Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Drain Gate Voltage (RGS = 1.0 MΩ)

Similar documents
Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Drain Gate Voltage (RGS = 1.0 MΩ)

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

G S (FLANGE) PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

Watts W/ C Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C. Test Conditions

PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 0.8 C/W

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C

Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Gate Source Voltage VGS ±20 Vdc Total Device TC = 25 C Derate above 25 C

AGR09085E 85 W, 865 MHz 895 MHz, N-Channel E-Mode, Lateral MOSFET

Features. Description. Table 1: Device summary Order code Marking Package Packing SD2932W SD2932 (1) M244 Tube

Freescale Semiconductor, I

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 200 C

Features. Description. Table 1: Device summary Order code Marking Package Packing SD2942W SD2942 (1) M244 Tube

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 150 C

MRF173. The RF MOSFET Line 80W, 175MHz, 28V. M/A-COM Products Released - Rev Product Image

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

SD56120M RF POWER TRANSISTORS The LdmoST FAMILY

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 25 C/W. Characteristic Symbol Min Typ Max Unit.

PD55015 PD55015S RF POWER TRANSISTORS The LdmoST FAMILY

Symbol Parameter VRF161(MP) Unit V DSS Drain-Source Voltage 170 V I D Continuous Drain T C

SD MR. 150 W 50 V moisture resistant HF/VHF DMOS transistor. Datasheet. Features. Description

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case (2) RθJC 1.75 C/W. Characteristic Symbol Min Typ Max Unit

PD Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

PD Storage Temperature Range Tstg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 4.

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 25 C/W. Characteristic Symbol Min Typ Max Unit.

N Channel Enhancement Mode Silicon Gate

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C

PD Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 C

PD55008 PD55008S RF POWER TRANSISTORS The LdmoST Plastic FAMILY

SD4933. HF/VHF/UHF RF power N-channel MOSFET. Features. Description

50 V moisture resistant DMOS transistor for ISM applications. Features. Description. Table 1. Device summary

NTD80N02T4G. Power MOSFET 80 Amps, 24 Volts. N Channel DPAK

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

IRFE230 JANTXV2N6798U SURFACE MOUNT (LCC-18) 200V, N-CHANNEL REF:MIL-PRF-19500/557. Absolute Maximum Ratings PD-91715C.

HEXFET MOSFET TECHNOLOGY

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings

IRHNJ V, N-CHANNEL POWER MOSFET SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/703. Absolute Maximum Ratings. Product Summary

PD54003 PD54003S RF POWER TRANSISTORS The LdmoST FAMILY

RF Power Field Effect Transistor LDMOS, MHz, 15W, 26V

Symbol Parameter VRF151(MP) Unit V DSS Drain-Source Voltage 170 V I D Continuous Drain T C

IRFE420 JANTX2N6794U JANTXV2N6794U REF:MIL-PRF-19500/ V, N-CHANNEL

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

SD RF power transistor HF/VHF/UHF N-channel power MOSFETs. Features. Description

D AB Z DETAIL "B" DETAIL "A"

Gate. Order code Package Packing

2N mamps, 60 Volts. Elektronische Bauelemente. 115 mamps, 60VOLTS, RDS(on)=7.5 Small Signal MOSFET 025D MAXIMUM RATINGS

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

IRF9230 JANTXV2N6806

Freescale Semiconductor, I

HEXFET MOSFET TECHNOLOGY

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

IRHG V, Quad N-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036) PD-94432C. 1 TECHNOLOGY. Product Summary MO-036AB

TC = 25 C unless otherwise noted. Maximum lead temperature for soldering purposes, 300 1/8" from case for 5 seconds

SURFACE MOUNT (SMD-1) 100V, P-CHANNEL. Absolute Maximum Ratings. Product Summary

IRHNM SURFACE MOUNT (SMD-0.2) REF: MIL-PRF-19500/749. Product Summary. Absolute Maximum Ratings

IRHF57133SE THRU-HOLE (TO-39) REF: MIL-PRF-19500/706. Absolute Maximum Ratings

IRHMS THRU-HOLE (Low-Ohmic TO-254AA) REF: MIL-PRF-19500/713. Absolute Maximum Ratings

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

SD56120M. RF POWER Transistors, LDMOST plastic family N-Channel enhancement-mode lateral MOSFETs. General features. Description.

