Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Similar documents
Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission

Wireless Transmission:

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Structure of the Lecture

Mobile Communications

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

Structure of the Lecture. Radio Waves. Frequencies for Mobile Communication. Frequencies (MHz) and Regulations

Wireless Transmission & Media Access

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

Chapter 2 PHYSICAL AND LINK LAYER

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 -

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

WIRELESS TRANSMISSION

Wireless Transmission in Cellular Networks

Wireless PHY: Modulation and Demodulation

Mobile Computing and the IoT Wireless and Mobile Computing. Wireless Signals. George Roussos.

Wireless Networks. Why Wireless Networks? Wireless Local Area Network. Wireless Personal Area Network (WPAN)

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Multiple Access Schemes

UNIT I WIRELESS TRANSMISSION FUNDAMENTALS

Physical Layer Issues

Basics of Wireless and Mobile Communications

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks

CS441 Mobile & Wireless Computing Communication Basics

Wireless Communication Fundamentals Feb. 8, 2005

Chapter 7 Multiple Division Techniques for Traffic Channels

Structure of the Lecture

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication-Systems II: From Cellular to Mobile Services. Prof. Dr.-Ing. Rolf Kraemer Lehrstuhl für Systeme

Mobile Ad Hoc Networks

Outline / Wireless Networks and Applications Lecture 5: Physical Layer Signal Propagation and Modulation

Wireless Transmission Rab Nawaz Jadoon

CIS 632 / EEC 687 Mobile Computing. Mobile Communications (for Dummies) Chansu Yu. Contents. Modulation Propagation Spread spectrum

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

CS26007:Introduction to Wireless Networking

Chapter 3 : Media Access. Mobile Communications. Collision avoidance, MACA

Section 1 Wireless Transmission

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl

Wireless Networked Systems. Lec #1b: PHY Basics

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

Multiplexing Module W.tra.2

Antennas and Propagation

Wireless Sensor Networks 4th Lecture

Wireless Networks (PHY): Design for Diversity

Objectives. Presentation Outline. Digital Modulation Lecture 01

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Point-to-Point Communications

Access Methods and Spectral Efficiency

Mobile Computing. Chapter 3: Medium Access Control

Mobile and Ubiquitous Compu3ng. Wireless Signals. George Roussos.

Antenna & Propagation. Basic Radio Wave Propagation

Spread Spectrum: Definition

Antennas and Propagation

Multiple Access Techniques

Chapter 7. Multiple Division Techniques

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Outline / Wireless Networks and Applications Lecture 3: Physical Layer Signals, Modulation, Multiplexing. Cartoon View 1 A Wave of Energy

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Multiple Access Techniques for Wireless Communications

CS434/534: Topics in Networked (Networking) Systems

Wireless Communications

Medium Access Schemes

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Mobile Communications I Chapter 1: Introduction and History

Week 2. Topics in Wireless Systems EE584-F 03 9/9/2003. Copyright 2003 Stevens Institute of Technology - All rights reserved

OFDMA and MIMO Notes

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Difference Between. 1. Old connection is broken before a new connection is activated.

An Introduction to Wireless Technologies Part 1. F. Ricci

Announcements : Wireless Networks Lecture 3: Physical Layer. Bird s Eye View. Outline. Page 1

Antennas and Propagation. Chapter 5

Multi-carrier Modulation and OFDM

1. Introduction 1.2 Medium Access Control. Prof. JP Hubaux

Announcement : Wireless Networks Lecture 3: Physical Layer. A Reminder about Prerequisites. Outline. Page 1

Chapter 1 Acknowledgment:

Data and Computer Communications Chapter 4 Transmission Media

Simplified Reference Model

Wireless Communication Fading Modulation

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Msc Engineering Physics (6th academic year) Royal Institute of Technology, Stockholm August December 2003

ECS455: Chapter 4 Multiple Access

SC - Single carrier systems One carrier carries data stream

New Standards for Wireless LANs

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

ICT 5305 Mobile Communications. Lecture - 4 April Dr. Hossen Asiful Mustafa

Chapter 3. Mobile Radio Propagation

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

Advanced Digital Communication


Antennas and Propagation. Chapter 5

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

UNIK4230: Mobile Communications. Abul Kaosher

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

Transcription:

Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.1

Frequencies for communication twisted pair coax cable optical transmission 1 Mm 300 Hz 10 km 30 khz 100 m 3 MHz 1 m 300 MHz 10 mm 30 GHz 100 µm 3 THz 1 µm 300 THz VLF LF MF HF VHF UHF SHF EHF infrared visible light UV VLF = Very Low Frequency UHF = Ultra High Frequency LF = Low Frequency SHF = Super High Frequency MF = Medium Frequency EHF = Extra High Frequency HF = High Frequency UV = Ultraviolet Light VHF = Very High Frequency Frequency and wave length: λ = c/f wave length λ, speed of light c 3x10 8 m/s, frequency f Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.2

Frequencies for mobile communication VHF-/UHF-ranges for mobile radio simple, small antenna for cars deterministic propagation characteristics, reliable connections SHF and higher for directed radio links, satellite communication small antenna, focusing large bandwidth available Wireless LANs use frequencies in UHF to SHF spectrum some systems planned up to EHF limitations due to absorption by water and oxygen molecules (resonance frequencies) weather dependent fading, signal loss caused by heavy rainfall etc. Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.3

Frequencies and regulations ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences) Europe USA Japan Cellular Phones GSM 450-457, 479-486/460-467,489-496, 890-915/935-960, 1710-1785/1805-1880 UMTS (FDD) 1920-1980, 2110-2190 UMTS (TDD) 1900-1920, 2020-2025 Cordless CT1+ 885-887, 930- Phones 932 CT2 864-868 DECT 1880-1900 Wireless IEEE 802.11 LANs 2400-2483 HIPERLAN 2 5150-5350, 5470-5725 Others RF-Control 27, 128, 418, 433, 868 AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990 PACS 1850-1910, 1930-1990 PACS-UB 1910-1930 902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825 RF-Control 315, 915 PDC 810-826, 940-956, 1429-1465, 1477-1513 PHS 1895-1918 JCT 254-380 IEEE 802.11 2471-2497 5150-5250 RF-Control 426, 868 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.4

Signals I physical representation of data function of time and location signal parameters: parameters representing the value of data classification continuous time/discrete time continuous values/discrete values analog signal = continuous time and continuous values digital signal = discrete time and discrete values signal parameters of periodic signals: period T, frequency f=1/t, amplitude A, phase shift ϕ sine wave as special periodic signal for a carrier: s(t) = A t sin(2 π f t t + ϕ t ) Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.5

Fourier representation of periodic signals g ( t ) = 1 2 c + n = 1 a n sin(2 π nft ) + b n cos(2 π nft n = 1 ) 1 1 0 t t ideal periodic signal real composition (based on harmonics) 0 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.6

Signals II Different representations of signals amplitude (amplitude domain) frequency spectrum (frequency domain) phase state diagram (amplitude M and phase ϕ in polar coordinates) A [V] A [V] Q = M sin ϕ t[s] ϕ I= M cos ϕ ϕ f [Hz] Composed signals transferred into frequency domain using Fourier transformation Digital signals need infinite frequencies for perfect transmission modulation with a carrier frequency for transmission (analog signal!) Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.7

Antennas: isotropic radiator Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna Real antennas always have directive effects (vertically and/or horizontally) Radiation pattern: measurement of radiation around an antenna y z z x y x ideal isotropic radiator Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.8

Antennas: simple dipoles Real antennas are not isotropic radiators but, e.g., dipoles with lengths λ/4 on car roofs or λ/2 as Hertzian dipole shape of antenna proportional to wavelength λ/4 λ/2 Example: Radiation pattern of a simple Hertzian dipole y y z x z x simple dipole side view (xy-plane) side view (yz-plane) top view (xz-plane) Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power) Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.9

Antennas: directed and sectorized Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley) y x y z z x directed antenna side view (xy-plane) side view (yz-plane) top view (xz-plane) z z x x sectorized antenna top view, 3 sector top view, 6 sector Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.10

Antennas: diversity Grouping of 2 or more antennas multi-element antenna arrays Antenna diversity switched diversity, selection diversity receiver chooses antenna with largest output diversity combining combine output power to produce gain cophasing needed to avoid cancellation λ/2 λ/2 λ/4 λ/2 λ/4 λ/2 + + ground plane Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.11

Signal propagation ranges Transmission range communication possible low error rate Detection range detection of the signal possible no communication possible Interference range signal may not be detected signal adds to the background noise sender transmission detection interference Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.12 distance

Signal propagation Propagation in free space always like light (straight line) Receiving power proportional to 1/d² (d = distance between sender and receiver) Receiving power additionally influenced by fading (frequency dependent) shadowing reflection at large obstacles refraction depending on the density of a medium scattering at small obstacles diffraction at edges reflection scattering diffraction shadowing refraction Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.13

