1040L Broadband Power Amplifier

Similar documents
3100LA Broadband Power Amplifier

2200L Broadband and Power Amplifier

2100L Broadband Power Amplifier

A 500 Broadband Power Amplifier

A 075 Broadband Power Amplifier

1140LA Broadband Power Amplifier

PI-10 Broadband Power Indicator

PI-150 Broadband Power Indicator

411LA Broadband Power Amplifier

Broadband Power Amplifier

COM-POWER OPERATION MANUAL ACS W

GT-1050A 2 GHz to 50 GHz Microwave Power Amplifier

BLAX2500. RF Power Amplifier MHz Operating & Service Manual BRUKER. Version

Model 7000 Low Noise Differential Preamplifier

Model Hz to 10MHz Precision Phasemeter. Operating Manual

1 FUNCTIONAL DESCRIPTION WAY SPLITTER/INPUT BOARD FET RF AMPLIFIERS WAY POWER COMBINER VSWR CONTROL BOARD...

Installation & Service Manual

INSTRUMENTS, INC. Models 2960AR and 2965AR Disciplined Rubidium Frequency Standards. Section Page Contents

LPF-100 Composite Low Pass Filter

Model 4402B. Ultra-Pure Sinewave Oscillator 1Hz to 110kHz Typical Distortion of % Serial No. Operating Manual

Model 4007DDS. 7 MHz Sweep Function Generator

CALIBRATED IMPULSE GENERATOR MODEL CIG khz 1 GHz

CBA 400M MHZ to 400 MHZ

INSTRUCTION SHEET WIDEBAND POWER SENSOR MODEL Copyright 2008 by Bird Electronic Corporation Instruction Book P/N Rev.

Model 5100F. Advanced Test Equipment Rentals ATEC (2832) OWNER S MANUAL RF POWER AMPLIFIER

EO Modulator Driver and Source Models 3363-A, 3363-B, and 3363-C

Model 1791 VHF Radio User's Manual

Technical Datasheet GT-1000B Microwave Power Amplifier. 100 MHz to 20 GHz. Broadband High-Power Instrumentation Amplifier Rev.

dbm Supply Current (Idd) (Vdd=+36V)

SDI SPECTRADYNAMICS, INC. LOW NOISE FREQUENCY REFERENCE OPERATING MANUAL

100W Wide Band Power Amplifier 6GHz~18GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz Gain db

INSTRUCTION MANUAL LKG 601 Electrical Safety Analyzer

100U1000. Features. 100 watts CW 100kHz 1000MHz Class A Portable Full VSWR tolerant CE & RoHS Compliant High Efficiency

2 GHz to 6 GHz, 500 W Power Amplifier HMC8113

MHz 58 db 1 KW RF Amplifier (EDA 00097)

Model Operating Manual

QNP Accessory. For BLAXH300/ MHz Operating & Service Manual. Version

PA FAN PLATE ASSEMBLY 188D6127G1 SYMBOL PART NO. DESCRIPTION. 4 SBS /10 Spring nut. 5 19A702339P510 Screw, thread forming, flat head.

Model 34A. 3Hz to 2MHz 2-Channel Butterworth/Bessel HP, LP, BP, BR Plug-In Filter Card for Model 3905/3916 Chassis.

Parameter Min. Typ. Max. Units. Frequency Range 8-11 GHz. Saturated Output Power (Psat) 52 dbm. Input Max Power (No Damage) Psat Gain dbm

Current Probe Fixture Instruction Manual

GT-1000A Microwave Power Amplifier 2 GHz to 20 GHz. Broadband High-Power Instrumentation Amplifier. Preliminary Technical Datasheet

EC Declaration of Conformity

SI-125 Power Amplifier Manual 6205 Kestrel Road; Mississauga, Ontario; Canada; L5T 2A1 November 2016, Rev 0.5

OPERATING AND MAINTENANCE MANUAL

2W Ultra Wide Band Power Amplifier 0.2GHz~35GHz. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range