IRHNM57110 SURFACE MOUNT (SMD-0.2) REF: MIL-PRF-19500/743. Product Summary. Absolute Maximum Ratings PD-97192C

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

SD HF/VHF/UHF RF power N-channel MOSFETs. Features. Description

STN4420. N-Channel Enhancement Mode MOSFET. 30V N-Channel Enhancement Mode MOSFET DESCRIPTION FEATURE APPLICATIONS PIN CONFIGURATION

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AM V N-CHANNEL ENHANCEMENT MODE MOSFET

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown

IRHLUB770Z4 SURFACE MOUNT (UB) REF: MIL-PRF-19500/744. Product Summary. Features: Absolute Maximum Ratings PD-95813H. Pre-Irradiation.

SD2942. HF/VHF/UHF RF power N-channel MOSFETs. Features. Description

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

2N7624U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, P-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

VGS = 4.5V, TC = 25 C Continuous Drain Current 2.6 A

MR2003C LDMOS TRANSISTOR

MSV SEMI. Power MOSFET 200 mamps, 50 Volts N Channel SC-70 BSS139W 1. FEATURES. 2. MAXIMUM RATINGS(Ta = 25oC) 3. THERMAL CHARACTERISTICS 1/7

2N7606U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, N-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

THRU-HOLE (Tabless - Low-Ohmic TO-254AA)

SD RF POWER TRANSISTORS The LdmoST FAMILY

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

SD2933. HF/VHF/UHF RF power N-channel MOSFETs. Features. Description

MR2006C LDMOS TRANSISTOR

IRFF420 JANTX2N6794 JANTXV2N6794 REF:MIL-PRF-19500/ V, N-CHANNEL

DISCRETE SEMICONDUCTORS DATA SHEET M3D058. BLF346 VHF power MOS transistor. Product specification Supersedes data of 1996 Oct 02.

SD2900. RF POWER TRANSISTORS HF/VHF/UHF N-CHANNEL MOSFETs

2N7582T1 IRHMS V, N-CHANNEL. RADIATION HARDENED POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) Absolute Maximum Ratings PD-96958B

Symbol Parameter VRF141(MP) Unit V DSS Drain-Source Voltage 80 V I D Continuous Drain T C

n Low RDS(on) n Avalanche Energy Ratings n Simple Drive Requirements n Ease of Paralleling n Hermetically Sealed n Surface Mount n Light Weight

PFU70R360G / PFD70R360G

PDN001N60S. 600V N-Channel MOSFETs BVDSS RDSON ID 600V A S G. General Description. Features. SOT23-3S Pin Configuration.

TECHNOLOGY SURFACE MOUNT (LCC-6) 0.89A -0.65A 0.89A -0.65A

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

2N7617UC IRHLUC770Z4 60V, DUAL-N CHANNEL RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (LCC-6) Product Summary

STP4435. P-Channel Enhancement Mode MOSFET. -30V P-Channel Enhancement Mode MOSFET FEATURE DESCRIPTION APPLICATIONS PIN CONFIGURATION

Transcription:

SEMICONDUCTOR TECHNICAL DATA Order this document by MRF275G/D The RF MOSFET Line N Channel Enhancement Mode Designed primarily for wideband large signal output and driver stages from 1 5 MHz. Guaranteed Performance @ 5 MHz, 28 Vdc Output Power 15 Watts Power Gain 1 db (Min) Efficiency 5% (Min) 1% Tested for Load Mismatch at all Phase Angles with VSWR 3:1 Overall Lower Capacitance @ 28 V Ciss 135 pf Coss 14 pf Crss 17 pf Simplified AVC, ALC and Modulation D 15 W, 28 V, 5 MHz N CHANNEL MOS BROADBAND 1 5 MHz RF POWER FET Typical data for power amplifiers in industrial and commercial applications: Typical Performance @ 4 MHz, 28 Vdc Output Power 15 Watts Power Gain 12.5 db Efficiency 6% Typical Performance @ 225 MHz, 28 Vdc Output Power 2 Watts Power Gain 15 db Efficiency 65% G G D S (FLANGE) CASE 375 4, STYLE 2 MAXIMUM RATINGS Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Drain Gate Voltage (RGS = 1. MΩ) VDGR 65 Vdc Gate Source Voltage VGS ±4 Adc Drain Current Continuous ID 26 Adc Total Device Dissipation @ TC = 25 C Derate above 25 C PD 4 2.27 Storage Temperature Range Tstg 65 to +15 C Operating Junction Temperature TJ 2 C THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC.44 C/W Watts W/ C NOTE CAUTION MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. 1

