P-Channel 100 V (D-S) MOSFET

Similar documents
P-Channel 60-V (D-S) 175 C MOSFET

P-Channel 100 V (D-S) MOSFET

N-Channel 150-V (D-S) 175 C MOSFET

P-Channel 100-V (D-S) MOSFET

P-Channel 60 V (D-S) 175 C MOSFET

N-Channel 40-V (D-S) MOSFET

N-Channel 20-V (D-S) 175 C MOSFET

FEATURES. Parameter Symbol Limit Unit Gate-Source Voltage V GS ± 20 V I D T C = 100 C

P-Channel 40 V (D-S) 175 C MOSFET

N-Channel 40-V (D-S) MOSFET

P-Channel 30 V (D-S) 175 C MOSFET

Automotive N-Channel 40 V (D-S) 175 C MOSFET

N-Channel 100-V (D-S) MOSFET

Automotive N-Channel 100 V (D-S) 175 C MOSFET

Automotive N-Channel 100 V (D-S) 175 C MOSFET

Automotive N-Channel 300 V (D-S) 175 C MOSFET

N-Channel 60 V (D-S), MOSFET

N-Channel 60 V (D-S) MOSFET

N-Channel 100 V (D-S) MOSFET

N- and P-Channel 30 V (D-S) MOSFET

N-Channel 150 V (D-S) MOSFET

Automotive P-Channel 60 V (D-S) 175 C MOSFET

N-Channel 30-V (D-S) MOSFET

Dual P-Channel 30 V (D-S) MOSFET

P- and N-Channel 4 V (D-S) MOSFET

Dual N-Channel 60-V (D-S) MOSFET

FEATURES. Parameter Symbol Limit Unit Gate-Source Voltage V GS ± 20 V. 85 a Pulsed Drain Current I DM 600

Dual N-Channel 20-V (D-S) MOSFET

N-Channel 0 V (D-S) MOSFET

N-Channel 100 V (D-S) MOSFET

Dual P-Channel 60-V (D-S) 175 MOSFET

N-Channel 40-V (D-S) MOSFET

Dual P-Channel 20-V (D-S) MOSFET

N-Channel 100-V (D-S) 175 C MOSFET

Dual N-Channel 20-V (D-S) MOSFET

Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode

Automotive N-Channel 40 V (D-S) 175 C MOSFET

P-Channel 40 V (D-S) 175 C MOSFET

Dual N-Channel 30-V (D-S) MOSFET

P-Channel 100-V (D-S) 175 C MOSFET

Complementary (N- and P-Channel) MOSFET

N-Channel 200 V (D-S) 175 C MOSFET

N-Channel 20 V (D-S) MOSFET

FEATURES G D S. Parameter Symbol Limit Unit Gate-Source Voltage V GS ± 20 V I D T C = 100 C

Dual P-Channel 20-V (D-S) MOSFET

Dual P-Channel 40 V (D-S) MOSFET

P-Channel 20 V (D-S) MOSFET with Schottky Diode

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

Dual N-Channel 30 V (D-S) MOSFET

Dual P-Channel 20-V (D-S) MOSFET

Dual N-Channel 20 V (D-S) MOSFET

Dual P-Channel 30-V (D-S) MOSFET

N-Channel 100 V (D-S) MOSFET

Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode

N-Channel 150-V (D-S) MOSFET

N-Channel 250 V (D-S) 175 C MOSFET

N- and P-Channel 60-V (D-S), 175 C MOSFET

N-Channel 100 V (D-S) MOSFET

P-Channel 8 V (D-S) MOSFET

Complementary N- and P-Channel 20 V (D-S) MOSFET

N-Channel 30 V (D-S) MOSFET

N-Channel 100 V (D-S) MOSFET

Automotive Dual N-Channel 40 V (D-S) 175 C MOSFET

FEATURES TrenchFET Ⅱ Power MOSFET 100 % R g and UIS Tested Compliant to RoHS Directive 2011/65/EU PRODUCT SUMMARY APPLICATIONS

P-Channel 20 V (D-S) MOSFET with Schottky Diode

P-Channel 20-V (D-S) MOSFET

P-Channel 30 V (D-S) 175 C MOSFET

Power MOSFET FEATURES. IRFS9N60APbF IRFS9N60ATRRPbF a IRFS9N60ATRLPbF a SiHFS9N60A-E3 SiHFS9N60ATR-E3 a SiHFS9N60ATL-E3 a

