ACIS ( , ) total e e e e-11 1.

Similar documents
Investigating diffuse radio emission with LOFAR: The complex merging galaxy cluster Abell 2069

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Preparing to Run ChaRT

Wide-field, wide-band and multi-scale imaging - II

Introduction to Radio Astronomy

Introduction to Radio Astronomy!

Wide Bandwidth Imaging

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375

How Does One Obtain Spectral/Imaging Information! "

Commissioning Report for the ATCA L/S Receiver Upgrade Project

Beamforming for IPS and Pulsar Observations

Create A True Color Image

Radio Interferometers Around the World. Amy J. Mioduszewski (NRAO)

Recent imaging results with wide-band EVLA data, and lessons learnt so far

Presented by Jerry Hubbell Lake of the Woods Observatory (MPC I24) President, Rappahannock Astronomy Club

JCMT HETERODYNE DR FROM DATA TO SCIENCE

Radio Data Archives. how to find, retrieve, and image radio data: a lay-person s primer. Michael P Rupen (NRAO)

WIDE SPECTRAL RANGE IMAGING INTERFEROMETER

Guide to observation planning with GREAT

6. Very low level processing (radiometric calibration)

CHAPTER 6 Exposure Time Calculations

Photometry using CCDs

X-ray Imaging Polarimetry

The radio source population at high frequency: follow-up of the 15-GHz 9C survey

Allen Telescope Array & Radio Frequency Interference. Geoffrey C. Bower UC Berkeley

Spectral Line Imaging

Using a PSF Image as the Convolution Kernel

Basic Mapping Simon Garrington JBO/Manchester

First Summary of Neptune Beam Measurements

Phase-2 Preparation Tool

Spectral Line II: Calibration and Analysis. Spectral Bandpass: Bandpass Calibration (cont d) Bandpass Calibration. Bandpass Calibration

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters

Dust Measurements With The DIII-D Thomson system

NGC user report. Gert Finger

This release contains deep Y-band images of the UDS field and the extracted source catalogue.

Discovery of Two Simultaneous Kilohertz QPOs in the Persistent Flux of GX 349+2

Comparing MMA and VLA Capabilities in the GHz Band. Socorro, NM Abstract

WISE Photometry (WPHOT)

Astronomical Detectors. Lecture 3 Astronomy & Astrophysics Fall 2011

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

Hewett 1 Imaged by Amateur

Part I: Bruker Esprit Mapping Options

Towards SKA Multi-beam concepts and technology

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

Why? When? How What to do What to worry about

The Cosmic Microwave Background Radiation B. Winstein, U of Chicago

Photon counting astronomy with TES

Extra slides. 10/05/2011 SAC meeting IRAM Grenoble 1

Backgrounds in DMTPC. Thomas Caldwell. Massachusetts Institute of Technology DMTPC Collaboration

NIRSPEC Data Reduction Pipeline Data Products Specification

Submillimeter (continued)

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

The DSI for Autostar Suite

Image Processing for feature extraction

Observational Astronomy

Obtain and Fit a Radial Profile

EVLA System Commissioning Results

Mini Workshop Interferometry. ESO Vitacura, 28 January Presentation by Sébastien Morel (MIDI Instrument Scientist, Paranal Observatory)

Processing of MA(or µ)-xrf Data with the M6 software

Wide-field Infrared Survey Explorer (WISE)

When, why and how to self-cal Nathan Brunetti, Crystal Brogan, Amanda Kepley

Very Long Baseline Interferometry

X-Ray Spectroscopy with a CCD Detector. Application Note

Detectors. RIT Course Number Lecture Noise

a simple optical imager

CHARGE-COUPLED DEVICE (CCD)

UV/Optical/IR Astronomy Part 2: Spectroscopy

Detectors that cover a dynamic range of more than 1 million in several dimensions

Camera Selection Criteria. Richard Crisp May 25, 2011

SMA Technical Memo #165? (draft)

Light gathering Power: Magnification with eyepiece:

Radio Frequency Monitoring for Radio Astronomy

Advanced Camera for Surveys Exposure Time Calculator: II. Baseline Tests for the Ramp Filter Modes.