ELECTRICAL CHARACTERISTICS (TC = 25 C unless otherwise noted) OFF CHARACTERISTICS (1) Drain Source Breakdown Voltage (VGS =, ID = 5 ma) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = ) Gate Source Leakage Current (VGS = 2 V, VDS = ) ON CHARACTERISTICS (1) Characteristic Symbol Min Typ Max Unit V(BR)DSS 65 Vdc IDSS 1 ma IGSS 1 µa Gate Threshold Voltage (VDS = 1 V, ID = 1 ma) VGS(th) 1.5 2.5 4.5 Vdc Drain Source On Voltage (VGS = 1 V, ID = 5 A) VDS(on).5.9 1.5 Vdc Forward Transconductance (VDS = 1 V, ID = 2.5 A) gfs 3 3.75 mhos DYNAMIC CHARACTERISTICS (1) Input Capacitance (VDS = 28 V, VGS =, f = 1 MHz) Ciss 135 pf Output Capacitance (VDS = 28 V, VGS =, f = 1 MHz) Coss 14 pf Reverse Transfer Capacitance (VDS = 28 V, VGS =, f = 1 MHz) Crss 17 pf FUNCTIONAL CHARACTERISTICS (2) (Figure 1) Common Source Power Gain (VDD = 28 V, Pout = 15 W, f = 5 MHz, IDQ = 2 x 1 ma) Drain Efficiency (VDD = 28 V, Pout = 15 W, f = 5 MHz, IDQ = 2 x 1 ma) Electrical Ruggedness (VDD = 28 V, Pout = 15 W, f = 5 MHz, IDQ = 2 x 1 ma, VSWR 3:1 at all Phase Angles) 1. Each side of device measured separately. 2. Measured in push pull configuration. Gps 1 11.2 db η 5 55 % ψ No Degradation in Output Power 2

A B +VGG C14 R1 C15 C16 C22 C17 L5 C18 L6 C19 + +28 V L1 L3 C1 Z1 Z3 D.U.T. Z5 Z7 C1 C2 B1 C5 C6 C7 C8 C3 C9 C11 C12 B2 C4 Z2 Z4 Z6 Z8 C13 L2 L4 A C2 C21 B B1 Balun, 5 Ω,.86 O.D. 2 Long, Semi Rigid Coax B2 Balun, 5 Ω, Coax.141 O.D. 2 Long, Semi Rigid C1, C2, C3, C4, C1, C11, C12, C13 27 pf, ATC Chip Capacitor C5, C8 1. 2 pf, Trimmer Capacitor, Johanson C6 22 pf, Mini Unelco Capacitor C7 15 pf, Unelco Capacitor C9 2.1 pf, ATC Chip Capacitor C14, C15, C16, C2, C21, C22.1 µf, Ceramic Capacitor C17, C18 68 pf, Feedthru Capacitor C19 1 µf, 5 V, Electrolytic Capacitor, Tantalum L1, L2 1 Turns AWG #24,.145 O.D., 16 nh Taylor Spring Inductor L3, L4 1 Turns AWG #18,.34 I.D., Enameled Wire Figure 1. 5 MHz Test Circuit L5 Ferroxcube VK2 2/4B L6 4 Turns #16,.34 I.D., Enameled Wire R1 1. kω,1/4 W Resistor W1 W4 2 x 2 x 25 mils, Wear Pads, Beryllium Copper, (See Component Location Diagram) Z1, Z2 1.1 x.245, Microstrip Line Z3, Z4, Z5, Z6.3 x.245, Microstrip Line Z7, Z8 1. x.245, Microstrip Line Board material.6 Teflon fiberglass, εr = 2.55, copper clad both sides, 2 oz. copper. Points A are connected together on PCB. Points B are connected together on PCB. 3

