Microelectronics Part 2: Basic analog CMOS circuits

Similar documents
Session 2 MOS Transistor for RF Circuits

Operational Amplifiers

Solid State Devices & Circuits. 18. Advanced Techniques

Advanced Operational Amplifiers

Analysis and Design of Analog Integrated Circuits Lecture 18. Key Opamp Specifications

ECE 442 Solid State Devices & Circuits. 15. Differential Amplifiers

EECS3611 Analog Integrated Circuit Design. Lecture 3. Current Source and Current Mirror

Analysis and Design of Analog Integrated Circuits Lecture 8. Cascode Techniques

ECE 546 Lecture 12 Integrated Circuits

Chapter 4 Single-stage MOS amplifiers

EE 140 / EE 240A ANALOG INTEGRATED CIRCUITS FALL 2015 C. Nguyen PROBLEM SET #7

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

TWO AND ONE STAGES OTA

ECEN 5008: Analog IC Design. Final Exam

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

LECTURE 19 DIFFERENTIAL AMPLIFIER

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008

Current Mirrors. Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan 4-1

Lecture 2, Amplifiers 1. Analog building blocks

Lecture 34: Designing amplifiers, biasing, frequency response. Context

CMOS Analog Design. Introduction. Prof. Dr. Bernhard Hoppe LECTURE NOTES. Prof. Dr. Hoppe CMOS Analog Design 2

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Chapter 12 Opertational Amplifier Circuits

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

ECE315 / ECE515 Lecture 7 Date:

EECE488: Analog CMOS Integrated Circuit Design Set 7 Opamp Design

4.5 Biasing in MOS Amplifier Circuits

CSE 577 Spring Insoo Kim, Kyusun Choi Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The Penn State University

55:041 Electronic Circuits

Building Blocks of Integrated-Circuit Amplifiers

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

SAMPLE FINAL EXAMINATION FALL TERM

Lecture 21: Voltage/Current Buffer Freq Response

55:041 Electronic Circuits

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

BJT Amplifier. Superposition principle (linear amplifier)

MOS Field Effect Transistors

8. Characteristics of Field Effect Transistor (MOSFET)

Chapter 1. Introduction

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Field Effect Transistors

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

GUJARAT TECHNOLOGICAL UNIVERSITY. Semester II. Type of course: ME-Electronics & Communication Engineering (VLSI & Embedded Systems Design)

JFET Noise. Figure 1: JFET noise equivalent circuit. is the mean-square thermal drain noise current and i 2 fd

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Lecture 240 Cascode Op Amps (3/28/10) Page 240-1

ECE315 / ECE515 Lecture 8 Date:

EE 230 Lab Lab 9. Prior to Lab

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

Low Voltage Standard CMOS Opamp Design Techniques

Sensors & Transducers Published by IFSA Publishing, S. L.,

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014

A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region

SKEL 4283 Analog CMOS IC Design Current Mirrors

Analog IC Design. Lecture 1,2: Introduction & MOS transistors. Henrik Sjöland. Dept. of Electrical and Information Technology

Design and Simulation of Low Voltage Operational Amplifier

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 300 Low Voltage Op Amps (3/28/10) Page 300-1

Advanced OPAMP Design

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

INF3410 Fall Book Chapter 6: Basic Opamp Design and Compensation

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers

An Improved Recycling Folded Cascode OTA with positive feedback

Experiment 1: Amplifier Characterization Spring 2019

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

6.002 Circuits and Electronics Final Exam Practice Set 1

EE 435. Lecture 6: Current Mirrors Signal Swing


Review Sheet for Midterm #2

Full Paper ACEEE Int. J. on Control System and Instrumentation, Vol. 4, No. 2, June 2013

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Microelectronics Circuit Analysis and Design

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Designing CMOS folded-cascode operational amplifier with flicker noise minimisation

MOS IC Amplifiers. Token Ring LAN JSSC 12/89

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Lecture 350 Low Voltage Op Amps (3/26/02) Page 350-1

Design of High-Speed Op-Amps for Signal Processing

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

INF3410 Fall Book Chapter 3: Basic Current Mirrors and Single-Stage Amplifiers

MOSFET & IC Basics - GATE Problems (Part - I)

Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

A Basis for LDO and It s Thermal Design

EE105 Fall 2015 Microelectronic Devices and Circuits

Transcription:

GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca! M548 February 0 Outline Main CMOS circuits design rules Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic analog CMOS circuits Inverter Voltage follower Current mirrors Amplifiers and Op-Amps GBM830 - Dispositifs Médicaux Intelligents

Small-Signal Models of MOS Transistors I d = I D i d Study the linear model of MOS transistor around an operating point.! MOS in saturation: V GS >V th and V DS >V GS -V th! V GS v i- V DS I d = µ n C ox ( L V V γ Φ V Φ GS th0 F SB F ) ( λv DS ) I d = f (V GS,V DS,V SB ) " = I D i d = I D I % d $ ' # & ΔV " I d % GS $ ' # & ΔV " I % d DS $ ' # & ΔV BS V GS V DS V BS GBM830 - Dispositifs Médicaux Intelligents 3 Small-Signal Models of MOS Transistors Transconductance g m! G D g m I D V GS I D = µ n C ox µ n C ox L λv DS ( )( V GS V t ) ( L V V GS t ) λv DS << g m µ n C ox L V ( GS V t ) µ n C ox L I D = I D V Dsat S Vgs gmvgs Vbs B gmbvbs rds Output resistance r ds g ds r ds I D V DS g ds = µ n C ox ( V DS L λ V DS )( V GS V t ) = µ C n ox L λ ( V V GS t ) λ I D GBM830 - Dispositifs Médicaux Intelligents 4

Small-Signal Models of MOS Transistors Body Transconducatnce g mb! g mb I DS V BS = µ n C ox ( V BS L V V GS th ) = µ C n ox ( L V V GS th ) V th V BS ( ) V th = V th0 γ Φ F V BS Φ F G D γ g mb = g m Φ F V SB S Vgs gmvgs gmbvbs rds γ = qεn A C Ox Vbs B GBM830 - Dispositifs Médicaux Intelligents 5 Small-Signal Models of MOS Transistors Example :! Υ = 0.3,! G D λ n Ξ 0.05 (/V),! Φi F = 0.6V,! V gs g m v gs g mb v bs I D = ma,! V dsat = 00mV,! V SB = 00mV.! S V bs r ds g m = ma/v (ms); S=Siemen! g mb = 0.8 ma/v Ξ 0% g m! r ds = 40 k.! B GBM830 - Dispositifs Médicaux Intelligents 6 3

Small-Signal Models of MOS Transistors The low-frequency small signal model of a MOS transistor in the triode region is a resistance.! I D = µ n C ox L V V " # ( GS th )V DS V DS $ % g ds r ds I D $ ' = µ n C ox V DS % & L ( ) V GS V th V DS S ( ) r ds D If V DS << V GS - V th, (the common case V DS near to zero)! g ds = = µ n C ox r ds L ( V GS V t ) This resistance value is controlled by V GS.! GBM830 - Dispositifs Médicaux Intelligents 7 Parasitic capacitors in MOS Transistors To complete the small-signal model of the MOSFET, the intrinsic and extrinsic capacitors have to be added. These capacitors play an important role in high frequency operation.! GBM830 - Dispositifs Médicaux Intelligents 8 4

Transition frequency The frequency capability of a MOS transistor is specified by finding the transition f T.! i o f T is the frequency where the magnitude of the short-circuit common-source current gain falls to.! i i = s(c gs C gd )v gs Current in C gd is neglected:! v i - i i i o g m v gs i i C g d i o i o i i g m s(c gs C gd ) g m i o i i s= jω ( ) f T = π (C gs C gd ).5 µ n π L V V GS th v g s - C g s g m v g s f T can be improved by operating at high values of (V GS -V th ), and faster transistor can be made by smaller L.! GBM830 - Dispositifs Médicaux Intelligents 9 Outline Introduction The CMOS process CMOS technology processing The MOS Transistor Basic device physics Small Signal Model Basic blocks in CMOS Analog Circuits Inverter Voltage follower Current mirrors Amplifiers GBM830 - Dispositifs Médicaux Intelligents 0 5

