IRFR3704Z IRFU3704Z HEXFET Power MOSFET

Similar documents
IRFR3709ZPbF IRFU3709ZPbF

IRLR3717 IRLU3717 HEXFET Power MOSFET

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

IRLR8721PbF IRLU8721PbF

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRF3709ZCS IRF3709ZCL

IRL3714Z IRL3714ZS IRL3714ZL

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg

IRF7821PbF. HEXFET Power MOSFET

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRL8113 IRL8113S IRL8113L

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

V DSS R DS(on) max Qg

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

IRLR8726PbF IRLU8726PbF

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFR4105ZPbF IRFU4105ZPbF

IRFR24N15DPbF IRFU24N15DPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFR540ZPbF IRFU540ZPbF

IRFR24N15D IRFU24N15D

IRF6602/IRF6602TR1 HEXFET Power MOSFET

IRFR1018EPbF IRFU1018EPbF

IRF9910PbF HEXFET Power MOSFET R DS(on) max

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

IRFR3806PbF IRFU3806PbF

IRLR3915PbF IRLU3915PbF

V DSS R DS(on) max I D

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max (mω) I D

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRLS3034PbF IRLSL3034PbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

V DSS R DS(on) max I D

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

IRFS4127PbF IRFSL4127PbF

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFB260NPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

IRF3808S IRF3808L HEXFET Power MOSFET

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

IRF6646 DirectFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

IRFS3004-7PPbF HEXFET Power MOSFET

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

V DSS R DS(on) max Qg 30V GS = 10V 20nC

SMPS MOSFET. V DSS R DS(on) max I D

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

IRLR3110ZPbF IRLU3110ZPbF

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

l Advanced Process Technology TO-220AB IRF630N

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

SMPS MOSFET. V DSS R DS(on) max I D

Transcription:

Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits l l l Very Low R DS(on) at 4.5V V GS Ultra-Low Gate Impedance Fully Characterized Avalanche Voltage and Current PD - 94725 IRFR3704Z IRFU3704Z HEXFET Power MOSFET V DSS R DS(on) max Qg 20V 8.4m: 9.3nC D-Pak IRFR3704Z I-Pak IRFU3704Z Absolute Maximum Ratings Parameter Max. Units V DS Drain-to-Source Voltage 20 V V GS Gate-to-Source Voltage ± 20 I D @ T C = 25 C Continuous Drain Current, V GS @ 10V 60f A I D @ T C = 100 C Continuous Drain Current, V GS @ 10V 42f I DM Pulsed Drain Current c 240 P D @T C = 25 C Maximum Power Dissipation 48 W P D @T C = 100 C Maximum Power Dissipation Linear Derating Factor 24 0.32 W/ C T J Operating Junction and -55 to 175 C T STG Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case) Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 3.1 C/W R θja Junction-to-Ambient (PCB Mount) g 50 R θja Junction-to-Ambient 110 Notes through are on page 11 www.irf.com 1 07/10/03

IRFR/U3704Z Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 20 V ΒV DSS / T J Breakdown Voltage Temp. Coefficient 0.015 V/ C Reference to 25 C, I D = 1mA R DS(on) Static Drain-to-Source On-Resistance 6.7 8.4 mω V GS = 10V, I D = 15A e 9.2 11.4 V GS = 4.5V, I D = 12A e V GS(th) Gate Threshold Voltage 1.65 2.1 2.55 V V DS = V GS, I D = 250µA V GS(th) / T J Gate Threshold Voltage Coefficient -5.5 mv/ C I DSS Drain-to-Source Leakage Current 1.0 µa V DS =16V, V GS = 0V 150 V DS = 16V, V GS = 0V, T J = 125 C I GSS Gate-to-Source Forward Leakage 100 na V GS = 20V Gate-to-Source Reverse Leakage -100 V GS = -20V gfs Forward Transconductance 41 S V DS = 10V, I D = 12A Q g Total Gate Charge 9.3 14 Q gs1 Pre-Vth Gate-to-Source Charge 3.0 V DS = 10V Q gs2 Post-Vth Gate-to-Source Charge 1.1 nc V GS = 4.5V Q gd Gate-to-Drain Charge 2.7 I D = 12A Q godr Gate Charge Overdrive 2.5 See Fig. 16 Q sw Switch Charge (Q gs2 Q gd ) 3.8 Q oss Output Charge 5.6 nc V DS = 10V, V GS = 0V t d(on) Turn-On Delay Time 41 V DD = 10V, V GS = 4.5V e t r Rise Time 8.9 I D = 12A t d(off) Turn-Off Delay Time 4.9 ns Clamped Inductive Load t f Fall Time 12 C iss Input Capacitance 1190 V GS = 0V C oss Output Capacitance 380 pf V DS = 10V C rss Reverse Transfer Capacitance 170 ƒ = 1.0MHz Avalanche Characteristics Parameter Typ. Max. Units E AS Single Pulse Avalanche Energyd 41 mj I AR Avalanche Currentc 12 A E AR Repetitive Avalanche Energy c 4.8 mj Diode Characteristics Parameter Min. Typ. Max. Units I S Continuous Source Current 60f Conditions V GS = 0V, I D = 250µA Conditions MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 240 integral reverse G (Body Diode)c p-n junction diode. S V SD Diode Forward Voltage 1.0 V T J = 25 C, I S = 12A, V GS = 0V e t rr Reverse Recovery Time 13 19 ns T J = 25 C, I F = 12A, V DD = 10V Q rr Reverse Recovery Charge 4.2 6.3 nc di/dt = 100A/µs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com D