OM1006 Solid State 50 MHz Power Amplifier

INSTRUMENTS, INC. Model 2960AX Disciplined Quartz Frequency Standard 2960AX. Section Page Contents

150W1000B. Features. 150 watts CW 80MHz 1000MHz Class A Portable Full VSWR tolerant CE & RoHS Compliant High Efficiency

Calibration Techniques for Precision Power Measurement in Semiconductor Proces Applications

Model 9305 Fast Preamplifier Operating and Service Manual

CMP-300 Composite Mixer/ Distribution Amplifier

WiMo Antennen und Elektronik GmbH Am Gäxwald 14, D Herxheim Tel. (07276) FAX 6978

2045 PAB700-FM-A1. Efficiency: 65% Temperature Range: -20 to 70 C Max VSWR: 2.5 :1. Class: Supply Voltage:

Broadcast Concepts Inc NW 102 Road Suite 4 Medley FL Tel: : Fax Model P50FM42MH-SMA2 FM Pallet Amplifier Module

Advanced Test Equipment Rentals ATEC (2832)

Model 533 Dual Sum and Invert Amplifier Operating and Service Manual

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SHF SIGNAL GENERATOR AN/USM-47 (HEWLETT-PACKARD MODEL 626A) (NSN )

SIGNAL GENERATORS. MG3633A 10 khz to 2700 MHz SYNTHESIZED SIGNAL GENERATOR GPIB

Model 9302 Amplifier-Discriminator Operating and Service Manual

Features 100A400AM20. 4kHz 400MHz Class A Portable Full VSWR tolerant CE & RoHS compliant High Efficiency

PA8HF power amplifier Operating guide

OPERATION & SERVICE MANUAL FOR FC 110 AC POWER SOURCE

R-Series R235LS 2-Channel Power Amplifier with Local Source Switching

Thruline RF Directional Wattmeters

20W Solid State Power Amplifier 6-18GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units

20W Solid State Power Amplifier 26.2GHz~34GHz. Parameter Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz.

Solid State General Communication Power Amplifier

Revision 1.b Release Date July 29, 2007 This data sheet covers models 4379, 4472 Revision Notes Repl 0.d (Rev p/n 250W, B version of Comb)

USER'S MANUAL. Model : K

INSTRUCTION MANUAL LKG

DSTS-5A/2C User's Manual

OPERATING MANUAL VOLTAGE CONTROLLED OSCILLATOR MODEL NUMBER: 21XXX-YYY-ZASVCO DOCUMENT NUMBER: 51A18410

MODEL 3 MONO AMPLIFIER OWNER S MANUAL

PULSE DISTRIBUTION AMPLIFIER OPERATING MANUAL

CIRCUIT-TEST ELECTRONICS

ELECTRIC FIELD PROBE ANTENNA MODEL PEF-10A. 20 Hz 1 MHz

150W Solid State Broadband EMC Benchtop Power Amplifier 6-18GHz. Parameter Min Typ Max Min Typ Max Units

5191 SCA3000-FM-A Watts CW. Efficiency: 68% Temperature Range: 0 to 55 C Max VSWR: 3:1. Class:

HAM RADIO. 1 KW SSPA 144 MHz RF POWER AMPLIFIER SWR 65:1

OPERATING MANUAL CAVITY DUMPER / PULSE PICKER DRIVER MODEL NUMBER: 643ZZ.ZZZ-SYN-Y-X

Wilcoxon Research PA8HF power amplifier Operating guide

Current Probes. User Manual

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB

DANFYSIK A/S - DK-4040 JYLLINGE - DENMARK

SAGA PRO SERIES STEREO POWER AMPLIFIER OPERATION MANUAL

WE-525T Antenna Analyzer Manual and Specification

APPLICATION NOTE LZY-2 ULTRA LINEAR RF AMPLIFIER. 500 MHz MHz 20 WATTS MIN., 1 db COMPRESSION (40 db MIN. GAIN)

Technical Report on 400W RF Power Amplifier for Linac

Setup of Gain Control System (MGC/AGC)

