IRFS4127PbF IRFSL4127PbF

Similar documents
IRLS3034PbF IRLSL3034PbF

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRFR1018EPbF IRFU1018EPbF

IRFR3806PbF IRFU3806PbF

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

IRFS3004-7PPbF HEXFET Power MOSFET

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 32

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

W/ C V GS Gate-to-Source Voltage ± 30 dv/dt Peak Diode Recovery e 57

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 57

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

W/ C V GS Gate-to-Source Voltage ±16 dv/dt Peak Diode Recovery f 8.0. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b E AR

IRFR4105ZPbF IRFU4105ZPbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRFR540ZPbF IRFU540ZPbF

G D S. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 6.7

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

IRFB3607PbF IRFS3607PbF IRFSL3607PbF

IRF3808S IRF3808L HEXFET Power MOSFET

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

Ordering Information Base Part Number Package Type Standard Pack Complete Part Number 500 I D = 100A T J = 125 C 200 I D,

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.5

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRLR3915PbF IRLU3915PbF

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 2.0

Ordering Information Base part number Package Type Standard Pack Complete Part Form Quantity Number IRFB7437PbF TO-220 Tube 50 IRFB7437PbF

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRFP4410ZPbF HEXFET Power MOSFET

IRLR3110ZPbF IRLU3110ZPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRLR8726PbF IRLU8726PbF

IRFR3709ZPbF IRFU3709ZPbF

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

IRLR8721PbF IRLU8721PbF

SMPS MOSFET. V DSS R DS(on) max I D

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

V DSS. 40V R DS(on) typ. 1.4mΩ max. 1.8mΩ 250Ac. I D (Silicon Limited) I D (Package Limited) 195A. HEXFET Power MOSFET.

V DSS. 40V 1.5mΩ 2.0mΩ 250Ac 195A. R DS(on) typ. max. I D (Silicon Limited) I D (Package Limited) HEXFET Power MOSFET

IRF3709ZCS IRF3709ZCL

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRLR3717 IRLU3717 HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

IRFR24N15DPbF IRFU24N15DPbF

V DSS R DS(on) max I D

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

V DSS R DS(on) max (mw)

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

IRFR24N15D IRFU24N15D

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

Transcription:

Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dv/dt and di/dt Capability l Lead-Free G IRFS427PbF IRFSL427PbF D D S V DSS G S HEXFET Power MOSFET 2V R DS(on) typ. 8.6m: max. 22m: 72A I D D S D G PD - 9677 D 2 Pak IRFS427PbF TO-262 IRFSL427PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units I D @ T C = 25 C 72 Continuous Drain Current, V GS @ V I D @ T C = C Continuous Drain Current, V GS @ V 5 A I DM Pulsed Drain Current c 3 P D @T C = 25 C Maximum Power Dissipation 375 W Linear Derating Factor 2.5 W/ C V GS Gate-to-Source Voltage ± 2 V dv/dt Peak Diode Recovery e 57 V/ns Operating Junction and -55 to 75 C T STG Storage Temperature Range Soldering Temperature, for seconds (.6mm from case) Mounting torque, 6-32 or M3 screw 3 lbxin (.Nxm) Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy d 25 mj I AR Avalanche Current c See Fig. 4, 5, 22a, 22b, A E AR Repetitive Avalanche Energy f mj Thermal Resistance Symbol Parameter Typ. Max. Units R θjc Junction-to-Case jk.4 R θja Junction-to-Ambient ij 4 www.irf.com C/W 9/6/8