Automotive P-Channel 40 V (D-S) 175 C MOSFET

Automotive P-Channel 20 V (D-S) 175 C MOSFET

Automotive N-Channel 60 V (D-S) 175 C MOSFET

P-Channel 30-V (D-S), MOSFET

N- and P-Channel 20 V (D-S) MOSFET

N- and P-Channel 30-V (D-S) MOSFET

N-Channel 60-V (D-S) MOSFET

Power MOSFET FEATURES APPLICATIONS. IRFS9N60APbF IRFS9N60ATRRPbF a IRFS9N60ATRLPbF a SiHFS9N60A-E3 SiHFS9N60ATR-E3 a SiHFS9N60ATL-E3 a

Automotive N-Channel 300 V (D-S) 175 C MOSFET

Automotive P-Channel 80 V (D-S) 175 C MOSFET

Dual N-Channel 25 V (D-S) MOSFETs

Power MOSFET FEATURES. IRFB20N50KPbF SiHFB20N50K-E3 IRFB20N50K SiHFB20N50K

N- and P-Channel 20-V (D-S) MOSFET

Dual N-Channel 30 V (D-S) MOSFET

P-Channel 8 V (D-S) MOSFET

P-Channel 100 V (D-S) MOSFET

Complementary N- and P-Channel 40-V (D-S) MOSFET

Automotive N-Channel 200 V (D-S) 175 C MOSFET

Dual N-Channel 30-V (D-S) MOSFET

P-Channel 1.8 V (G-S) MOSFET

Automotive P-Channel 40 V (D-S) 175 C MOSFET

N-Channel 60-V (D-S) MOSFET

N- and P-Channel 20-V (D-S) MOSFET

Complementary 20 V (D-S) MOSFET

N-Channel 30-V (D-S) MOSFET with Sense Terminal

N-Channel 100 V (D-S) MOSFET

N-Channel 250 V (D-S) 175 C MOSFET

Dual N-Channel 30 V (D-S) MOSFETs

Automotive N-Channel 100 V (D-S) 175 C MOSFET

N-Channel 12 V (D-S) MOSFET

N-Channel 20 V (D-S) MOSFET

N- and P-Channel 1.8 V (G-S) MOSFET

Transcription:

SUM5P-42 P-Channel V (D-S) MOSFET PRODUCT SUMMRY V DS (V) R DS(on) ( ) Max. I D () Q g (Typ.) -.42 at V GS = - V - 36.47 at V GS = - 4.5 V - 29 54 TO-263 FETURES TrenchFET Power MOSFET % R g and UIS Tested Compliant to RoHS Directive 22/95/EC PPLICTIONS Load Switch ORing S RoHS COMPLINT G G D S Top View Ordering Information: SUM5P-42-E3 (Lead (Pb)-free) D P-Channel MOSFET BSOLUTE MXIMUM RTINGS (T C = 25 C, unless otherwise noted) Parameter Symbol Limit Unit Drain-Source Voltage V DS - Gate-Source Voltage V GS ± 2 V T C = 25 C - 36 Continuous Drain Current (T J = 5 C) I D T C = 7 C - 3 Pulsed Drain Current (t = 3 µs) I DM - 4 valanche Current I S - 4 Single valanche Energy a L =. mh E S 8 mj T C = 25 C Maximum Power Dissipation a 25 b P D T = 25 C c 8.8 W Operating Junction and Storage Temperature Range T J, T stg - 55 to 5 C THERML RESISTNCE RTINGS Parameter Symbol Limit Unit Junction-to-mbient (PCB Mount) c R thj 4 Junction-to-Case (Drain) R thjc.2 C/W Notes: a. Duty cycle %. b. See SO curve for voltage derating. c. When mounted on " square PCB (FR-4 material). S-656-Rev., 5-ug- THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

