Research Article Survey of Induced Voltage and Current Phenomena in GIS Substation

Similar documents
Research Article Ferroresonance Study on the VT in the Karoon 4 Power Plant 400 kv GIS Substation

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

VFTO STUDIES DUO TO THE SWITCHING OPERATION IN GIS 132KV SUBSTATION AND EFFECTIVE FACTORS IN REDUCING THESE OVER VOLTAGES

Estimation of Re-striking Transient Over voltages in a 132KV Gas insulated Substation

Estimation of Re-striking Transient Overvoltages in a 3-Phase 132KV Gas insulated Substation

Calculation of Transients at Different Distances in a Single Phase 220KV Gas insulated Substation

A Study on Ferroresonance Mitigation Techniques for Power Transformer

A Simple Simulation Model for Analyzing Very Fast Transient Overvoltage in Gas Insulated Switchgear

Research Article A Simplified High Frequency Model of Interleaved Transformer Winding

Tab 2 Voltage Stresses Switching Transients

Modeling and Analysis of a 3-Phase 132kv Gas Insulated Substation

SUPPRESSION METHODS FOR VERY FAST TRANSIENT OVER- VOLTAGES ON EQUIPMENT OF GIS

Investigation into Transient SFO, FFO, VFTO Overvoltage Characteristics for Typical Gas Insulated Substations

GIS Disconnector Switching Operation VFTO Study

Fatima Michael college of Engineering and Technology

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY. Approach for Fault Detection in GIS.

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers

Power Frequency Withstand Voltage On-site testing of 400 kv GIS

Switching Restrikes in HVAC Cable Lines and Hybrid HVAC Cable/OHL Lines

FERRORESONANCE SIMULATION STUDIES USING EMTP

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

Electromagnetic Disturbances of the Secondary Circuits in Gas Insulated Substation due to Disconnector Switching

G. KOEPPL Koeppl Power Experts Switzerland

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

Modeling Ferroresonance Phenomena on Voltage Transformer (VT)

An Introduction to the CSCT as a New Device to Compensate Reactive Power in Electrical Networks

New Modeling of Metal Oxide Surge Arresters

Analysis of Very Fast Transient over Voltages of Transformer in Gas Insulated Substation (GIS) using Wavelet Technique

Capacitive Voltage Substations Ferroresonance Prevention Using Power Electronic Devices

The various factors influencing the VFTO levels in 500kV and. 750kV GIS have been discussed by developing the simulink models which

Fault Analysis of ITER Coil Power Supply System

Solving Customer Power Quality Problems Due to Voltage Magnification

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

Switching and Fault Transient Analysis of 765 kv Transmission Systems

Exercises. 6 Exercises

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

Analysis of a 405 km transmission line with series compensation

CONTENTS. 1. Introduction Generating Stations 9 40

Do Capacitor Switching Transients Still Cause Problems?

EE 740 Transmission Lines

Investigation of Transmission Line Overvoltages and their Deduction Approach

Utility System Lightning Protection

Transient recovery voltage analysis for various current breaking mathematical models: shunt reactor and capacitor bank de-energization study

POWER FACTOR CORRECTION. HARMONIC FILTERING. MEDIUM AND HIGH VOLTAGE SOLUTIONS.

Simulation of characteristics of impulse voltage generator for testing of equipment using MATLAB Simulink

Relay Protection of EHV Shunt Reactors Based on the Traveling Wave Principle

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

AORC Technical meeting 2014

SWITCHING OVERVOLTAGES IN A 400-KV CABLE SYSTEM

High voltage engineering

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Analysis of Electromagnetic Transients in Secondary Circuits due to Disconnector Switching in 400 kv Air-Insulated Substation

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS

Adi Mulawarman, P.E Xcel Energy Minneapolis, MN. Pratap G. Mysore, P.E Pratap Consulting Services, LLC Plymouth, MN

Delayed Current Zero Crossing Phenomena during Switching of Shunt-Compensated Lines

Ferroresonance Experience in UK: Simulations and Measurements

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages

Sources of transient electromagnetic disturbance in medium voltage switchgear

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

Study of High Voltage AC Underground Cable Systems Silva, Filipe Miguel Faria da; Bak, Claus Leth; Wiechowski, Wojciech T.

