A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

Similar documents
A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

A 6-bit Subranging ADC using Single CDAC Interpolation

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

Integrated Microsystems Laboratory. Franco Maloberti

Proposing. An Interpolated Pipeline ADC

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion

Scalable and Synthesizable. Analog IPs

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

A 1.2V 8 BIT SAR ANALOG TO DIGITAL CONVERTER IN 90NM CMOS

A 2.5 V 109 db DR ADC for Audio Application

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

Implementation of a 200 MSps 12-bit SAR ADC

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Analog to Digital Conversion

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

Design of Analog Integrated Systems (ECE 615) Outline

A Low Power Analog Front End Capable of Monitoring Knee Movements to Detect Injury

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications

A Low Power Small Area Multi-bit Quantizer with A Capacitor String in Sigma-Delta Modulator

IP Specification. 12-Bit 125 MSPS Duel ADC in SMIC40L IPS_S40L_ADC12X2_125M FEATURES APPLICATIONS GENERAL DESCRIPTION. Single Supply 1.

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A Continuous-time Sigma-delta Modulator with Clock Jitter Tolerant Self-resetting Return-to-zero Feedback DAC

LOW-POWER CHARGE-PUMP BASED SWITCHED-CAPACITOR CIRCUITS. Alireza Nilchi

Appendix A Comparison of ADC Architectures

Low-Power Pipelined ADC Design for Wireless LANs

Lecture 10, ANIK. Data converters 2

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

A 19-bit column-parallel folding-integration/cyclic cascaded ADC with a pre-charging technique for CMOS image sensors

A 2-bit/step SAR ADC structure with one radix-4 DAC

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009

SUCCESSIVE approximation register (SAR) analog-todigital

A 12-bit 100kS/s SAR ADC for Biomedical Applications. Sung-Chan Rho 1 and Shin-Il Lim 2. Seoul, Korea. Abstract

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

ECEN 610 Mixed-Signal Interfaces

SpringerBriefs in Electrical and Computer Engineering

NOISE IN SC CIRCUITS

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

Summary Last Lecture

Acronyms. ADC analog-to-digital converter. BEOL back-end-of-line

Design of Pipeline Analog to Digital Converter

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration

2. ADC Architectures and CMOS Circuits

A Mostly Digital Variable-Rate Continuous- Time ADC Modulator

A VCO-Based ADC Employing a Multi- Phase Noise-Shaping Beat Frequency Quantizer for Direct Sampling of Sub-1mV Input Signals

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

Design Challenges of Analog-to-Digital Converters in Nanoscale CMOS

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

Oversampling Converters

Architecture for Electrochemical Sensors

EE247 Lecture 24. EE247 Lecture 24

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC.

10GBASE-T Transmitter SNDR Definition (System ID Approach) IEEE P802.3an Task Force Santa Clara, Feb 2005 Albert Vareljian, Hiroshi Takatori KeyEye

Low- Power Third- Order ΣΔ Modulator with Cross Couple Paths for WCDMA Applications

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

ADVANCES in VLSI technology result in manufacturing

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

High-Speed High-Resolution ADC with BISC

EE247 Lecture 26. EE247 Lecture 26

An Optimized DAC Timing Strategy in SAR ADC with Considering the Overshoot Effect

A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Highly Linear Noise-Shaped Pipelined ADC Utilizing a Relaxed Accuracy Front-End

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

2011/12 Cellular IC design RF, Analog, Mixed-Mode

A Digitally Enhanced 1.8-V 15-b 40- Msample/s CMOS Pipelined ADC

Data Conversion Techniques (DAT115)

EE247 Lecture 16. EECS 247 Lecture 16: Data Converters- DAC Design & Intro. to ADCs 2009 Page 1

A Dual-Step-Mixing ILFD using a Direct Injection Technique for High- Order Division Ratios in 60GHz Applications

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Wideband Sampling by Decimation in Frequency

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

Summary Last Lecture

SAR ADCs have enjoyed increasing prominence due to

Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion

Lei Sun 1, Chi Tung Ko 1, Marco Ho 1, Wai Tung Ng 2, Ka Nang Leung 1, Chiu Sing Choy 1, Kong Pang Pun 1. M5S 3G4

Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

A SAR-Assisted Two-Stage Pipeline ADC Chun C. Lee, Member, IEEE, and Michael P. Flynn, Senior Member, IEEE

A Successive Approximation ADC based on a new Segmented DAC

High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems. Ali Nazari

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

Modelling and Simulation of a SAR ADC with Internally Generated Conversion Signal