Diode connected MOS DC analysis i D = µ n C ox ( L V V GS thn ) ( λv DS ) AC analysis (small signal) GBM830 - Dispositifs Médicaux Intelligents Current Mirror Small signal model simplifications!!!!all current sources è Open circuit!!all voltage source è Short circuit!!all power supplies è Ground! Open circuit M iref iout M Vout - No current in this part of the circuit Gate Vx g m Vgs g mb Vsb rds g m Vgs g mb Vsb rds GBM830 - Dispositifs Médicaux Intelligents 6

Current Mirror Simple current mirror!!dc analysis! I V GS OUT = V th = µ C ox µ C I ox ref ( L) ( L) µ C I ox ref ( L) = ( L) I ref ( L) M iref iout M Vout - Output impedance:!!!r out = r ds =! λ I out ΔV = V GS V = th µ C I ox ref ( L) VGS-Vth GBM830 - Dispositifs Médicaux Intelligents 3 Current Mirror Cascode current mirror!!dc analysis! V =Veff= V GS - V th at I D =I ref Vout = Vth Veff - Veff -Vth Veff V V ΔV OUT th i ref i out M3 M (Vth Veff) V A Vout M4 Vth Veff M - VthVeff=VGS M M Vx - i x The output impedance is increased by a factor ( a v ):! v i x x ( ) Vsb - = R g r r out m ds ds g m Vgs rds g mb Vsb rds Vx VthVeff GBM830 - Dispositifs Médicaux Intelligents 4 7

Current Mirror ilson current mirror!!- DC analysis! I OUT = ( L) I REF ( L) M M3 M!- Output impedance! VthVeff r o = g m r ds r ds3 Iref Iout Super-ilson current mirror!!- DC analysis! M3 M4 VA M Vout M - GBM830 - Dispositifs Médicaux Intelligents 5 Current Mirror ide-swing cascode current mirror!!- DC analysis! Cascode! i ref i out M3 M (Vth Veff) V A Vout M4 Vth Veff M - Veff Advantage: minimum output voltage is only Veff!! Downside: increased complexity and power consumption.! GBM830 - Dispositifs Médicaux Intelligents 6 8

Current Mirror Improved ide-swing cascode current mirror!!- DC analysis! Veff Added transistor M5 equalizes the voltages at the drains of M and M3 : Channel-length modulation effects are reduced.! GBM830 - Dispositifs Médicaux Intelligents 7 Analog CMOS Inverter l Analyse AC (faibles signaux) v A = = g r R g R ( ) out v m ds m vin GBM830 - Dispositifs Médicaux Intelligents 8 9

Analog CMOS Inverter AC analysis (continued)! Vo Vi Vgs rds rds!transfer function (G) = vo/vi! S g m Vgs = ( vo rds ) gm vgs ( vo r o ds ) ( ) Kirchhoff: 0 / / Transconductance and output impedance (g m, r ds )! g m = µ Cox µ L λi L ( VGS Vth ) = Cox I D v v = g r r i m ds ds rds = G g r m ds = µ C ox λ L I Voltage Gain (G)! D D!G lorsque ou L! dx λ = d!g lorsque I D! L eff dv DS GBM830 - Dispositifs Médicaux Intelligents 9 Voltage Follower The voltage follower, as suggested by its name, replicates voltage V IN at the output.! DC Analysis Vdd Vdd Vin Vin Vout Vout I Bias I Bias Vss Vss P-well process! N-well process! V th = V ( φ V φ ) th0 F OUT γ F I V Assume that the transistor is saturated:! D = I = µ C OUT BIAS = ox L L I BIAS µ C ox ( V V V ) IN V IN OUT V th th If the substrate is connected to the source, then V th =V tho.! GBM830 - Dispositifs Médicaux Intelligents 0 0

Voltage Follower AC Analysis GBM830 - Dispositifs Médicaux Intelligents Voltage Follower AC Analysis (Cont d) If! In practice, this value is degraded by r ds, and g s, and has a value between 0.9 and 0.95.! The output resistance is found using a test voltage source V x at the output and measuring the current flowing with v in =0! The voltage follower is useful to match impedances : It is often used to lower the output impedance of a voltage amplifier.! GBM830 - Dispositifs Médicaux Intelligents