TYPICAL CHARACTERISTICS 3 16, OUTPUT POWER (WATTS) Pout 25 2 15 1 5 225 MHz 5 1 15 Pin, INPUT POWER (Watts) 4 MHz IDQ = 2 x 1 ma VDD = 28 V 2 5 MHz 25, OUTPUT POWER (WATTS) Pout 14 12 1 8 6 4 VDS = 28 V IDQ = 2 x 1 ma 2 Pin = Constant f = 5 MHz 1 8 6 4 2 2 VGS, GATE SOURCE VOLTAGE (V) 4 Figure 2. Output Power versus Input Power Figure 3. Output Power versus Gate Voltage, DRAIN CURRENT (AMPS) I D 1 9 8 7 6 5 4 3 2 1 VDS = 1 V VGS(th) = 2.5 V, OUTPUT POWER (WATTS) Pout 18 16 14 12 1 8 6 4 2 Pin = 14 W 1 W 6 W IDQ = 2 x 1 ma f = 5 MHz.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VGS, GATE SOURCE VOLTAGE (V) 12 14 16 18 2 22 24 26 28 VDD, SUPPLY VOLTAGE (V) Figure 4. Drain Current versus Gate Voltage (Transfer Characteristics) Figure 5. Output Power versus Supply Voltage, OUTPUT POWER (WATTS) Pout 2 25 18 Pin = 14 W 12 W 16 2 14 1 W 1 W 12 15 1 6 W Pin = 4 W 8 1 6 4 IDQ = 2 x 1 ma 5 IDQ = 2 x 1 ma f = 225 MHz 2 f = 4 MHz 12 14 16 18 2 22 24 26 28 12 14 16 18 2 22 24 26 28 VDD, SUPPLY VOLTAGE (V) VDD, SUPPLY VOLTAGE (V), OUTPUT POWER (WATTS) Pout Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage 4

TYPICAL CHARACTERISTICS C, CAPACITANCE (pf) 1 1 1 Coss Ciss Crss VGS = V f = 1. MHz, GATE SOURCE VOLTAGE (NORMALIZED) 1.3 1.2 1.1 1.9.8 VDD = 28 V 3 A ID = 4 A 2 A.1 A 1 5 1 15 2 VDS, DRAIN SOURCE VOLTAGE (V) 25 3 VGS.7 25 25 5 75 1 125 15 175 TC, CASE TEMPERATURE ( C) 2 Figure 8. Capacitance versus Drain Source Voltage* *Data shown applies only to one half of device, MRF275G Figure 9. Gate Source Voltage versus Case Temperature 1, DRAIN CURRENT (AMPS) I D 1 TC = 25 C 1 1 1 1 VDS, DRAIN SOURCE VOLTAGE (V) Figure 1. DC Safe Operating Area 5

VDD = 28 V, IDQ = 2 x 1 ma, Pout = 15 W f = 5 MHz f (MHz) Zin Ohms ZOL* Ohms 225 1.6 j2.3 3.2 j1.5 4 1.9 + j.48 2.3 j.19 5 1.9 + j2.6 2. + j1.3 4 Zin f = 5 MHz 4 ZOL* 225 Zo = 1 Ω ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device operates at a given ZOL* = output power, voltage and frequency. Note: Input and output impedance values given are measured from gate to gate and drain to drain respectively. 225 Figure 11. Series Equivalent Input/Output Impedance 6

A B C14 L5 C15 L6 BIAS C1 C11 R1 C12 C13 R2 C18 28 V L3 C1 D.U.T. L1 C8 Z1 Z3 Z5 B1 C3 C4 C5 C6 C7 B2 C2 L2 Z2 Z4 Z6 C9 R3 L4 A C16 C17 B.18 B1 Balun, 5 Ω,.86 O.D. 2 Long, Semi Rigid Coax B2 Balun, 5 Ω,.141 O.D. 2 Long, Semi Rigid Coax C1, C2, C8, C9 27 pf, ATC Chip Capacitor C3, C5, C7 1. 2 pf, Trimmer Capacitor C4 15 pf, ATC Chip Capacitor C6 33 pf, ATC Chip Capacitor C1, C12, C13, C16, C17.1 µf, Ceramic Capacitor C11 1. µf, 5 V, Tantalum C14, C15 68 pf, Feedthru Capacitor C18 2 µf, 5 V, Tantalum L1, L2 #18 Wire, Hairpin Inductor L3, L4 12 Turns #18,.34 I.D., Enameled Wire L5 Ferroxcube VK2 2/4B L6 3 Turns #16,.34 I.D., Enameled Wire R1 1. kω, 1/4 W Resistor R2, R3 1 kω, 1/4 W Resistor Z1, Z2.4 x.25, Microstrip Line Z3, Z4.87 x.25, Microstrip Line Z5, Z6.5 x.25, Microstrip Line Board material.6 Teflon fiberglass, εr = 2.55, copper clad both sides, 2 oz. copper..2 Figure 12. 4 MHz Test Circuit 7