EE 340 Transmission Lines. Spring 2012

Evaluation of coupling between dc and ac transmission lines on the same right-of-way: Parametric analysis and mitigation methods

Electrical Power and Energy Systems

TRV OVERVIEW FOR REACTANCE LIMITED FAULTS

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT

ETAP PowerStation. Electrical Transient Analyzer Program. ETAP PowerStation. Short Circuit Analysis. ANSI Standard 3-Phase Fault Currents

Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System

EE 741. Primary & Secondary Distribution Systems

Research Article Resistive Ferroresonance Limiter for Potential Transformers

Modeling insulation in high-voltage substations

Application of frequency domain analysis to fault transients in complex HV transmission lines

2. Current interruption transients

ABSTRACT 1 INTRODUCTION

ELECTRICAL POWER TRANSMISSION TRAINER

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 %

PROTECTION APPLICATION HANDBOOK

3. (a) List out the advantages and disadvantages of HRC fuse (b) Explain fuse Characteristics in detail. [8+8]

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP

Curso de Transmissão em Corrente Continua Rio de Janeiro, de Junho, 2007

Optimal and economic selection of turn ratio for unit transformer using generator capability curves of synchronous generators

Research on Lightning Over-voltage and Lightning Protection of 500kV. HGIS Substation

FAULT DETECTION, CLASSIFICATION AND LOCATION ON AN UNDERGROUND CABLE NETWORK USING WAVELET TRANSFORM

The study of ferroresonance effects in electric power equipment

Although shunt capacitors

(2) New Standard IEEE P (3) Core : (4) Windings :

AC INTERFERENCE OF TRANSMISSION LINES ON RAILWAYS: INFLUENCE OF TRACK-CONNECTED EQUIPMENT I. ABSTRACT

Delayed Current Zero Crossing Phenomena During Switching of Shunt-Compensated Lines

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models

EE 340 Transmission Lines

GIS Instrument Transformers: EMC Conformity Tests for a Reliable Operation in an Upgraded Substation

Parameter Study of Ferro-Resonance with Harmonic Balance Method

Voltage and Current Waveforms Enhancement using Harmonic Filters

MV network design & devices selection EXERCISE BOOK

TECHNICAL REPORT. Insulation co-ordination

A Pyrotechnic Fault Current Limiter Model for Transient Calculations in Industrial Power Systems

Analysis of lightning performance of 132KV transmission line by application of surge arresters

A3-308 HIGH SPEED GROUNDING SWITCH FOR EXTRA-HIGH VOLTAGE LINES

DC VACUUM CIRCUIT BREAKER

Transient Recovery Voltage (TRV) and Rate of Rise of Recovery Voltage (RRRV) of Line Circuit Breakers in Over Compensated Transmission Lines

Transcription:

Research Journal of pplied Sciences, Engineering and Technology 7(9): 179733, 14 DOI:1.196/rjaset.7.456 ISSN: 4-7459; e-issn: 4-7467 14 Maxwell Scientific Publication Corp. Submitted: February 7, 17 ccepted: May 7, 13 Published: March 5, 14 Research rticle Survey of Induced Voltage and Current Phenomena in GIS Substation 1 Seyed Mohammad Hassan Hosseini, 1 Hamed Imani and Ghasem Nourirad 1 Department of Electrical Engineering, Islamic zad University, South Tehran Branch, Tehran, Iran Department of Electrical Engineering, CELP Member, University Putra Malaysia, Malaysia bstract: Induced capacitive voltage and current in high voltage GIS substation is one of the most significant phenomena that may have made some problems in this substation operation. t this study the various equipment of 4 KV Karoon4 substations such as powerhouses, input and output lines, bus-bar and bus-duct have simulated by applying EMTP-RV software. Then with the different condition of single-phase and three-phase faults on the lines in critical conditions, capacitive induction voltage and current by parallel capacitor with circuit breaker is surveyed. The results show the value of this induced current and voltage and that this critical conditions the breakers and disconnector switches must be able to interrupt this value of current. Keywords: Gas Insulated Substation (GIS), induced current, induced voltage INTRODUCTION Parallel capacitors with breaker contacts have been used to improve the performance of power circuit breaker for interrupting the single-phase to ground fault near the circuit breaker in GIS with the voltage rate of 3 KV and above. fter a single-phase fault occurs, the return voltage amplitude, which comes from the fault side and can be increased to twice of its nominal value, creates value of current that the circuit breaker would not be able to interrupt it. Parallel capacitor is used to produce a time delay for removing of transient state which is a result of fault. The time delay is determined by the following equation: =. where, C = The parallel capacitance with circuit breaker Z = The line surge impedance However, the existence of parallel capacitor would produce some problems. value of voltage and current is induced to the network after the power circuit breaker interruption and due to the capacitor existence. Disconnect switches must be able to interrupt this value of current. In the study, this crucial phenomenon has been studied with the modeling of 4 KV Karoon4 GIS substation (Kumar et al., 11; Hyundai Heavy Industrial, 11). In previous studies, various methods have been used to model the substation equipment specially bus bar and bus duct. Transmission line model with distributed parameters and cable model are some examples of modeled bus bar and bus duct in previous studies. Each of these methods has advantages and disadvantages that some of them are mentioned below: (Tavakoli et al., 9; Liu and Yufeng, 8): Ignoring the damping and losses Ignoring dependency of parameters to frequency Disregarding the interaction between conductor and enclosure The complexity of calculating the parameter in some installing bus bar in bus duct conditions The model has been used to model GIS busbar and busduct in this study due to the mentioned reasons and the model would be described in detail. INTRODUCING OF KROON 4 SUBSTTION Karoon 4 GIS substation has the voltage rate of 4 KV and double bus bar arrangement with by-pass disconnect switch. This substation is connected to the power units with 1 additive single-phase transformers in which the capacity of each is 1 MW. The substation output is connected to the network with 4 overhead 4 KV lines with double-bundle arrangement. Single-line diagram of mentioned substation has been shown in Fig. 1. s can be seen, the output lines include: Lordegan double-circuit lines with the length of 48 Km and Karoon 3 double-circuit lines with the length of 3 Km. Corresponding uthor: Seyed Mohammad Hassan Hosseini, Department of Electrical Engineering, Islamic zad University, South Tehran Branch, Tehran, Iran This work is licensed under a Creative Commons ttribution 4. International License (URL: http://creativecommons.org/licenses/by/4./). 179