I D, Drain-to-Source Current (Α) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRFR/U3704Z 1000 100 10 VGS TOP 10V 6.0V 4.5V 4.0V 3.3V 2.8V 2.6V BOTTOM 2.4V 1000 100 10 VGS TOP 10V 6.0V 4.5V 4.0V 3.3V 2.8V 2.6V BOTTOM 2.4V 1 0.1 0.01 0.001 2.4V 20µs PULSE WIDTH Tj = 25 C 0.01 0.1 1 10 V DS, Drain-to-Source Voltage (V) 1 0.1 0.01 2.4V 20µs PULSE WIDTH Tj = 175 C 0.01 0.1 1 10 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 T J = 175 C 2.0 I D = 30A V GS = 10V 10 1.5 1 0.1 0.01 T J = 25 C V DS = 10V 20µs PULSE WIDTH 2 3 4 5 6 7 8 9 V GS, Gate-to-Source Voltage (V) 1.0 0.5-60 -40-20 0 20 40 60 80 100 120 140 160 180 T J, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) IRFR/U3704Z 10000 V GS = 0V, f = 1 MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 6.0 5.0 I D = 12A V DS = 18V V DS = 10V 4.0 1000 C iss 3.0 C oss 2.0 C rss 1.0 100 1 10 100 0.0 0 2 4 6 8 10 12 14 V DS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 1000 OPERATION IN THIS AREA LIMITED BY R DS (on) 100.00 T J = 175 C 100 10.00 T J = 25 C 1.00 V GS = 0V 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 V SD, Source-to-Drain Voltage (V) 10 1 Tc = 25 C Tj = 175 C Single Pulse 100µsec 1msec 10msec 0 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) V GS(th) Gate threshold Voltage (V) IRFR/U3704Z 60 2.5 50 40 Limited By Package 2.0 30 1.5 I D = 250µA 20 10 1.0 0 25 50 75 100 125 150 175 T C, Case Temperature ( C) 0.5-75 -50-25 0 25 50 75 100 125 150 175 200 T J, Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature 10 Thermal Response ( Z thjc ) 1 0.1 0.01 0.001 D = 0.50 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τ J τ J τ 1 τ 1 τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci i/ri R 1 R 2 R 3 R 1 R 2 R 3 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) R 4 Ri ( C/W) τi (sec) R 4 0.8190 0.000092 τ 4 τ 4 τ C τ 1.6018 0.000698 0.6592 0.009033 0.0418 0.046618 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc Tc Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

E AS, Single Pulse Avalanche Energy (mj) IRFR/U3704Z 15V 180 R G V DS 20V V GS tp L D.U.T I AS 0.01Ω DRIVER - V DD A 160 140 120 100 80 I D TOP 4.9A 6.5A BOTTOM 12A Fig 12a. Unclamped Inductive Test Circuit 60 40 tp V (BR)DSS 20 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy vs. Drain Current I AS L D Fig 12b. Unclamped Inductive Waveforms V DS V DD - Current Regulator Same Type as D.U.T. 50KΩ V GS Pulse Width < 1µs Duty Factor < 0.1% D.U.T 12V V GS.2µF.3µF D.U.T. V - DS Fig 14a. Switching Time Test Circuit V DS 90% 3mA I G I D Current Sampling Resistors 10% V GS Fig 13. Gate Charge Test Circuit t d(on) t r t d(off) t f Fig 14b. Switching Time Waveforms 6 www.irf.com