Properties of a Detector

Multi-frequency AGN Survey with KVN Finding more high-frequency sources & Maximizing the KVN uniqueness

Spectral and Radiometric characteristics of MTG-IRS. Dorothee Coppens, Bertrand Theodore

Sensors and Sensing Cameras and Camera Calibration

Introduction to Radioastronomy: Interferometers and Aperture Synthesis

A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP

Direct Dark Matter Search with XMASS --- modulation analysis ---

To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel.

Temporal and spatial variability of the MOS RMF

CMOS sensor for TAOS 2

Future X-ray and GW Measurements of NS M and R. Cole Miller University of Maryland and Joint Space-Science Institute

XMM OM Serendipitous Source Survey Catalogue (XMM-SUSS2.1)

Reprojecting Images: Making an Exposure corrected Mosaic

Master sky images for the WFC3 G102 and G141 grisms

Spectral Line Observing

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

3D light microscopy techniques

LSST All-Sky IR Camera Cloud Monitoring Test Results

Tunable Multi Notch Digital Filters A MATLAB demonstration using real data

3D light microscopy techniques

To: Deuterium Array Group From: Alan E.E. Rogers, K.A. Dudevoir and B.J. Fanous Subject: Low Cost Array for the 327 MHz Deuterium Line

Deconvolution , , Computational Photography Fall 2018, Lecture 12

THEORY OF MEASUREMENTS

Chasing Faint Objects

GBT Spectral Baseline Investigation Rick Fisher, Roger Norrod, Dana Balser (G. Watts, M. Stennes)

Transcription:

1 SUMMARY 1 SNR 0509-68.7 1 Summary Common Name: N 103B Distance: 50 kpc (distance to LMC, Westerlund(1990) ) Center of X-ray emission (J2000): ( 05 08 59.7, -68 43 35.5 ) X-ray size: 32 x 30 Description:?? 1.1 Summary of Chandra Observations Sequence Obs ID Instrument Exposure uf Exposure f Date Observed Aimpoint (J2000) (ks) (ks) (α, δ) 500012 125 ACIS-23678 40.3 32.4 1999-12-04 ( 05 08 59.0, -68 43 30.0 ) Exposure uf Exposure f Exposure time of un-filtered event file Exposure time of filtered event file The whole remnant is covered by chip ACIS-S3(CCD ID=7) 1.2 Chandra Counts and Fluxes Region Energy Range Signal Rate F abs X F X L X (kev) (counts 1 s ) (ergs 2 1 cm s ) (ergs 2 1 cm s ) (ergs s 1 ) total 0.3-10.0 2.261e+05 6.982e+00 2.19e-11 5.94e-11 1.77e+37 ( 125 ) 0.3-2.1 2.168e+05 6.694e+00 1.88e-11 5.61e-11 1.67e+37 2.1-10. 9.437e+03 2.914e-01 3.16e-12 3.37e-12 1.00e+36 2 ) N H = 0.31 (10 22 cm Assumed distance: 50 kpc (distance to LMC, Westerlund(1990) ) nh was derived with two thermal plasma model