BIAS 6 V R1 C3 C4 C8 C9 L2 C1 + 28 V R2 D.U.T. T2 L1 T1 C5 C6 C1 C2 C7 C1 8. 6 pf, Arco 44 C2, C3, C7, C8 1 pf, Chip Capacitor C4, C9.1 µf, Chip Capacitor C5 18 pf, Chip Capacitor C6 1 pf and 13 pf, Chips in Parallel C1.47 µf, Chip Capacitor, 1215 or Equivalent, Kemet L1 1 Turns AWG #16, 1/4 I.D., Enamel Wire, Close Wound L2 Ferrite Beads of Suitable Material for 1.5 2. µh Total Inductance Board material 62 fiberglass (G1), εr 5, Two sided, 1 oz. Copper. Unless otherwise noted, all chip capacitors are ATC Type 1 or Equivalent. R1 R2 T1 T2 1 Ω, 1/2 W 1. k Ω, 1/2 W 4:1 Impedance Ratio, RF Transformer Can Be Made of 25 Ω, Semi Rigid Coax, 47 52 Mils O.D. 1:9 Impedance Ratio, RF Transformer. Can Be Made of 15 18 Ω, Semi Rigid Coax, 62 9 Mils O.D. NOTE: For stability, the input transformer T1 should be loaded NOTE: with ferrite toroids or beads to increase the common NOTE: mode inductance. For operation below 1 MHz. The NOTE: same is required for the output transformer. Figure 13. 225 MHz Test Circuit 8

L5 B1 C17 C18 + C19 R1 C16 C22 L6 C14 C15 L1 L3 BEADS 1 3 C1 C2 C3 C4 C5 W2 W1 C6 W3 W4 C7 C8 C1 C11 C9 C12 C13 L2 C2 L4 BEADS 4 6 B2 C21 MRF275G JL Figure 14. MRF275G Component Location (5 MHz) (Not to Scale) MRF275G JL Figure 15. MRF275G Circuit Board Photo Master (5 MHz) (Scale 1:1) 9

NOTE: S Parameter data represents measurements taken from one chip only. Table 1. Common Source S Parameters (VDS = 12 V, ID = 4.5 A) f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ 3 Á.822 172 Á 6.34 Á 91.27 Á 3.946 Á 173 4.846 173 4.32 81.27 6.859 172 ÁÁ 5.842 174 3.62 79.27 8.863 175 ÁÁ 6.838 175 3.3 79.27 5.923 177 ÁÁ 7.836 175 2.76 8.28 3 1.1 ÁÁ 8.841 176 2.43 78.29 4 1.8 Á Á Á Á Á 9.849 176 2.19 74.29 7 1.15 176 Á Á Á Á Á Á Á ÁÁ 1.857 176 1.89 68.28 13 1.11 176 Á ÁÁ 11.864 176 1.66 63.26 19 1.5 177 Á ÁÁ 12.868 176 1.43 6.24 19.958 175 Á ÁÁ 13.871 176 1.25 59.23 19.95 176 Á ÁÁ 14.874 176 1.15 59.23 17.914 177 Á ÁÁ 15.876 176 1.11 59.23 16.969 Á ÁÁ 16.88 176 1.6 59.23 17 1.6 Á ÁÁ 17.885 177 1.1 55.23 18 1.13 177 Á ÁÁ 18.891 177.96 51.23 23 1.19 Á ÁÁ 19.896 177.87 45.22 26 1.14 Á ÁÁ 2.9 177.77 43.2 26 1.5 177 Á ÁÁ 21.94 177.69 42.18 25.958 176 Á ÁÁ 22.97 177.63 43.17 23.924 175 Á ÁÁ 23.99 177.6 43.18 23.981 Á ÁÁ 24.912.58 44.17 22.981 18 Á ÁÁ 25.915.58 42.17 2 1.4 Á ÁÁ 26.918.56 4.16 2 1.15 18 Á ÁÁ 27.922.54 34.15 24 1.17 179 Á ÁÁ 28.925.49 32.14 27 1.13 18 Á 29.927 Á.43 28.13 Á 27 1.1 Á Á 3.93 Á.41 3.13 Á 23.964 Á Á 31.932 Á.4 32.13 Á 14.936 Á Á 32.934 18 Á.39 31.12 Á 9.948 Á 18 Á 33.936 18 Á.35 32.11 Á 9 1. Á 18 Á ÁÁÁ 34.938 18.38 31.11 Á 12 1.7 Á 178 Á ÁÁÁ 35.941 18.35 28.11 Á 12 1.1 Á 18 Á ÁÁÁ 36.943 179.33 23.11 Á 1 1.12 Á 18 Á ÁÁÁ 37.944 179.3 21.11 Á 4 1.8 Á 18 Á ÁÁÁ 38.945 179.29 21.9 Á 1 1.2 Á 18 Á ÁÁÁ Á Á 39.947 179.28 22.8 3.966 18 Á Á Á Á 4.948 179.26 25.8 Á 4.936 Á Á ÁÁÁ 41.949 178.26 24.1 Á 5 1.1 Á 179 Á ÁÁÁ Á Á 42.951 178.25 25.1 11 1.4 178 Á ÁÁ 1