Real world example Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.14

Multipath propagation Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction LOS pulses multipath pulses signal at sender Time dispersion: signal is dispersed over time signal at receiver interference with neighbor symbols, Inter Symbol Interference (ISI) The signal reaches a receiver directly and phase shifted distorted signal depending on the phases of the different parts Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.15

Effects of mobility Channel characteristics change over time and location signal paths change different delay variations of different signal parts different phases of signal parts quick changes in the power received (short term fading) Additional changes in distance to sender obstacles further away slow changes in the average power received (long term fading) power short term fading Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.16 long term fading t

Multiplexing Multiplexing in 4 dimensions space (s i ) time (t) frequency (f) code (c) channels k i k 1 k 2 k 3 k 4 k 5 k 6 c t c Goal: multiple use of a shared medium s 1 f s 2 t Important: guard spaces needed! c t s 3 f Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.17 f

Frequency multiplex Separation of the whole spectrum into smaller frequency bands A channel gets a certain band of the spectrum for the whole time Advantages: no dynamic coordination necessary k 1 works also for analog signals c k 2 k 3 k 4 k 5 k 6 Disadvantages: waste of bandwidth if the traffic is distributed unevenly inflexible guard spaces t Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.18 f

Time multiplex A channel gets the whole spectrum for a certain amount of time Advantages: only one carrier in the medium at any time throughput high even for many users k 1 k 2 k 3 k 4 k 5 k 6 Disadvantages: precise synchronization necessary c t Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.19 f

Time and frequency multiplex Combination of both methods A channel gets a certain frequency band for a certain amount of time Example: GSM Advantages: better protection against tapping protection against frequency selective interference higher data rates compared to code multiplex f but: precise coordination required c k 1 k 2 k 3 k 4 k 5 k 6 t Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.20

Code multiplex Each channel has a unique code All channels use the same spectrum at the same time Advantages: bandwidth efficient no coordination and synchronization necessary good protection against interference and tapping Disadvantages: lower user data rates more complex signal regeneration Implemented using spread spectrum technology k 1 k 2 k 3 k 4 k 5 k 6 t c Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.21 f

Modulation Digital modulation digital data is translated into an analog signal (baseband) ASK, FSK, PSK - main focus in this chapter differences in spectral efficiency, power efficiency, robustness Analog modulation shifts center frequency of baseband signal up to the radio carrier Motivation smaller antennas (e.g., λ/4) Frequency Division Multiplexing medium characteristics Basic schemes Amplitude Modulation (AM) Frequency Modulation (FM) Phase Modulation (PM) Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.22

Modulation and demodulation analog baseband digital data signal digital analog 101101001 modulation modulation radio transmitter radio carrier analog demodulation analog baseband signal synchronization decision digital data 101101001 radio receiver radio carrier Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.23

Digital modulation Modulation of digital signals known as Shift Keying Amplitude Shift Keying (ASK): very simple low bandwidth requirements very susceptible to interference 1 0 1 Frequency Shift Keying (FSK): needs larger bandwidth 1 0 1 Phase Shift Keying (PSK): more complex robust against interference 1 0 1 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.24 t t t

Advanced Frequency Shift Keying bandwidth needed for FSK depends on the distance between the carrier frequencies special pre-computation avoids sudden phase shifts MSK (Minimum Shift Keying) bit separated into even and odd bits, the duration of each bit is doubled depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen the frequency of one carrier is twice the frequency of the other Equivalent to offset QPSK even higher bandwidth efficiency using a Gaussian low-pass filter GMSK (Gaussian MSK), used in GSM Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.25

Example of MSK data even bits 1 0 1 1 0 1 0 bit even 0 1 0 1 odd 0 0 1 1 odd bits signal h n n h value - - + + low frequency high frequency h: high frequency n: low frequency +: original signal -: inverted signal MSK signal t No phase shifts! Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.26

Advanced Phase Shift Keying BPSK (Binary Phase Shift Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple PSK low spectral efficiency robust, used e.g. in satellite systems QPSK (Quadrature Phase Shift Keying): 2 bits coded as one symbol symbol determines shift of sine wave needs less bandwidth compared to BPSK more complex Often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK (IS-136, PHS) A 10 00 Q 11 10 00 01 1 Q 0 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.27 I 11 I 01 t

Quadrature Amplitude Modulation Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation it is possible to code n bits using one symbol 2 n discrete levels, n=2 identical to QPSK bit error rate increases with n, but less errors compared to comparable PSK schemes Q 0010 0011 0001 0000 I 1000 Example: 16-QAM (4 bits = 1 symbol) Symbols 0011 and 0001 have the same phase, but different amplitude. 0000 and 1000 have different phase, but same amplitude. used in standard 9600 bit/s modems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.28