SUM5P-42 SPECIFICTIONS (T J = 25 C, unless otherwise noted) Parameter Symbol Test Conditions Min. Typ. Max. Unit Static Drain-Source Breakdown Voltage V DS V DS =, I D = - 25 µ - V Gate Threshold Voltage V GS(th) V DS = V GS, I D = - 25 µ - - 3 Gate-Body Leakage I GSS V DS = V, V GS = ± 2 V ± 25 n Zero Gate Voltage Drain Current I DSS V DS = - V, V GS = V, T J = 25 C - 5 µ V DS = - V, V GS = V - V DS = - V, V GS = V, T J = 5 C - 25 On-State Drain Current a I D(on) V DS - V, V GS = - V - 4 V GS = - V, I D = - 4 Drain-Source On-State Resistance a.35.42 R DS(on) V GS = - 4.5 V, I D = - 3.39.47 Forward Transconductance a g fs V DS = - 2 V, I D = - 4 55 S Dynamic b Input Capacitance C iss 46 Output Capacitance C oss V GS = V, V DS = - 5 V, f = MHz 23 pf Reverse Transfer Capacitance C rss 75 Total Gate Charge c V DS = - 5 V, V GS = - V, I D = - 4 6 6 Q g 54 8 nc Gate-Source Charge c Q gs V DS = - 5 V, V GS = - 4.5 V, I D = - 4 4 Gate-Drain Charge c Q gd 26 Gate Resistance R g f = MHz.9 4.6 9.2 Turn-On Delay Time t d(on) 5 25 Rise Time t r V DD = - 5 V, R L = 5 2 3 Turn-Off Delay Time t d(off) I D = -, V GEN = - V, R g = 65 ns Fall Time t f 5 Turn-On Delay Time t d(on) 42 65 Rise Time t r V DD = - 5 V, R L = 6 24 Turn-Off Delay Time t d(off) I D = -, V GEN = - 4.5 V, R g = 5 ns Fall Time t f 5 Drain-Source Body Diode Ratings and Characteristics T C = 25 C b Continuous Current I S - 36 Pulsed Current I SM - 4 Forward Voltage a V SD I F = -, V GS = -.8 -.2 V Reverse Recovery Time t rr 6 9 ns Peak Reverse Recovery Current I RM(REC) I F = -, di/dt = /µs 2 3 Reverse Recovery Charge Q rr 5 225 nc Notes: a. Pulse test; pulse width 3 µs, duty cycle 2 %. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature. Stresses beyond those listed under bsolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 S-656-Rev., 5-ug- THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

SUM5P-42 TYPICL CHRCTERISTICS (25 C, unless otherwise noted) 4 V GS = V thru 4 V.45 3 2 V GS = 3 V R DS(on) - On-Resistance (Ω).4.35.3 V GS = 4.5 V V GS = V.5.5 2 V DS - Drain-to-Source Voltage (V) Drain to Source Voltage vs. I D.25 2 3 4 On-Resistance vs. Drain Current 2.8 I D = 4 5 5 T C = 25 C T C = 25 C R DS(on) - On-Resistance (Ω).65.5.35 T J = 25 C T J = 25 C T C = - 55 C.7.4 2. 2.8 3.5 V GS - Gate-to-Source Voltage (V) Transfer Characteristics.2 2 4 6 8 V GS - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage g fs - Transconductance (S) 8 6 4 2 T C = - 55 C T C = 25 C T C = 25 C V GS - Gate-to-Source Voltage (V) 8 6 4 2 I D = 4 V DS = 25 V V DS = 5 V V DS = 8 V 2 3 4 Transconductance 3 6 9 2 Q g - Total Gate Charge (nc) Gate Charge S-656-Rev., 5-ug- 3 THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

SUM5P-42 TYPICL CHRCTERISTICS (25 C, unless otherwise noted) 2.3 I D = 25 μ 2 I S - Source Current () T J = 5 C T J = 25 C V GS(th) (V).7.4....2.4.6.8..2 V SD - Source-to-Drain Voltage (V) Source-Drain Diode Forward Voltage.8-5 - 25 25 5 75 25 5 75 T J -Temperature( C) Threshold Voltage 75 3 I D = 25 μ C - Capacitance (pf) 6 45 3 5 C iss V DS (V) Drain-to-Source Voltage 24 8 2 6 C oss C rss 5 5 2 V DS - Drain-to-Source Voltage (V) Capacitance - 5-25 25 5 75 25 5 75 T J -Temperature( C) Drain Source Breakdown vs. Junction Temperature 2.4 4 I D = 4 R DS(on) -On-Resistance(Normalized) 2..6.2.8 V GS = V V GS = 4.5 V 3 2.4-5 - 25 25 5 75 25 5 T J - Junction Temperature ( C) On-Resistance vs. Junction Temperature 25 5 75 25 5 75 T C - Case Temperature ( C) Current Derating 4 S-656-Rev., 5-ug- THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