Table 1. Common Source S Parameters (VDS = 12 V, ID = 4.5 A) continued f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ ÁÁÁ Á 43.952 178.25 22.1 19 1.8 177 ÁÁÁ Á 44.953 177.24 19.9 22 1.1 178 ÁÁÁ Á 45.955 177.24 16.8 21 1.1 179 ÁÁÁ Á 46.956 177.21 15.8 11 1.8 177 ÁÁÁ Á 47.956 177.2 16.9 16.992 178 ÁÁÁ Á 48.957 176.19 18.1 27.975 179 ÁÁÁ Á 49.958 176.19 18.1 4.974 178 5 Á.96 176.19 Á 19 Á.1 46 Á 1.1 177 6 Á.956 175.18 Á 12.7 Á 49 Á.94 175 7 Á.958 172.11 Á 14.18 Á 61 Á.989 173 8 Á.962 17.1 Á 12.29 Á 51 Á.967 172 9 Á.965 168.8 Á 16.21 Á 72 Á.973 17 1 Á.964 165.7 Á 12.21 Á 57 Á 1.1 168 Table 2. Common Source S Parameters (VDS = 24 V, ID =.35 ma) f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ ÁÁÁ Á 3.829 17 9.2 92.23 4.915 171 ÁÁÁ Á 4.858 172 6.3 83.22 4.834 17 ÁÁÁ Á 5.852 173 5.28 8.23 6.836 174 ÁÁÁ Á 6.846 174 4.42 8.23 3.892 175 ÁÁÁ Á 7.843 175 4.1 81.24 1.978 177 ÁÁÁ Á 8.847 175 3.53 8.24 2 1.5 177 ÁÁÁ Á 9.855 175 3.18 76.24 5 1.11 176 ÁÁÁ Á 1.865 176 2.75 7.23 1 1.8 175 ÁÁÁ Á 11.872 176 2.43 65.22 16 1.2 176 ÁÁÁ Á 12.874 176 2.1 62.2 16.932 174 ÁÁÁ Á 13.876 176 1.84 61.19 15.882 175 ÁÁÁ Á 14.878 176 1.7 61.19 14.889 176 Á ÁÁÁ 15.88 176 1.63 61.19 Á 13.943 177 Á ÁÁÁ 16.883 176 1.56 61.19 Á 13 1.3 177 Á ÁÁÁ 17.888 177 1.49 58.19 Á 14 1.1 176 Á ÁÁÁ 18.894 177 1.42 53.19 Á 18 1.16 176 Á ÁÁÁ 19.899 177 1.29 47.18 Á 22 1.12 177 Á ÁÁÁ 2.92 177 1.14 45.17 Á 24 1.3 176 Á ÁÁÁ 21.95 177 1.2 44.15 Á 23.941 175 Á ÁÁÁ 22.97 177.94 46.15 Á 19.93 174 Á ÁÁÁ Á Á 23.99.89 45.15 16.957 177 Á Á Á 24.912.87 46.14 Á 15.961 Á ÁÁÁ 25.915.86 44.14 Á 15 1.2 Á ÁÁÁ Á Á 26.918.83 42.14 17 1.12 Á Á Á Á Á 27.922.8 36.13 19 1.14 18 Á 11