A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton

Transcription:

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC Zhijie Chen, Masaya Miyahara, Akira Matsuzawa Tokyo Institute of Technology Symposia on VLSI Technology and Circuits

Outline Background and motivation Conventional Noise shaping technique Proposed fully passive noise shaping SAR ADC Experimental results Conclusion Slide 1

Background and Motivation SAR ADC architecture: VREFP VCM VREFN Switch and Capacitor Comparator Digital V in 4C 2C CLK C C D Q Clk Q Sample Conversion SAR logic SAR ADC mainly consists of digital circuits It can benefit from the technology scaling (like speed) Analog components affect the performance Slide 2

Switch and Capacitor in SAR ADC Capacitor array affects SAR ADC performance VREFP VCM VREFN Switch and Capacitor V in 4C 2C CLK C C D Q Clk Q Sample Conversion SAR logic Higher resolution Larger cap Larger settling time Larger cap Larger chip size Slower speed Slide 3

VREFP VCM VREFN VREFP error Non-ideal effects VREFN Settling error Mismatch V in 3.9C 2.1C CLK jitter C Jitter V N C noise D Q Clk Non-ideal effects further degrade performance How to improve the resolution? Q SAR logic Slide 4

Noise shaping technique Move noise out of band of interest X - Integrator DAC Quantizer Y -100 OSR -150 10 4 10 5 10 6 10 7 10 8 Sacrifice speed for resolution Noise shaping is based on integrator, usually opamp PSD [db] 0-50 PSD of Sigma-Delta Modulator Bandwidth Noise Shaping Order Frequency [Hz] Slide 5

Simulation results of non-ideal effects ENOB (Bits) ENOB (Bits) 10.5 10 9.5 9 8.5 8 SAR 7.5 NS SAR 0.01 0.05 0.1 0.15 0.2 0.25 Comparator noise: Vn (σ(lsb)) 10.5 10 9.5 9 8.5 ENOB (Bits) ENOB (Bits) 10.5 Noise shaping reduces non-ideal effects 10 9.5 9 8.5 8 SAR 7.5 NS SAR 0.1 0.5 1 1.5 2 Settling error (LSB) 10.5 Fin = 6.24 MHz 8 SAR 8 SAR 7.5 NS SAR 7.5 NS SAR 0.1 0.5 1 1.5 2 10 40 70 100 DAC mismatch (LSB) Jitter (ps) 10 9.5 9 8.5 Slide 6

Noise shaping effect on capacitance Traditional SAR ADC Thermal noise = kt/c Noise shaping SAR ADC Thermal noise = (1-Z -1 ) kt/c/osr Same SNR, smaller capacitor for noise shaping SAR ADC Slide 7

Outline Conventional Noise shaping technique Slide 8

Conventional noise shaping technique FIR Filter D out (z) V IN (z) Cap Array Opamp Q(z) V IN (z) a 1 z -1 k A D out (z) a 2 z -1 z -1 FIR Filter IIR Filter FIR filter introduces extra noise and extra area; Opamp : extra power and flicker noise Tech. scaling, difficult to design high performance Opamp [1] J. Fredenburg, et al., JSSC 2012 Slide 9

Outline Proposed fully passive noise shaping SAR ADC Slide 10

Traditional architecture Traditional 1st-order noise shaping architecture SAR ADC X OTA based integrator E Z -1 Y 1-Z -1 - X SAR,in E: quantization noise Y=X+(1-Z -1 )E Y=(X-Z -1 E)+E DAC Previous residue Y(N)=X(N)+X SAR,in (N-1)-Y(N-1)+E(N) Slide 11

Proposed FPNS-SAR ADC architecture Proposed noise shaping architecture (FPNS-SAR) : Realized by Charge redistribution E X in X SAR,in =X in - Z -1 E Y SAR Z -1 -E DAC Step 1: Get previous residue on top-plate of C-DAC; Step 2: Feed it back to input. Slide 12

Residue in SAR ADC Residue on the top-plate of SAR ADC CLK N-1 N VREFP VCM VREFN V in 4C CLK 2C C V top C D Q Clk Q SAR logic After conversion @ N-1, residue V top (N-1)=X SAR,in (N-1)-Y(N-1) Slide 13

FPNS-SAR ADC implementation 1. Conversion @ N-1 2. Clear Charge@ Φ NS2 N-1 N N-1 N Ф S Ф C Ф NS1 Ф NS2 Ф NS3 Ф S C 1 C 2 V in Ф C Ф NS1 Ф NS3 V top + Ф S - Ф S Ф C Ф NS1 Ф NS2 Ф NS3 V in C 1 C 2 Ф C Ф NS1 Ф NS3 V top + - C 3 Ф NS2 C 3 Ф NS2 After conversion, V top =-E(n-1)/2; Clear Charge of C 3, Q C3 =0; Slide 14