Res. J. ppl. Sci. Eng. Technol., 7(9): 179733, 14 Fig. 1: Single line diagram of karoon4 4 KV GIS GIS EQUIPMENT MODELING Busbar and busduct are some of the effective elements on capacitive voltage and current induction phenomenon in GIS substations. In this study, doublehas been used to phase model in EMTP-RV software model the substation section. In this model, one phase is allocated to busbar and the other phase is appropriated to busduct (external enclosure). The values of self and mutual inductance and capacitance have been calculated to consider the coupling effect between bus bar and bus duct. These values have been put in model. ccording to the Eq. (1), the value of mutual capacitance between busbar and busdoct is 43.5. The mutual value of inductance is considered zero. Spacers, also, have capacitance value of 1.6. Equation () and (3) have been used to measure the self capacitance and inductance (Kondalu et al., 1; Thompson, 1999): Fig. : π equivalence model for GIS busbar and busdact = = π F/m l (1) C= π F/m () Fig. 3: The transmission line arrangement L= π H/m where, (3) The double-phase model, which has been used in this study, is shown in Fig.. series model of inductor with resistor has been used for reactor and, surge arresters have also been modeled as non-linear d = The distance between enclosure center and ground a = External radius = Internal radius and l is length of enclosure resistance. FD model was used in the purpose of transmission lines modeling. The transmission line arrangement is shown in Fig. 3. 173

Res. J. ppl. Sci. Eng. Technol., 7(9): 179733, 14 V 4 x 15 5 1 15 Fig. 4: Induced current with no fault condition (-ms).1.5 -.5 -.1 5 1 15 Fig. 5: Induced voltage with no fault condition (V-mS) 4 x 14 3 1-3 -6 4 6 8 1 1 14 16 18 Fig. 6: Single-phase to ground fault current on transmission line (-ms) 15 1 5 5 1 1 14 16 18 Fig. 7: Induced current to the network after single-phase to ground fault removing (-ms) Fig. 8: Induced voltage to the network after single-phase to ground fault removing (V-mS).8.6.4. -. -.4 -.6 -.8 V 4 x 15.5 1 1.5.5 3 time (s) 1 x 15 5 1 15 5 3 Fig. 9: Three-phase short-circuit fault current on transmission line (-ms) SIMULTION RESULTS In this section, first, the network is considered in no-fault condition. The generators are disconnected from the network and the network is supplied from the line side. When the line side circuit breaker is opened, a value of voltage is transferred to bus bar through capacity or which is paralleled with circuit breaker. The voltage value that is produced on bus bar will be less than the primary voltage due to the voltage division between circuit breaker capacitor, other circuit breakers and the coupled capacitor which between GIS and ground. When the circuit breaker is opened, a value of current is also induced to the network due to the existence of a capacitor which is paralleled with the 1731 circuit breaker contact. The current and voltage values are similar to the measured value during launching the substation. These values are shown in Fig. 4 and 5. Thereafter, the fault current value and capacitive voltage and current induction phenomena are presented in different fault conditions. Single-phase to ground fault on transmission line: There is a single-phase to ground fault at 1 ms in 6.6 Km away from the beginning of Karoon 3 line then the begin and end circuit breakers of the line start interrupting the line from the network at 1 ms. This event has been simulated and the fault current waveform is shown in Fig. 6. s can be seen, the value of fault current pick is 51 k. value of current is

