AC31 AC35 AF31 AF35 AG27 AJ31 AJ35 AM35 Y24 Y27 Y31 Y35 AD20 AD22 AG20 AG23 AG26 AL20 AL23 AL26 AL29 AR20 AR23 AR26 AR29 AR32 AD15 AD17 AG11 AG14 AG17 AL11 AL14 AL17 AL8 AR11 AR14 AR17 AR5 AR8 AB13 AC10 AC2 AC6 AF2 AF6 AG10 AJ2 AJ6 AM2 Y10 Y13 Y2 Y6 E2 H2 H6 K10 L2 L6 P10 P2 P6 R13 U10 U13 U2 U6 AB10 AB27 AF19 AH29 AJ9 AK30 AK7 AM31 F19 G31 G6 H29 L18 R10 V11 V26 E5 F31 C21 J29 G30 E24 H28 AL30 AM24 AM32 AJ28 E13 AP21 AE22 AN21 AF18 AN16 AM6 AP16 AM5 AH8 AM13 E6 AL6 N13 C16 L19 D16 M22 D21 A19 AE12 AL32 AL5 AT18 J30 M12 W33 AA14 AA16 AA18 AA20 AA22 AB15 AB17 AB19 AB21 AB23 AC14 AC16 AC18 AC20 AC22 AP3 AP34 C3 C34 P15 P17 P19 P21 P23 R14 R16 R18 R20 R22 T15 T17 T19 T21 T23 U14 U16 U18 U20 U22 V15 V17 V19 V21 V23 W14 W16 W18 W20 W22 Y15 Y17 Y19 Y21 Y23 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I3 I4 I4 I4 I4 I4 I4 I4 I4 I4 I4 I4 I4 I4 I4 I5 I5 I5 I5 I5 I5 I5 I5 I5 I5 I5 I5 I5 I5 I6 I6 I6 I6 I6 I6 I6 I6 I6 I6 I6 I6 I6 I6 I7 I7 I7 I7 I7 I7 I7 I7 I7 I7 I7 I7 I7 I7 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 R R R R R R R R R R R R R R R R VPP1 VPP10 VPP11 VPP12 VPP13 VPP14 VPP15 VPP16 VPP17 VPP18 VPP19 VPP2 VPP20 VPP21 VPP22 VPP23 VPP24 VPP25 VPP26 VPP27 VPP28 VPP29 VPP3 VPP30 VPP4 VPP5 VPP6 VPP7 VPP8 VPP9 VSV VSV VSV VSV VSV VSV VSV VSV A_1.5 I_3.3

Appendix B: Functionality Tests Combinatorial Block Combo Test OK FIFO Block FIFO Test OK Monitor Circuit Global Test Monitor RAM Block RAM Test OK ALU Block ALU Test OK Figure B1 QBI Block Top-Level Design Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 29

Burnin Hclock2 Resetn INBUF HCLKBUF Hclock_buf INBUF reset_sync CLKBUF Rclock1_ buf Rclock2_ buf Rclock3_ buf Hclock4_ buf highz oe CLKINT Resetn_buf D G Q burnin_l at combo_mon C_test_mon x 3 CLKBUF CLKBUF CLKBUF combo_bist X 3 combo_bist x 3 combo_bist x 3 Figure B2 QBI Block Combinatorial Test (Top Level) 30 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Blocks for different aspect ratios and cascaded configurations: RAM18X512 RAM9X512 18 x 512 9 x 512 2 x 2048 1 x 32768 9 x 2048 4 x 1024-2 blocks - 2 blocks - 2 blocks - 2 blocks - 4 blocks - 2 blocks RAM2X2048 Compare_ok LATCH Combo_test_ok RAM1x32768 RAM9x2048_test RAM4X1024 Figure B3 QBI Block RAM Test (Top Level) Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 31

Figure B4 QBI Block RAM Block 32 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Figure B5 EAQ Block Top Level Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 33

Figure B6 EAQ Block Array Test (Shift Register) 34 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Set_n Reset_n IO_clk ShiftFreq[1:0] IO_Pattern_length[2:0] IO_Pattern_type 3 Startup Synchronizer IO_SetSyncD [76:0] IO_ResetSyncD Shift 2 Enable IO_Shift_enable_n Control CLKINT CLKINT Pattern Generator [75] [74:0] [76] I/O Weave Shift Register (1041 bits long) Serial Pattern Checker 520 I/Os Error_flag IO_Monitor Figure B7 EAQ Block I/O Test (Top Level) Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1 35

Figure B8 EAQ Block SRAM Test (Top Level) 36 Total Ionizing Dose Test Report No. 14T-RTAX4000S-CQ352-D7FLT1

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided as is, where is and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document orms8-009-14 to any products and services at any time without notice.