HTA125A/250A. Power Amplifiers. Installation & Use Manual

Model 3210C. 100 Ampere AC Current Standard. Operating Manual

SDI SPECTRADYNAMICS, INC. HIGH PERFORMANCE DISTRIBUTION AMPLIFIER OPERATING MANUAL

SDI SPECTRADYNAMICS, INC GHZ RUBIDIUM FREQUENCY SYNTHESIZER OPERATING MANUAL

COMBILOG ANTENNA MODEL AC MHz. rev: 0202

Harris IRT Enterprises Multi-Channel Digital Resistance Tester Model XR

TECHNICAL SPECIFICATIONS OF STORES AND DRAWINGS.

SHF Communication Technologies AG

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

Ku-Band VSAT Block Up Converters

Transcription:

1040L Broadband Power Amplifier HIGH RF VOLTAGES MAY BE PRESENT AT THE OUTPUT OF THIS UNIT. All operating personnel should use extreme caution in handling these voltages and be thoroughly familiar with this manual. Do not attempt to operate this unit prior to reading this manual. subject to change without notice. 1

Warranty Electronics & Innovation Ltd., (hereafter E&I) warrants for the period of three years from the date of original delivery, each unit to be free of defects in materials and workmanship. For the period of 36 months E&I will, at its option, repair or replace defective parts so as to render the unit fully operational such that it performs according to the original specifications; free of charge to the original purchaser. Should warranty service be required, the unit must be returned to E&I, freight cost to be borne by the owner. If, in our opinion, the unit has been damaged by use outside the limits prescribed in this manual or by accident, then the warranty shall not be honored. In such a case E&I will provide an estimate for repair, assuming repair is possible and provide a quote at standard service rates. Contents Chapter 1 General Information 3 Chapter 2 Operation..4 Chapter 3 Technical Information.7 Chapter 4 Maintenance 8 Chapter 5 Safety 12 subject to change without notice. 2

Chapter 1 Introduction The 1040L is a broadband solid state amplifier covering the frequency spectrum from 10 KHz to 5 MHz. It is rated at 400 watts of RF power from 30 KHz to 5 MHz. Over 500 watts of saturated power can be produced with increased distortion products. A highly linear Class AB design, the 1040L will amplify inputs of AM, FM, SSB, pulse and any complex modulation signals. The amplifier has 55 db gain, it is unconditionally stable and will not oscillate even with combinations of mismatched source and load impedance. It is protected against failure due to output load mismatch and/or overdrive. RMS forward and reverse powers are monitored by a front panel meter. An integral power supply permits operation from 115/230 single phase AC power. 1.2 INSTRUMENTATION IDENTIFICATION Each amplifier is identified by a serial number tag on the back panel of the unit. Both the model number and the serial number should be quoted to identify specific unit. 1.3 SPECIFICATIONS Physical and electrical specifications are listed in Table 1-1 below subject to change without notice. 3

Table 1-1. SPECIFICATIONS FREQUENCY COVERAGE: GAIN: CLASS AB QUASI LINEAR OUTPUT: SATURATED RF POWER OUTPUT: INPUT IMPEDANCE OUTPUT IMPEDANCE: STABILITY: PROTECTION: POWER OUTPUT METER: POWER REQUIREMENTS: SIZE: WEIGHT: CONNECTORS: OPERATING TEMPERATURE: RACK MOUNTING: 10 khz to 5 MHz 55 db min, ± 2 variation 400 watts 500 Watts 50 ohms, VSWR, 1.5:1 Maximum 50 ohms, VSWR, 2:1 Maximum Continuous operation into any load or source impedance Unit will withstand a + 13dBm input signal (1.0 Volts RMS) for all output load conditions, without damage RMS power detection. ±3% of full scale accuracy, 100 KHz - 1 MHz. 10-100 KHz see table below. Above 1 MHz =/- 10% 100 240 VAC 47-63 Hz 5.3 x 16.5 x 18.4 134.5 x 420 x 467 mm 54 lbs (24.4 kg) BNC 0 40 C For frequencies below 100 KHz see table below for error correction factors. To obtain accurate RMS power number increase the front panel reading by the percentage corresponding to the frequency of use as seen below. Frequency Corretion factor MHz % 0.01 13.0% 0.02 8.0% 0.03 5.8% 0.04 4.8% 0.05 4.5% 0.06 3.5% 0.07 3.0% 0.08 2.5% 0.09 2.8% 0.1 2.5% Chapter 2 Operation