Res. J. ppl. Sci. Eng. Technol., 7(9): 179733, 14 5 x 15 4 3 1 V breaker due to the interruption of begin and end circuit breakers of the line. Then, this current value is induced to the network that is shown in Fig. 1. s can be seen, the current value reaches to.48 amperes in steady state. The induced voltage is, also, shown in Fig. 11. s it is clear from Fig. 11, the obtained voltage value is quite similar to the measured value of the substation. The results in different conditions are shown in Table 1. -3 5 1 15 5 3 Fig. 1: Induced current to the network after three-phase short-circuit fault removing (-ms) 5 15 1 5 5 5 1 1 14 16 18 Fig. 11: Induced voltage to the network after three-phase short-circuit fault removing (V-mS) Table 1: Calculation summary of induced current and voltage in different conditions 4 pf ----------------------- Fault case/cb capacitor Initial Steady No fault Induced current ().8.8 Induced voltage (kv) 37 6 Single-phase to Induced current () 18.41 ground Three-phase short-circuit Induced voltage (kv) 3 9. Induced current () 1.48 Induced voltage (kv) 467.1 passed through the parallel capacitor with circuit breaker due to the interrupting of begin and end circuit breakers of the line and it is induced to the network. This induced current is shown in Fig. 7. s it is clear, the current value reaches to.41 amperes in steady state. The induced voltage value is completely similar to the measured value in the substation. This value is shown in Fig. 8. Three-phase to ground fault on transmission line: three-phase short-circuit fault occurs at 1 ms in 6.6 Km away from Karoon3 line outset. The begin and end circuit breakers of the line interrupt the line form the network at 1 ms This event has been simulated and the fault current waveform is shown in Fig. 9. s can be seen, the fault current pick value is 64 k. current value is passed through parallel capacitor with circuit 173 CONCLUSION In this study, capacitive current and voltage induction phenomena in 4 KV Karoon4 GIS substation were studied and simulated in EMTP-RV software. s it was seen, with the interrupting of all kinds of faults, a value of current passed through the parallel capacitor with circuit breaker in this substation. In this case, a value of voltage, also, was induced to one side of capacitor which was located in line side. The results indicate that the value of remnant current, which is due to parallel capacitor and coupled capacitor of system with the ground, cannot exceed.5 amperes for all conditions. So the disconnect switches that are used in the substation must be able to interrupt this current value. However, it must be considered that the results were obtained in the worst conditions and these conditions must be noticed during the testing and designing of equipment. The complexity of capacitive current and voltage induction phenomena in high voltage GIS substation were shown in this research. Consequently, in order to design and appropriate choose of disconnect switch, studying about this phenomenon is an essential issue so that without having enough knowledge, the substation operation would face with problem. REFERENCES Hyundai Heavy Industrial, 11. Switching Capability of 4kV Disconnecting Switch, Hyundai Heavy Industrial Co. Ltd., Electro Electri System Div./Electro-Mechanical Research Institute. Kondalu, M., S.R. Gillella and P.S. Subramanyam, 1. Estimation of transient over voltages in gas insulated busduct from kv gas insulated substation. Int. J. Comput. ppl., 8(1): 975-8887. Kumar, V.V., J.M. Thomas and M.S. Naidu, 1. Influence of switching conditions on the VFTO magnitudes in a GIS. IEEE T. Power Deliver., 16: 53944. Liu, Q. and Z. Yufeng, 8. Influence of switching conditions on very fast transient over-voltage in5kv gas insulated substation. Proceeding of the ICEMS International Conference on Electrical Machines and Systems, pp: 4451454.

Res. J. ppl. Sci. Eng. Technol., 7(9): 179733, 14 Tavakoli,.,. Gholami,. Parizad, H.M. Soheilipour and H. Nouri, 9. Effective factors on the very fast transient currents and voltage in the GIS. Proceeding of the sia and Pacific Transmission and Distribution Conference and Exposition, pp: 1-6. Thompson, M.T., 1999. Inductance calculation teqnique-approximations and handbook methods. Power Control Intell. Motion, 5: 45. 1733