IRFR/U3704Z - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =10V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs Vds Id Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7

IRFR/U3704Z Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the R ds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; P loss = P conduction P switching P drive P output This can be expanded and approximated by; P loss = ( I 2 rms R ds(on ) ) I Q gd V in f i g ( ) Q g V g f Q oss 2 V f in I Q gs2 i g V in f This simplified loss equation includes the terms Q gs2 and Q oss which are new to Power MOSFET data sheets. Q gs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q gs1 and Q gs2, can be seen from Fig 16. Q gs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I dmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1. Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q oss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance s C ds and C dg when multiplied by the power supply input buss voltage. Synchronous FET The power loss equation for Q2 is approximated by; * P loss = P conduction P drive P output ( ) P loss = I rms 2 Rds(on) ( ) Q g V g f Q oss 2 V in f Q rr V in f *dissipated primarily in Q1. ( ) For the synchronous MOSFET Q2, R ds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and reverse recovery charge Q rr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V in. As Q1 turns on and off there is a rate of change of drain voltage dv/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q gd /Q gs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Q oss Characteristic 8 www.irf.com

IRFR/U3704Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 5.46 (.215) 5.21 (.205) 6.73 (.265) 6.35 (.250) - A - 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 4 1.02 (.040) 1.64 (.025) 1.52 (.060) 1.15 (.045) 2X 1.14 (.045) 0.76 (.030) 1 2 3 3X 6.22 (.245) 5.97 (.235) - B - 0.89 (.035) 0.64 (.025) 0.25 (.010) M A M B 10.42 (.410) 9.40 (.370) 6.45 (.245) 5.68 (.224) 0.51 (.020) MIN. 0.58 (.023) 0.46 (.018) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 2.28 (.090) 4.57 (.180) NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. 0.16 (.006). D-Pak (TO-252AA) Part Marking Information Notes: This part marking information applies to devices produced before 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 9U1P INTERNATIONAL RECTIFIER LOGO IRFU120 016 9U 1P DATE CODE YEAR = 0 WE EK = 16 AS S E MBL Y LOT CODE Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN THE ASSEMBLY LINE "A" INTERNATIONAL RECTIFIER LOGO AS S E MB LY LOT CODE IRFU120 916A 12 34 PART NUMBER DATE CODE YEAR 9 = 1999 WEEK 16 LINE A www.irf.com 9

IRFR/U3704Z I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 5.46 (.215) 5.21 (.205) 1.52 (.060) 1.15 (.045) 6.73 (.265) 6.35 (.250) - A - 4 6.22 (.245) 5.97 (.235) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 1 2 3 - B - 2.28 (.090) 1.91 (.075) 9.65 (.380) 8.89 (.350) NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. 0.16 (.006). 3X 1.14 (.045) 0.76 (.030) 2.28 (.090) 2X 3X 0.89 (.035) 0.64 (.025) 0.25 (.010) M A M B 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) I-Pak (TO-251AA) Part Marking Information Notes : This part marking information applies to devices produced before 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 9U1P INTERNATIONAL RECTIFIER LOGO IRFU120 016 9U 1P DATE CODE YEAR = 0 WEEK = 16 AS S E MBLY LOT CODE Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN THE ASSEMBLY LINE "A" INTERNATIONAL RECTIFIER LOGO AS S EMBL Y LOT CODE IRFU120 919A 56 78 PART NUMBER DATE CODE YEAR 9 = 1999 WEEK 19 LINE A 10 www.irf.com

IRFR/U3704Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 (.641 ) 15.7 (.619 ) 16.3 (.641 ) 15.7 (.619 ) 12.1 (.476 ) 11.9 (.469 ) FEED DIRECTION 8.1 (.318 ) 7.9 (.312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH NOTES : 1. OUTLINE CONFORMS TO EIA-481. 16 mm Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 25 C, L = 0.57mH, R G = 25Ω, I AS = 12A. ƒ Pulse width 400µs; duty cycle 2%. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/03 www.irf.com 11

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/