FPNS-SAR ADC implementation 3. Charge share @ Φ NS3 4. Sample @ N N-1 N N-1 N Ф S Ф C Ф NS1 Ф NS2 Ф NS3 Ф S C 1 C 2 V in Ф C Ф NS1 Ф NS3 V top + Ф S - Ф S Ф C Ф NS1 Ф NS2 Ф NS3 V in C 1 C 2 Ф C Ф NS1 Ф NS3 V top + - C 3 Ф NS2 C 3 Ф NS2 Get half top voltage, V C3 = V top (n-1)/2; Sampling input, V in (n); Slide 15

5. Conversion@ N FPNS-SAR ADC implementation N-1 N With the help of C 2 and C 3 : Ф S Ф C Ф NS1 Ф NS2 Ф NS3 Ф S C 1 C 2 V in Ф C Ф NS1 Ф NS3 C 3 V top + - Ф NS2 V DAC (n) = V in (n)-e(n-1)+e(n) V DAC (Z) = V in (Z)+(1-Z -1 )E(Z) Realize 1st-order NS Slide 16

Traditional 10b SAR-ADC V in Ф S Ф C C: 8b C-DAC Capacitance comparison C C 2C Proposed 10b noise shaping architecture (FPNS-SAR) + - Total: 4 X C Ф S C 1 C 2 Ф C C 1 =C 2 =C 3 Ф NS1 Ф NS3 C 3 + - Ф NS2 Total: 3 X C 1 C 1 <C, hence, proposal saves area Slide 17

V in Ф S Circuit details Total Circuit of FPNS-SAR ADC: 8-bit Ф NS1 C 1 C 2 + + - V top Ф NS3 C 3 Ф NS2 Ф C SAR Logic Ф S :Bootstrap switch Ф NS2 :NMOS Switch Ф NS1 :CMOS Switch Ф NS3 :NMOS Switch Asynchronous logic; 8-bit C-DAC Different switches; four inputs comparator Slide 18

Circuit details Dynamic comparator [4] CLK AVDD cn cn SR LATCH: Vp cp V inp V inp,p V inn,n V inn cp Vn CLK Dynamic comparator, save power [4] H. Wei, et al., JSSC 2012 Slide 19

Outline Experimental results Slide 20

53.4 µm Chip photograph 230.1 µm CMOS 65 nm CLK LOGIC COMP C-DAC Slide 21

PSD [db] Experimental results Realized 1st-order Noise Shaping 0-20 -40-60 -80-100 -120-140 Power Spectral Density SNDR = 58.03 db ENOB = 9.35 bits Fin = 999.5 khz OSR = 4 Fs = 50 MHz BW = 6.25 MHz 20dB/Oct 10 4 10 5 10 6 10 7 Frequency [Hz] SNDR [db] Power supply: 0.8-V Power : 120.7-µW 60 50 40 30 20 10 0-60 -50-40 -30-20 -10 0 input signal [dbfs] Slide 22

Experimental results-comparison JSSC 10 [2] JSSC 12 [3] JSSC 12 [1] This work Architecture SAR CT-SDM NS-SAR FPNS-SAR Noise Shaping OTA No No Yes Yes Yes Yes Yes No Technology (nm) 65 130 65 65 Bandwidth (MHz) 0.5 15.6 11 6.25 Core Area (mm 2 ) 0.0259 0.27 0.0323 0.0123 Supply (V) 1 1.3 1.2 0.8 Power (μw) 1.9 4000 806 120.7 ENOB (bits) 8.75 9.6 10 9.35 FoM W (fj/conv.) 4.42 160 35.8 14.8 [1] J. A. Fredenburg, et al., JSSC 2012 [2] M. V. Elzakker, et al., JSSC 2010 [3] A. Jain, et al., JSSC 2012 Slide 23

Outline Conclusion Slide 24

Conclusion First work that realizes Passive noise shaping SAR, save power; Maintain basic architecture and operation of SAR- ADC, inherits advantage of SAR-ADC; No Opamp, most are digital circuits, robust to future technology and power supply downscaling; Relax the requirement of circuit blocks, save area and save power. Slide 25

Acknowledgements This work was partially supported by HUAWEI, Mentor Graphics for the use of the Analog Fast SPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc. Slide 26