Common Gate Amplifier AC analysis GBM830 - Dispositifs Médicaux Intelligents 3 Common Gate Amplifier AC analysis (Cont d) GBM830 - Dispositifs Médicaux Intelligents 4

Operational amplifiers Ideal Op-Amp Openloop! Vp ve Vn - A ve Vo Closedloop! Vp ve Vn - A ve Vo Basic -stage Op-Amp R R M3 M4 Vdd M5 M6 M7 Vdd M8 Iref V M M V- Vout Cout V Iref M M V- Vout Cout M6 M7 Vss M8 M3 M4 Vss M5 NMOS inputs! Small signal open-loop gain: PMOS inputs! G oa = gm ro = gm (ro ro4) gm5 (ro5 ro8)! GBM830 - Dispositifs Médicaux Intelligents 5 Operational amplifiers : Stability GBM830 - Dispositifs Médicaux Intelligents 6 3

Operational amplifiers : Stability A V C C Vi R g m Vi C R g m V C Vo A = aa CL=C a a C C IAI (db) P# P# 0 0 f (Hz) Phase -90-80 GBM830 - Dispositifs Médicaux Intelligents 7 Operational amplifiers : Stability P = - R C c R g m V C C g m P = C C z = g m C C Vi R g m Vi C R g m V C Vo z = & C $ C % g m R Z #! " Vi gm Vi R CC C RZ gm V R C Vo P = g m C GBM830 - Dispositifs Médicaux Intelligents 8 4

Operational amplifiers : CMRR The common-mode rejection ratio (CMRR) measures how well the amplifier can reject signals common to both inputs.! The differential stage determines how well the entire opamp rejects common mode signals.! GBM830 - Dispositifs Médicaux Intelligents 9 Operational amplifiers : CMRR The common-mode signal appearing on the drains of M3 and M4 will be identical! The most efficient manner in which to increase the CMRR of this amplifier is to increase the resistance r o5! GBM830 - Dispositifs Médicaux Intelligents 30 5

Operational amplifiers : Input common-mode range Input common-mode range! Differential amplifier with a current mirror load.!!!! Slew rate! I Dω SR = g SR = m ( VGS Vth ) ω GBM830 - Dispositifs Médicaux Intelligents 3 Operational amplifiers : Noise Dominate noises are thermal and flicker! Active region V R ( f ) K = LC f ox I R ( f ) = 4 4kTY/gm γ g m K R = 4 γ ( ) V f kt LC f g ox m V ( ) n f 0 µ V Hz 0 0. 3. /f noise dominates -0dB/decade 0 Root spectral density /f noise corner hite noise dominates ( Hz) 6 ( 3. 0 ) ( ) V ( f ) = 0 f 6 n!pmos has less flicker noise than NMOS (holes mobility is less than electron)! g m = µ Cox µ L L ( VGS Vth ) = Cox I D GBM830 - Dispositifs Médicaux Intelligents 3 6

Operational amplifiers : Noise GBM830 - Dispositifs Médicaux Intelligents 33 Operational amplifiers : Noise The gain of the input stage in a MOS op amp is usually large enough so that the input-referred noise of the overall amplifier is dominated by the noise contributions from the input-stage transistors.! i = g ( v v ) g ( v v ) O m - eq eq m 3-4 O i = g m vit eq 3 eq 4 GBM830 - Dispositifs Médicaux Intelligents 34 7

Operational amplifiers : /f NOISE For a MOS transistor the input-referred /f noise can be modeled as:! where Kf is the flicker noise coefficient! Using this model for each transistor in the input stage, the input-referred /f noise for the entire stage is! Assuming that L = L, =, L4 = L3 and 4 = 3! GBM830 - Dispositifs Médicaux Intelligents 35 Operational amplifiers : Thermal NOISE The input-referred thermal noise for an NMOS transistor is:! GBM830 - Dispositifs Médicaux Intelligents 36 8