2.1 INTRODUCTION The 1040L RF amplifier is used to amplify the RF level of signal sources in the 10 KHz to 5 MHz range. No tuning or any other form of adjustment is required. The 1040L produces power output at its output connector, regardless of load impedance. Any power reflected due to output load mismatch is absorbed in the amplifier. Therefore, although the output impedance is 50 ohms (maximum VSWR: 2:1), the amplifier will work into any load impedance at reduced output power. 2.2 RACK INSTALLATION This unit is 3U high, 16.5 width. With the handles removed it will fit into a standard rack. 2.2.1 Mains Voltage The unit accommodates AC line voltages from 100 TO 240 VAC 47 63 Hz 2.3 OPERATION A line cord is supplied to form a connection between the mains supply and the rear of the unit. Plug this into the AC input at the rear of the unit and the AC mains outlet. 2.3.1 Proceed as follows: (i) (ii) (iii) (iv) Ensure that there is at least 3 or 7.5 cm clearance at the rear of the unit for air flow. Ensure RF input voltage is not excessive a. The 1 V rms indicated maximum input voltage is 5 times the level of the input signal required to achieve maximum output. Input voltages in excess of 2 volts peak may permanently damage the instrument. Connect the output via a 50 ohm coaxial lead and BNC plug to the load. Connect the input signal via a 50 ohm coaxial lead and BNC plug to the input connector. 2.3.2 Front Panel Display 5

The 1040L front panel has a passive LCD display designed for simplicity and ease of use. During initialization, the LCD shows the software revision. After the amplifier is initialized, the LCD indicates Forward Power, Reflected Power, and amplifier status (see figure 2.1). Figure 2.1 : Front Panel Display Pf: W Pr: W Status: Where Pf refers to forward power, Pr refers to reverse power, and Status indicates OK unless there is a fault condition, such as: Overheat (heat-sink temperature is too high for reliable operation) PSU fault (internal fault in the main switching power supply) In the event of a fault, the unit may be reset by cycling the power. In the case over an over temp fault, ensure that the air inlet and out let are not restricted. If the fault persists, please contact Field Service. 2.3.3 RS 232 Interface The 1040L features a standard RS-232 serial interface suitable for connection to a PC or host system. The communication protocol is extremely simple to facilitate readback and control with readily available terminal programs such as Hyperterm. The RS-232 link has the following parameters: Baud rate: 19200 Data bits: 8 Parity: Stop bits: 1 none Flow control: none An example configuration using HyperTerminal on a PC is shown in figure 2.2. 6

Figure 2.2: Example RS-232 setup using Hyper Terminal In the default state, the RS-232 port will echo the same information sent to the front panel LCD display, allowing a running datalog to be stored to disk using the capture feature of the terminal program. Single character commands can be sent to the amplifier to achieve the following: "1" key enables telemetry (readback similar to LCD display) - this is the default mode at power up 2 key clears any faults and tries to start the supply. 0 key disables telemetry (Complement to 1 key) Custom commands and display lists can be implemented upon customer request. Chapter 3 Technical Description 7