Table 2. Common Source S Parameters (VDS = 24 V, ID =.35 ma) continued f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ 28 Á.925 Á.73 Á 34.13 Á 2 1.11 Á 29 Á.927 Á.65 Á 32.11 Á 18.994 Á 177 3 Á.929 Á.62 Á 32.11 Á 15.948 Á 177 31 Á.931 Á.6 Á 34.1 Á 9.916 Á 177 32 Á.932 18 Á.57 Á 33.1 Á 6.934 Á 18 33 Á.934 18 Á.53 Á 34.1 Á 4.985 Á 18 34 Á.937 18 Á.56 Á 33.1 Á 2 1.5 Á 179 35 Á.939 18 Á.53 Á 3.1 Á 1.9 Á 36 Á.941 179 Á.5 Á 25.1 Á 1.11 Á 37 Á.943 179 Á.46 Á 23.9 Á 1.8 Á 38 Á.944 179 Á.44 Á 22.9 Á 2 1.1 Á 39 Á.945 179 Á.41 Á 24.8 Á 8.956 Á 4 Á.946 178 Á.4 Á 27.8 Á 16.926 Á 41 Á.947 178 Á.38 Á 26.9 Á 2 1. Á 18 42 Á.949 178 Á.38 Á 26.9 Á 22 1.4 Á 179 43 Á.95 178 Á.37 Á 23.9 Á 25 1.7 Á 179 44 Á.952 177 Á.36 Á 21.9 Á 26 1.9 Á 18 45 Á.953 177 Á.36 Á 18.9 Á 28 1.9 Á 18 46 Á.954 177 Á.31 Á 17.9 Á 24 1.7 Á 178 47 Á.955 177 Á.3 Á 17.9 Á 29.99 Á 179 48 Á.956 176 Á.29 Á 19.9 Á 36.963 Á 49 Á.957 176 Á.29 Á 2.1 Á 45.959 Á 18 5 Á.958 176 Á.28 Á 2.1 Á 5.996 Á 178 6 Á.956 175 Á.24 Á 12.6 Á 9.924 Á 176 7 Á.959 172 Á.16 Á 13.19 Á 63.986 Á 174 8 Á.963 17 Á.14 Á 1.23 Á 63.963 Á 173 9 Á.968 168 Á.12 Á 11.26 Á 84.967 Á 171 1 Á.969 165 Á.9 Á 7.25 Á 7 1. Á 169 Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ÁÁ Á ÁÁ Table 3. Common Source S Parameters (VDS = 28 V, ID =.39 ma) f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ 3 Á.834 169 Á 1.8 Á 93.21 Á 4.87 Á 171 4 Á.863 172 Á 6.91 Á 83.21 Á 4.828 Á 17 5 Á.857 173 Á 5.79 Á 81.21 Á 5.83 Á 173 6 Á.851 174 Á 4.86 Á 81.22 Á 3.883 Á 175 7 Á.848 175 Á 4.41 Á 82.22 Á 1.97 Á 177 8 Á.852 175 Á 3.87 Á 8.22 Á 1 1.4 Á 177 9 Á.86 175 Á 3.49 Á 77.23 Á 5 1.1 Á 176 1 Á.869 176 Á 3.3 Á 71.22 Á 9 1.7 Á 175 11 Á.876 176 Á 2.68 Á 66.21 Á 14 1.1 Á 176 12 Á.878 176 Á 2.31 Á 63.19 Á 14.923 Á 174 13 Á.879 176 Á 2.3 Á 62.18 Á 15.876 Á 175 Á Á Á Á Á Á Á Á Á Á Á ÁÁ Á ÁÁ 12