Hierarchical Modulation DVB-T modulates two separate data streams onto a single DVB-T stream High Priority (HP) embedded within a Low Priority (LP) stream Multi carrier system, about 2000 or 8000 carriers QPSK, 16 QAM, 64QAM Example: 64QAM good reception: resolve the entire 64QAM constellation poor reception, mobile reception: resolve only QPSK portion 6 bit per QAM symbol, 2 most significant determine QPSK HP service coded in QPSK (2 bit), LP uses remaining 4 bit 10 00 Q I 000010 010101 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.29

Spread spectrum technology Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference Solution: spread the narrow band signal into a broad band signal using a special code protection against narrow band interference power interference spread power signal detection at receiver signal spread interference Side effects: protection against f narrowband interference f coexistence of several signals without dynamic coordination tap-proof Alternatives: Direct Sequence, Frequency Hopping Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.30

Effects of spreading and interference dp/df dp/df i) dp/df f ii) sender dp/df f user signal broadband interference narrowband interference dp/df iii) f iv) v) f f receiver Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.31

Spreading and frequency selective fading channel quality 1 narrow band signal 2 3 4 guard space 5 6 frequency narrowband channels channel quality 1 2 2 2 2 2 spread spectrum channels spread spectrum frequency Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.32

DSSS (Direct Sequence Spread Spectrum) I XOR of the signal with pseudo-random number (chipping sequence) many chips per bit (e.g., 128) result in higher bandwidth of the signal Advantages reduces frequency selective fading in cellular networks Disadvantages base stations can use the same frequency range several base stations can detect and recover the signal soft handover precise power control necessary t b 0 1 t c 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 user data XOR chipping sequence = resulting signal t b : bit period t c : chip period Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.33

DSSS (Direct Sequence Spread Spectrum) II user data X spread spectrum signal modulator transmit signal chipping sequence radio carrier transmitter received signal demodulator lowpass filtered signal X correlator products integrator sampled sums decision radio carrier chipping sequence receiver Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.34 data

FHSS (Frequency Hopping Spread Spectrum) I Discrete changes of carrier frequency sequence of frequency changes determined via pseudo random number sequence Two versions Fast Hopping: several frequencies per user bit Slow Hopping: several user bits per frequency Advantages frequency selective fading and interference limited to short period simple implementation uses only small portion of spectrum at any time Disadvantages not as robust as DSSS simpler to detect Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.35

FHSS (Frequency Hopping Spread Spectrum) II t b user data f f 3 f 2 f 1 0 1 t d 0 1 1 t slow hopping (3 bits/hop) f t d t f 3 f 2 f 1 fast hopping (3 hops/bit) t t b : bit period t d : dwell time Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.36

FHSS (Frequency Hopping Spread Spectrum) III user data modulator narrowband signal modulator spread transmit signal transmitter frequency synthesizer hopping sequence received signal demodulator narrowband signal demodulator data hopping sequence frequency synthesizer receiver Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.37

Cell structure Implements space division multiplex: base station covers a certain transmission area (cell) Mobile stations communicate only via the base station Advantages of cell structures: higher capacity, higher number of users less transmission power needed more robust, decentralized base station deals with interference, transmission area etc. locally Problems: fixed network needed for the base stations handover (changing from one cell to another) necessary interference with other cells Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.38

Frequency planning I Frequency reuse only with a certain distance between the base stations Standard model using 7 frequencies: Fixed frequency assignment: f 4 f 5 certain frequencies are assigned to a certain cell problem: different traffic load in different cells Dynamic frequency assignment: base station chooses frequencies depending on the frequencies already used in neighbor cells more capacity in cells with more traffic assignment can also be based on interference measurements f 1 f 3 f 2 f 3 f 2 f 6 f 7 f 4 f 5 f 1 Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.39

Frequency planning II f 3 f 1 f 2 f 2 f 1 f 1 f 3 f 2 f 3 f 3 f 3 f 2 f 3 f 1 f 1 f 3 f 2 3 cell cluster f 3 f 4 f 2 f 3 f 2 f 5 f 6 f 1 f 7 f 6 f 5 f 3 f 2 f 4 f 5 f 3 f 7 f 1 f 2 7 cell cluster f 2 f 2 f 2 f 3 f 3 f 1 f 1 f 1 g 1 g 2 h h 2 1 h 3 h h 2 1 h 3 f 3 g 2 g g 2 g 1 3 g g 1 3 g 3 3 cell cluster with 3 sector antennas Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.40

Cell breathing CDM systems: cell size depends on current load Additional traffic appears as noise to other users If the noise level is too high users drop out of cells Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 2.41