IRFS/SL427PbF Static @ = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS Drain-to-Source Breakdown Voltage 2 V V (BR)DSS / Breakdown Voltage Temp. Coefficient.23 V/ C R DS(on) Static Drain-to-Source On-Resistance 8.6 22 mω V GS(th) Gate Threshold Voltage 3. 5. V I DSS Drain-to-Source Leakage Current 2 25 I GSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage - R G(int) Internal Gate Resistance 3. Ω Dynamic @ = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Forward Transconductance 79 S Q g Total Gate Charge 5 Q gs Gate-to-Source Charge 3 Q gd Gate-to-Drain ("Miller") Charge 3 nc Q sync Total Gate Charge Sync. (Q g - Q gd ) 69 t d(on) Turn-On Delay Time 7 t r Rise Time 8 t d(off) Turn-Off Delay Time 56 ns t f Fall Time 22 C iss Input Capacitance 538 C oss Output Capacitance 4 C rss Reverse Transfer Capacitance 86 pf C oss eff. (ER) Effective Output Capacitance (Energy Related)h 36 C oss eff. (TR) Effective Output Capacitance (Time Related)g 59 Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 76 MOSFET symbol (Body Diode) showing the A I SM Pulsed Source Current 3 integral reverse G (Body Diode)c p-n junction diode. V SD Diode Forward Voltage.3 V = 25 C, I S = 44A, V GS = V f t rr Reverse Recovery Time 36 = 25 C V R = V, ns 39 = 25 C I F = 44A Q rr Reverse Recovery Charge 458 = 25 C di/dt = A/µs f nc 688 = 25 C I RRM Reverse Recovery Current 8.3 A = 25 C t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) µa na Conditions V GS = V, I D = 25µA Reference to 25 C, I D = 5mAc V GS = V, I D = 44A f V DS = V GS, I D = 25µA V DS = 2V, V GS = V V DS = 2V, V GS = V, = 25 C V GS = 2V V GS = -2V V DS = 5V, I D = 44A I D = 44A Conditions V DS = V V GS = V f I D = 44A, V DS =V, V GS = V V DD = 3V I D = 44A R G = 2.7Ω V GS = V f V GS = V V DS = 5V ƒ =.MHz (See Fig.5) V GS = V, V DS = V to 6V h(see Fig.) V GS = V, V DS = V to 6V g D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by max, starting = 25 C, L =.26mH R G = 25Ω, I AS = 44A, V GS =V. Part not recommended for use above this value. ƒ I SD 44A, di/dt 76A/µs, V DD V (BR)DSS, 75 C. Pulse width 4µs; duty cycle 2%. C oss eff. (TR) is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. C oss eff. (ER) is a fixed capacitance that gives the same energy as C oss while V DS is rising from to 8% V DSS. When mounted on " square PCB (FR-4 or G- Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ˆ R θ is measured at approximately 9 C R θjc value shown is at time zero 2 www.irf.com

C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) I D, Drain-to-Source Current (Α) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRFS/SL427PbF VGS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V VGS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V.. 4.5V 6µs PULSE WIDTH Tj = 25 C. V DS, Drain-to-Source Voltage (V). 4.5V 6µs PULSE WIDTH Tj = 75 C. V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics V DS = 5V 6µs PULSE WIDTH 3.5 3. I D = 44A V GS = V = 75 C 2.5 2. = 25 C.5.. 3. 4. 5. 6. 7. 8. V GS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics.5-6 -4-2 2 4 6 8 2 4 6 8, Junction Temperature ( C) Fig 4. Normalized On-Resistance vs. Temperature 8 6 V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd C iss 6 2 I D = 44A V DS = 6V V DS = V V DS = 4V 4 8 2 4 C oss C rss 2 4 6 8 2 V DS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3

I SD, Reverse Drain Current (A) Energy (µj) E AS, Single Pulse Avalanche Energy (mj) V (BR)DSS, I D, Drain Current (A) Drain-to-Source Breakdown Voltage (V) I D, Drain-to-Source Current (A) IRFS/SL427PbF OPERATION IN THIS AREA LIMITED BY R DS (on) = 75 C µsec msec = 25 C msec. V GS = V..2.4.6.8..2.4 V SD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 8 Tc = 25 C Tj = 75 C Single Pulse DC. V DS, Drain-toSource Voltage (V) 26 Fig 8. Maximum Safe Operating Area Id = 5mA 6 24 4 22 2 2 25 5 75 25 5 75 T C, Case Temperature ( C) Fig 9. Maximum Drain Current vs. Case Temperature 8-6 -4-2 2 4 6 8 2468, Temperature ( C ) Fig. Drain-to-Source Breakdown Voltage 8. 6. 8 I D TOP 8.2A 3A BOTTOM 44A 6 4. 4 2. 2. 4 8 2 6 2 25 5 75 25 5 75 V DS, Drain-to-Source Voltage (V) Starting, Junction Temperature ( C) Fig. Typical C OSS Stored Energy Fig 2. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com

E AR, Avalanche Energy (mj) Avalanche Current (A) IRFS/SL427PbF Thermal Response ( Z thjc ) D =.5...2..5.2. SINGLE PULSE ( THERMAL RESPONSE ) τj τj τ τ Ci= τi/ri Ci i/ri R R 2 R 3 R R 2 R 3 τ 2 τ 3 τ 2 τ 3. E-6 E-5.... t, Rectangular Pulse Duration (sec) Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case R4 R4 τ4 τ4 τc τ Ri ( C/W) τι (sec).2.9.83333.78.8667.76.3333.8764 Duty Cycle = Single Pulse..5. Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 5 C and Tstart =25 C (Single Pulse) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Τ j = 25 C and Tstart = 5 C. 25 2 5 5..E-6.E-5.E-4.E-3.E-2.E- TOP Single Pulse BOTTOM % Duty Cycle I D = 44A 25 5 75 25 5 75 Starting, Junction Temperature ( C) Fig 5. Maximum Avalanche Energy vs. Temperature tav (sec) Fig 4. Typical Avalanche Current vs.pulsewidth Notes on Repetitive Avalanche Curves, Figures 4, 5: (For further info, see AN-5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 6a, 6b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 4, 5). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see Figures 3) P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc I av = 2DT/ [.3 BV Z th ] E AS (AR) = P D (ave) t av www.irf.com 5