3.1 GENERAL DESCRIPTION The 1040L is designed to amplify signals by 55 db in the frequency band of 10 KHz to 5 MHz. The signal from the front panel BNC connector is fed via a length of 50 ohm coaxial cable into the input of the driver amplifier module. The signal from the input of the driver is coupled to the input of the MMIC front end. The output signal of the MMIC is coupled to the gate of transistor Q1. The further amplified signal appearing at the drain of Q1 is coupled to the input of Q2. This is transformed to 50 and fed to the driver output BNC port. The driver output signal is fed through a length of coaxial cable to the input of the power splitter, the two outputs of this are each fed to the two amplifier modules. In each PA module the signal is split into two equal phase and amplitude signals. These signals are fed to the inputs of transistors Q1 and Q2. The amplified signals appearing at the drains of Q1 and Q2 are then fed to the output BNC port via the impedance matching network. The output of both modules is then fed to the combiner to produce a single signal. The power signal is then fed into a length of 50 ohm coaxial cable to the RF bidirectional coupler. The output of the coupler is then fed directly to the BNC connector on the front panel, this is the unit output. The forward and reverse coupled ports of the bi-directional coupler are fed to the RF detector which is situated on the main control board. The RF detector feeds a voltage, which is representative of the true RMS power to the control board proper. The control board in turn drives the front panel display. The main power supply unit provides a 42.5 VDC 24 ampere source. It is a switch mode power supply unit. The output feeds the PA and the 24 Volt DC power supply regulator. This in turn provides power for the drive amplifier. The main power supply also has a 5 VDC output which feeds the control board. 8

Data_in +5V +5V_LED Ground f p_tx f p_vdd f p_gnd gnd RX TX ov erheat_rtn ov erheat 3 Ret PS1 PS_48V 110VAC_line 110VAC_neutral earth_gnd 1 2 AC In Fan A1 SELV 5V ret P1 RS232 Control Port 1 6 2 7 3 8 4 9 5 Ret Fan A1_1 ov erheat_rtn _ret +48V +48V_ret _ret +48V +48V_ret PS2 PS_48V SELV 5V Inhibit Inhibit_ret DC_ok DC_ok_ret 110VAC_line 110VAC_neutral earth_gnd ov erheat SELV 5V ret J1 J6 Fwd_in Rev _in J4 J5 f wd rev _ret +48V +48V_ret SELV 5V Inhibit Inhibit_ret DC_ok DC_ok_ret DC Status_ret J2 DC Status PSU Enable ret PSU Enable +5V gnd Controller LCD1 LCD J7 Title 1040L RF Amplifier 3200L RF Amplif ier Size Document Number Rev A 3200L-SCH-01 1 1040L SCH-01 Date: 1/12/05 Sheet 1 of 2 9

+48V Gnd Fwd Rev 2 +48V Gnd 2 Gnd Gnd _ret _ret Front panel RF input 0dBm IPA1_1 IPA1_2 J1 BNC 1 RF_in RF_out RF_in RF_out 50 ohm +34dBm 3W_VHF_amp J6 20W_VHF_amp +48V_ret +48V PA1_2 S1 RF_driv e RF_out C1 RF_out1 VHF_PA_100W RF_in1 CP1_1 J2 RF_in RF_out2 +48V_ret +48V PA1_1 RF_in2 RF_out RF_in RF_out 50 ohm 200W BNC 1 VHF_splitter_20W TS1 1 2 Thermal switch RF_driv e RF_out VHF_PA_100W VHF_combiner_200W VHF_coupler f wd rev ov erheat_rtn ov erheat Title 3200L - RF Section 1040L RF Amplifier Size Document Number Rev A 2100L-SCH-01 1 1040L SCH-02 Date: Sheet 2 of 1 Chapter 4 Maintenance 4.1 INTRODUCTION The E&I 1040L RF amplifier requires no periodic maintenance. The instrument is unconditionally stable and is fail-safe under all load conditions. Damage can only be externally caused by the incorrect selection of the AC supply voltage or by an input signal in excess of the specified 1 volt rms equivalent to a power level of 13dBm. This chapter therefore, deals only with certain fundamental procedures for fault location. Performance limits quoted are for guidance only and should not be taken for guaranteed performance specifications unless they are also quoted in the Specification Section 1.2. 4.2 PERFORMANCE CHECKS 10