1 SUMMARY 2 1.3 Nearby Sources Obs ID Position (J2000) Size Net Count Count rate Note 125 ( 05 07 36.3, -68 47 52.7 ) 14.1 322.0 7.99e-03 ( 05 08 03.1, -68 40 16.5 ) 7.2 67.9 1.69e-03 ( 05 08 08.4, -68 40 46.4 ) 6.1 135.0 3.35e-03 ( 05 08 12.9, -68 44 35.6 ) 5.9 61.3 1.52e-03 ( 05 08 32.7, -68 54 29.1 ) 17.6 881.0 2.19e-02 ( 05 08 48.0, -68 45 53.7 ) 2.5 5.0 1.24e-04 ( 05 09 06.8, -68 39 37.2 ) 3.6 49.2 1.22e-03 ( 05 09 17.1, -68 40 52.9 ) 1.8 34.7 8.61e-04 ( 05 09 39.8, -68 53 25.4 ) 15.5 51.2 1.27e-03 ( 05 09 48.2, -68 39 57.5 ) 3.1 19.7 4.89e-04 ( 05 10 09.3, -68 52 52.0 ) 16.2 117.0 2.90e-03 ( 05 10 22.7, -68 39 12.8 ) 8.8 53.4 1.33e-03 ( 05 10 22.8, -68 50 57.9 ) 16.3 51.9 1.29e-03 ( 05 10 26.1, -68 52 31.7 ) 19.2 51.2 1.27e-03 ( 05 10 36.4, -68 40 29.7 ) 10.3 50.9 1.26e-03 ( 05 10 45.9, -68 56 28.8 ) 33.6 675.0 1.68e-02 ( 05 10 48.3, -68 45 25.7 ) 12.3 1080.0 2.68e-02 (note) 1. This nearby source list is incomplete. All the above sources are originally from the "src2.fits" file which is distributed with standard chandra processing. Only sources with significant count rate and which are clear to visual inspection are included. 2. The size given above is the size of the region used in detecting that source. 3. For each source, background was subtracted from annular region around the source. 1.4 References Dickel and Milne, 1995 AJ, 109, 200 : ATCA Westerlund, 1990 A&ARv, 2, 29 : Distance to LMC

2 FIT DETAIL 3 2 Fit Detail See spectrum page for used regions. Two componet were assumed. 2.1 Component 1: represented by region far east source=(xswabs * xsvapec) reduced χ 2 = 1.3488 nh = 0.2826 10ˆ22/cmˆ2 2.2 Component 2: represented by region small clump around center source=(xswabs * (xsapec + xsapec)) reduced χ 2 = 1.89472 nh = 0.3378 10ˆ22/cmˆ2 2.3 Total: Above two component were added together. fit was done with all the parameter(except nh and normarlization factor) fixed at values from above fit. source=(xswabs * ((xsapec + xsapec) + xsvapec)) reduced χ 2 = 20.8426 nh = 0.3071 10ˆ22/cmˆ2

3 CHANDRA IMAGES : BAND IMAGES 4 3 Chandra Images : Band Images Left : raw image, binned by 1x1 pixel Right : gaussian smoothed version of above ( σ = 2 pixel) 3.1 Wide Band Images Total : 300-10000 ev acis_e300 10000_FLUXED.fits_0 acis_e300 10000_FLUXED_G2.fits_0 0 5e 06 1e 05 1.5e 05 0 2e 06 4e 06 6e 06 8e 06 1e 05 Soft Band : 300-2100 ev acis_e300 2100_FLUXED.fits_0 acis_e300 2100_FLUXED_G2.fits_0 0 5e 06 1e 05 1.5e 05 0 2e 06 4e 06 6e 06 8e 06 1e 05

3 CHANDRA IMAGES : BAND IMAGES 5 Hard Band : 2100-10000 ev acis_e2100 10000_FLUXED.fits_0 acis_e2100 10000_FLUXED_G2.fits_0 0 5e 07 1e 06 1.5e 06 2e 06 0 2e 07 4e 07 6e 07 8e 07 1e 06 3.2 Band images used in true color image. Red : 300-600 ev acis_e300 600_FLUXED.fits_0 acis_e300 600_FLUXED_G2.fits_0 0 1e 06 2e 06 3e 06 0 5e 07 1e 06 1.5e 06

3 CHANDRA IMAGES : BAND IMAGES 6 Green : 600-900 ev acis_e600 900_FLUXED.fits_0 acis_e600 900_FLUXED_G2.fits_0 0 2e 06 4e 06 6e 06 0 1e 06 2e 06 3e 06 4e 06 5e 06 Blue : 900-10000 ev acis_e900 10000_FLUXED.fits_0 acis_e900 10000_FLUXED_G2.fits_0 0 2e 06 4e 06 6e 06 8e 06 1e 05 0 2e 06 4e 06 6e 06

3 CHANDRA IMAGES : BAND IMAGES 7 3.3 Misc. : 1650-2150 ev acis_e1650 2150_FLUXED.fits_0 acis_e1650 2150_FLUXED_G2.fits_0 0 5e 07 1e 06 0 2e 07 4e 07 6e 07 8e 07 : 4200-10000 ev acis_e4200 10000_FLUXED.fits_0 acis_e4200 10000_FLUXED_G2.fits_0 0 2e 07 4e 07 6e 07 8e 07 0 5e 08 1e 07 1.5e 07 2e 07