SUM5P-42 TYPICL CHRCTERISTICS (25 C, unless otherwise noted) Limited by R DS(on) * I DV () T J = 5 C T J = 25 C. μs ms ms DC, s, ms...... Time (s) Single Pulse valanche Current Capability vs. Time T C = 25 C Single Pulse BVDSS Limited.. V DS - Drain-to-Source Voltage (V) * V GS > minimum V GS at which R DS(on) is specified Safe Operating rea Duty Cycle =.5 Normalized Effective Transient Thermal Impedance.2 t.2. Notes:.5 P DM t 2 t Single Pulse. Duty Cycle, D = t 2 2. Per Unit Base = R thjc =.2 C/W 3. T JM -T =P DM Z (t) thj 4. Surface Mounted..... Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Case maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?67933. S-656-Rev., 5-ug- 5 THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

TO-263 (D 2 PK): 3-LED Package Information -B- E -- L2 c2 D4 D2 D3 E K 6 E3 D L3 L D e b2 b Detail c E2. M M 2 PL - 5 L L4 DETIL (ROTTED 9 ) M b b SECTION - Notes. Plane B includes maximum features of heat sink tab and plastic. 2. No more than 25 % of L can fall above seating plane by max. 8 mils. 3. Pin-to-pin coplanarity max. 4 mils. 4. *: Thin lead is for SUB, SYB. Thick lead is for SUM, SYM, SQM. 5. Use inches as the primary measurement. 6. This feature is for thick lead. c c c* INCHES MILLIMETERS DIM. MIN. MX. MIN. MX..6.9 4.64 4.826 b.2.39.58.99 b.2.35.58.889 b2.45.55.43.397 Thin lead.3.8.33.457 Thick lead.23.28.584.7 c Thin lead.3.7.33.43 Thick lead.23.27.584.685 c2.45.55.43.397 D.34.38 8.636 9.652 D.22.24 5.588 6.96 D2.38.42.965.67 D3.45.55.43.397 D4.44.52.8.32 E.38.4 9.652.44 E.245-6.223 - E2.355.375 9.7 9.525 E3.72.78.829.98 e. BSC 2.54 BSC K.45.55.43.397 L.575.625 4.65 5.875 L.9. 2.286 2.794 L2.4.55.6.397 L3.5.7.27.778 L4. BSC.254 BSC M -.2 -.5 ECN: T3-77-Rev. K, 3-Sep-3 DWG: 5843 Revison: 3-Sep-3 Document Number: 798 THIS DOCUMENT IS SUBJECT TO CHNGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN ND THIS DOCUMENT RE SUBJECT TO SPECIFIC DISCLIMERS, SET FORTH T /doc?9

N826 RECOMMENDED MINIMUM PDS FOR D 2 PK: 3-Lead.42 (.668).635 (6.29).355 (9.7).45 (3.683).35 (3.429).2 (5.8).5 (.257) Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index Document Number: 73397 -pr-5

Legal Disclaimer Notice Vishay Disclaimer LL PRODUCT, PRODUCT SPECIFICTIONS ND DT RE SUBJECT TO CHNGE WITHOUT NOTICE TO IMPROVE RELIBILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, Vishay ), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. ll operating parameters, including typical parameters, must be validated for each customer application by the customer s technical experts. Product specifications do not expand or otherwise modify Vishay s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2/65/EU of The European Parliament and of the Council of June 8, 2 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 22/95/EC. We confirm that all the products identified as being compliant to Directive 22/95/EC conform to Directive 2/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS79 standards. Please note that some Vishay documentation may still make reference to the IEC 6249-2-2 definition. We confirm that all the products identified as being compliant to IEC 6249-2-2 conform to JEDEC JS79 standards. Revision: 2-Oct-2 Document Number: 9