To determine the amplifier s performance carry out the following procedure. 4.2.1 Initial Check The following check can be made after repair and adjustments or whenever the condition of the unit is in question. a. Connect AC power supply. Switch on power and observe that the display initializes. b. Connect a sweep generator (HP 8601 or similar) capable of sweeping the frequency range 10 KHz to 5 MHz, to the input connector. c. Adjust the output level of the sweep generator so that a 50 ohm video detector connected at the output of the unit will not be damaged by excessive power output. (Reference section 4.4.1 for set up.) d. Observe the gain versus frequency ripple on an oscilloscope calibrated in decibels. The gain variation must be not more than +/- 1.5 db over the frequency range. e. Connect a calorimetric power meter (HP435B or equivalent) through a 30 db 500 watt attenuator to the output connector. Adjust the input CW signal to any frequency between 30 khz and 5 MHz for 400 watts output. f. Observe the harmonic distortion of the output, properly attenuated, on a spectrum analyzer. The harmonic components contributed by the amplifier should be better than 10 db down from the fundamental. (a) If the above items are found to be outside of the specification, check the spectral content of the input signal. If this is a pure signal then the unit needs to be returned to the factory for service. 4.3.1 Measurement of Gain 1. Equipment Required (or equivalent): a) Osilloscope - Tektronix T921 b) Sweep/Generator - HP8601A c) Signal Generator - Exact Model 7060 d) 50 ohm Detector - Wavetek D151 e) Attenuator, 30 db, 500 Watts Bird 11

Figure 4-1. Gain Measurement 2. Connect the equipment as shown in Figure 4-1, then proceed as follows: a) Set the oscilloscope to DC, Time/cm to Ext. X, and gain to l0mv/cm. b) Set the sweep generator to the video sweep mode with the start frequency at 10 khz and the sweep width to 5 MHz. c) Disconnect the 1040L from the set-up and connect the sweep/generator RF output directly to the 30 db attenuator. d) Adjust the output level of the sweep/generator for full vertical deflection on the oscilloscope face. e) Calibrate the scope face to show 3 db in 1 db steps by attenuating the sweep/generator in 1 db. f) Return sweep/generator output level to full deflection. Rotate the step attenuator (CCW) so that the output is reduced by 50 db. g) Reconnect the 1040L into the test set-up of Figure 4-1. h) Place the 1040L power switch to the "ON" position. i) Observe the gain versus frequency sweep on the oscilloscope. The average gain should be greater 55 db The gain variation should be within the 3 db as shown on the oscilloscope. 12

4.4.2 Measurement of Harmonics 30 db coupler Figure 4-2. 1.) Equipment Required: a) Sweep/Signal Generator b) Calorimetric Power Meter HP435B c) Spectrum Analyzer. d) Attenuator (30dB) e) Coupler (30 db) 2.) Connect the Equipment as shown in Figure 4-2, then proceed as follows: a) Adjust the signal generator to a CW center frequency of 30 khz, for an indicated output of 400 watts on the power meter. b) Using the spectrum analyzer, check that the level of the carrier harmonics is less than -15 db with respect to the carrier while manually scanning the frequency band of 30 KHz to 5 MHz. An indicated power output of 400W should be maintained during this operation. 13

4.5 PACKAGING FOR RESHIPMENT In the event of the equipment being returned for servicing it should be packed in the original shipping carton and packing material. If this is not available, wrap the instrument in heavy paper or plastic and place in a rigid outer box of wood, fiberboard or very strong corrugated cardboard. Use ample soft packing to prevent movement. Provide additional support for projecting parts to relieve these of unnecessary shock. Close the carton securely and seal with durable tape. Mark the shipping container FRAGILE to ensure careful handling. Chapter 5 Safety: Do not attempt to operate this unit with the cover removed. High AC and DC voltages are present. The cover protects against electrical shock due to AC line voltages, high DC and RF fields. Further the cover provides part of the cooling system design. Components, specifically on the RF driver board are prone to over-heat and eventual failure if the unit is operated without the cover in place. Ensure that the load is connected to the output prior to connecting the RF input to the unit. This will prevent high voltages being present and exposed at the output connector. Only use the AC cord provided or equivalent. Ensure that the mains outlet is properly grounded. 14