4 CHANDRA IMAGES : TRUE COLOR 8 4 Chandra Images : True Color Individual images are adaptively smoothed. Warning : the adaptive smoothing process sometimes produces artifacts. convolution method : fft kernel type : gauss significance ( min, max ) : ( 3, 5 ) RED : GREEN : BLUE : 300-600 ev 600-900 ev 900-10000 ev acis_e300 600_S_FLUXED.fits_0 acis_e600 900_S_FLUXED.fits_0 acis_e900 10000_S_FLUXED.fits_0 5e 07 1e 06 2e 06 4e 06 2e 06 4e 06 6e 06 8e 06

5 CHANDRA IMAGES : EQUIVALENT WIDTH MAP 9 5 Chandra Images : Equivalent Width Map 5.1 Equivalent Width Images individual images(line and two continuum) are binned by given pixel size and then adaptively smoothed. same scale map ( from the least count images) was used for all three images. continuum at given line position was estimated by linear interpolation of two continuum image in pixel-by-pixel base. continuum : line : continuum : 300-500 ev 500-700 ev 700-1100 ev continuum : line : continuum : 1430-1670 ev 1670-2080 ev 2080-2330 ev

6 CHANDRA SPECTRUM 10 6 Chandra Spectrum Images show Regions used to extract spectra Regions with red strikes are excluded 6.1 ObsID 125 total Background was subtracted from the region around the SNR.

6 CHANDRA SPECTRUM 11 far east

6 CHANDRA SPECTRUM 12

6 CHANDRA SPECTRUM 13 small clump around center

6 CHANDRA SPECTRUM 14

7 RADIO IMAGE 15 7 Radio Image 3.5-cm left : radio image right : chandra x-ray image with radio contour lines -. 3.5-cm flux density: 015 Jy -. Image from Dickel and Milne(1995) DEC 0509 687_3cm_hgeom.fits_0 acis_e300 10000_FLUXED_G2.fits_0 RA 0 0.0005 0.001 0.0015 0.002 (mjy/beam) 0 2e 06 4e 06 6e 06 8e 06 1e 05 Summary of Observation Telescope..... Australia Telescope Compact Array Date......... 1992 Jun 27, 1993 Feb 21, Mar 15, Mar20 Frequency.... 8.640 Beam size.... 1.75 1 sigma noise.. 0.09 mjy / beam 6-cm -. 6-cm flux density: 0.26 Jy -. Image from Dickel and Milne(1995)

7 RADIO IMAGE 16 DEC 0509 687_6cm_hgeom.fits_0 acis_e300 10000_FLUXED_G2.fits_0 RA 0 0.002 0.004 0.006 0.008 0.01 (mjy/beam) 0 2e 06 4e 06 6e 06 8e 06 1e 05 Summary of Observation Telescope..... Australia Telescope Compact Array Date......... 1992 Jun 27, 1993 Feb 21, Mar 15, Mar20 Frequency.... 4.790 Beam size.... 3.0 1 sigma noise.. 0.10 mjy / beam

8 IMAGES FROM SURVEY MISSIONS 17 8 Images from Survey Missions Left : Chandra Image (0.3-10. kev) Center : Images from SkyView with the same scale right : Images from SkyView with a reduced scale ROSAT PSPC (1.0 deg): X-ray (0.1-2.4 kev) IRAS 12 micron: Infrared (12 micron) IRAS 25 micron: Infrared (25 micron)

8 IMAGES FROM SURVEY MISSIONS 18 IRAS 60 micron: Infrared (60 micron) IRAS 100 micron: Infrared (100 micron) 4850 MHz: Radio (4850 MHz continuum) Digitized Sky Survey: Optical (J or E band images with a few exceptions)

8 IMAGES FROM SURVEY MISSIONS 19 The Two Micron All Sky Survey (J-band): IR (1.25 microns) The Two Micron All Sky Survey (H-band): IR (1.65 microns) The Two Micron All Sky Survey (K-band): IR (2.17 microns)