Table 3. Common Source S Parameters (VDS = 28 V, ID =.39 ma) continued f S11 S21 S12 S22 MHz S11 φ S21 φ S12 φ S22 φ ÁÁÁ Á 14.881 176 1.87 62.18 13.884 176 ÁÁÁ Á 15.883 176 1.79 62.18 11.934 177 ÁÁÁ Á 16.886 177 1.72 62.18 11 1.2 177 ÁÁÁ Á 17.89 177 1.64 58.18 12 1.9 176 ÁÁÁ Á 18.896 177 1.56 54.18 16 1.15 176 ÁÁÁ Á 19.91 177 1.42 48.18 21 1.11 177 ÁÁÁ Á 2.94 177 1.26 46.17 19 1.3 176 21 Á.97 177 1.13 Á 45 Á.15 14 Á.938 175 22 Á.98 177 1.3 Á 47.13 Á 13 Á.897 174 23 Á.91.99 Á 46.14 Á 15 Á.948 176 24 Á.912.96 Á 47.14 Á 13 Á.956 25 Á.916.95 Á 45.14 Á 1 Á 1.2 26 Á.919.93 Á 42.13 Á 12 Á 1.12 27 Á.922.89 Á 37.12 Á 15 Á 1.14 28 Á.925.81 Á 35.12 Á 16 Á 1.11 29 Á.927.72 Á 33.11 Á 16 Á.988 176 3 Á.929.69 Á 33.11 Á 1 Á.944 177 31 Á.931.66 Á 35.12 Á 5 Á.92 177 32 Á.933 18.63 Á 34.11 Á 16 Á.936 18 33 Á.934 18.59 Á 35.9 Á 14 Á.989 18 34 Á.937 18.62 Á 34.9 Á 3 Á 1.5 18 35 Á.939 18.59 Á 31.1 Á 4 Á 1.8 36 Á.941 179.55 Á 26.1 Á 8 Á 1.11 37 Á.943 179.51 Á 24.9 Á 11 Á 1.7 38 Á.944 179.49 Á 23.8 Á 17 Á 1.1 39 Á.945 179.46 Á 25.8 Á 24 Á.949 4 Á.946 Á 178.44 Á 27.7 Á 2 Á.922 41 Á.947 Á 178.43 Á 26.1 Á 19 Á.995 18 42 Á.949 Á 178.42 Á 27.12 Á 29 Á 1.3 179 43 Á.95 Á 178.41 Á 24.1 Á 41 Á 1.6 179 44 Á.951 Á 177.4 Á 21.8 Á 4 Á 1.9 18 45 Á.953 Á 177.39 Á 19.8 Á 34 Á 1.9 18 46 Á.953 Á 177.35 Á 17.9 Á 26 Á 1.7 178 47 Á.954 Á 177.33 Á 18.1 Á 3 Á.983 179 48 Á.955 Á 176.32 Á 19.12 Á 43 Á.964 18 49 Á.956 Á 176.32 Á 2.12 Á 6 Á.956 179 5 Á.957 Á 176.31 Á 21.1 Á 65 Á.993 178 6 Á.955 Á 174.26 Á 13.12 Á 67 Á.926 176 7 Á.958 Á 172.18 Á 12.18 Á 64 Á.984 174 8 Á.963 Á 17.15 Á 9.2 Á 89 Á.961 173 9 Á.966 Á 168.13 Á 9.28 Á 81 Á.967 171 1 Á.968 Á 165.1 Á 6.33 Á 73 Á.997 169 Á Á 13

Figure 16. MRF275G Test Fixture RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate to drain (Cgd), and gate to source (Cgs). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain to source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. GA TE Cgd Cgs DRAIN Cds SOURCE Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd The Ciss given in the electrical characteristics table was measured using method 2 above. It should be noted that Ciss, Coss, Crss are measured at zero drain current and are provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full on condition. This on resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high on the order of 19 ohms resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate to source threshold voltage, VGS(th). Gate Voltage Rating Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination The gates of this device are essentially capacitors. Circuits that leave the gate open circuited or floating should be avoided. These conditions can result in turn on of the devices due to voltage build up on the input capacitor due to leakage currents or pickup. Gate Protection These devices do not have an internal monolithic zener diode from gate to source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate to source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate drain capacitance. If the gate to source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate 14

may be large enough to exceed the gate threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment. DESIGN CONSIDERATIONS The MRF275G is a RF power N channel enhancement mode field effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM RF MOSFETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF275G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF275G was characterized at IDQ = 1 ma, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF275G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. 15

PACKAGE DIMENSIONS R E K 1 2 3 4 D U G N 5 Q RADIUS 2 PL B J.25 (.1) M T A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. INCHES MILLIMETERS DIM MIN MAX MIN MAX A 1.33 1.35 33.79 34.29 B.37.41 9.4 1.41 C.19.23 4.83 5.84 D.215.235 5.47 5.96 E.5.7 1.27 1.77 G.43.44 1.92 11.18 H.12.112 2.59 2.84 J.4.6.11.15 K.185.215 4.83 5.33 N.845.875 21.46 22.23 Q.6.7 1.52 1.78 R.39.41 9.91 1.41 U 1.1 BSC 27.94 BSC H A C T SEATING PLANE STYLE 2: PIN 1. DRAIN 2. DRAIN 3. GATE 4. GATE 5. SOURCE CASE 375 4 ISSUE D Specifications subject to change without notice. North America: Tel. (8) 366-2266, Fax (8) 618-8883 Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 3 2 Visit www.macom.com for additional data sheets and product information. 16