Q RR - (nc) I RRM - (A) Q RR - (nc) V GS (th) Gate threshold Voltage (V) I RRM - (A) IRFS/SL427PbF 6. 5. I D =.A I D =.ma I D = 25µA 5 4 4. 3 3. 2.. -75-5 -25 25 5 75 25 5 75, Temperature ( C ) Fig 6. Threshold Voltage Vs. Temperature 2 I F = 29A V R = V = 25 C = 25 C 2 3 4 5 6 7 8 9 di f / dt - (A / µs) Fig. 7 - Typical Recovery Current vs. di f /dt 6 3 5 25 4 2 3 5 2 I F = 44A V R = V = 25 C = 25 C 2 3 4 5 6 7 8 9 di f / dt - (A / µs) Fig. 8 - Typical Recovery Current vs. di f /dt I F = 29A V R = V 5 = 25 C = 25 C 2 3 4 5 6 7 8 9 di f / dt - (A / µs) Fig. 9 - Typical Stored Charge vs. di f /dt 3 25 2 5 I F = 44A V R = V 5 = 25 C = 25 C 2 3 4 5 6 7 8 9 di f / dt - (A / µs) Fig. 2 - Typical Stored Charge vs. di f /dt 6 www.irf.com

IRFS/SL427PbF - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Body Diode Inductor Curent Current Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 2. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs 5V tp V (BR)DSS V DS L DRIVER R G 2V V GS tp D.U.T IAS.Ω - V DD A I AS Fig 22a. Unclamped Inductive Test Circuit Fig 22b. Unclamped Inductive Waveforms V DS R D V DS V GS D.U.T. 9% R G - V DD VV GS Pulse Width µs Duty Factor. % % V GS t d(on) t r t d(off) t f Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Current Regulator Same Type as D.U.T. Vds Id 5KΩ Vgs 2V.2µF.3µF V GS D.U.T. V - DS Vgs(th) 3mA I G I D Current Sampling Resistors Qgs Qgs2 Qgd Qgodr Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform www.irf.com 7

IRFS/SL427PbF D 2 Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D 2 Pak (TO-263AB) Part Marking Information 7,6,6$,5)6:,7 /27&2'(,7(5$7,2$/ $66(%/('2:: 5(&7,),(5,7($66(%/</,(/ /2*2 $66(%/< /27&2'( )6 3$578%(5 '$7(&2'( <($5 :((. /,(/ 25,7(5$7,2$/ 5(&7,),(5 /2*2 $66(%/< /27&2'( )6 3$578%(5 '$7(&2'( 3 '(6,*$7(6/($')5(( 352'8&7237,2$/ <($5 :((. $ $66(%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com

IRFS/SL427PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$3/( 7,6,6$,5// /27&2'( $66(%/('2::,7($66(%/</,(&,7(5$7,2$/ 5(&7,),(5 /2*2 $66(%/< /27&2'( 3$578%(5 '$7(&2'( <($5 :((. /,(& 25,7(5$7,2$/ 5(&7,),(5 /2*2 $66(%/< /27&2'( 3$578%(5 '$7(&2'( 3 '(6,*$7(6/($')5(( 352'8&7237,2$/ <($5 :((. $ $66(%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

IRFS/SL427PbF D 2 Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR.6 (.63).5 (.59) 4. (.6) 3.9 (.53).6 (.63).5 (.59).368 (.45).342 (.35) FEED DIRECTION TRL.85 (.73).65 (.65).6 (.457).4 (.449) 5.42 (.69) 5.22 (.6) 24.3 (.957) 23.9 (.94).9 (.429).7 (.42) 6. (.634) 5.9 (.626).75 (.69).25 (.49) 4.72 (.36) 4.52 (.78) FEED DIRECTION 3.5 (.532) 2.8 (.54) 27.4 (.79) 23.9 (.94) 4 33. (4.73) MAX. 6. (2.362) MIN. NOTES :. COMFORMS TO EIA-48. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.4 (.39) 24.4 (.96) 3 3.4 (.97) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 9245, USA Tel: (3) 252-75 TAC Fax: (3) 252-793 Visit us at www.irf.com for sales contact information. 9/28 www.irf.com