PN Junction Diode: I-V Characteristics

Similar documents
Lecture 3. OUTLINE PN Junction Diodes (cont d) Electrostatics (cont d) I-V characteristics Reverse breakdown Small-signal model

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

p n junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where the p- and n-material meet!

Chater 6 Bipolar Junction Transistor (BJT)

The Parametric Measurement Handbook. Third Edition March 2012

Introduction to Electronic Devices

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Summary of pn-junction (Lec )

Physical Sciences For NET & SLET Exams Of UGC-CSIR. Part B and C. Volume-16. Contents

CHAPTER 8 The PN Junction Diode

CHAPTER 8 The PN Junction Diode

Outline. Introduction The Semiconductor Module Demonstration Modeling Advice Model Library Q & A

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

The Silicon Controlled Rectifier (SCR)

Lecture 29: Diode connected devices, mirrors, cascode connections. Context

Comparative Analysis of Double Drift Region and Double Avalanche Region IMPATT Diodes

ELEC 350 Electronics I Fall 2014

SEE 3263: ELECTRONIC SYSTEMS

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation

Optical ASK and FSK Modulation By Using Quantum Well Transistor Lasers

Comparative Analysis of DDR and DAR IMPATT Diodes Frequency Characteristics

Semiconductor Devices Lecture 5, pn-junction Diode

CCD Image Processing: Issues & Solutions

(2) The MOSFET. Review of. Learning Outcome. (Metal-Oxide-Semiconductor Field Effect Transistor) 2.0) Field Effect Transistor (FET)

COPYRIGHTED MATERIAL. Chapter 1. Bipolar Transistors John D. Cressler and Katsuyoshi Washio. 1.1 Motivation

1 Basics. a) Extended IGBT gate charge characteristic for gate control between V GG+ and V GGb) IGBT low-signal capacitances V GE [V] >V CE1 V CE2

Electronics I - Physics of Bipolar Transistors

Super J-MOS Low Power Loss Superjunction MOSFETs

I. ZERBO, M. ZOUNGRANA, A. OUEDRAOGO, B. KORGO, B. ZOUMA AND D. J. BATHIEBO

EXPERIMENT 3 TRANSISTORS AMPLIFIERS

Appendix B: Transistors

Influence of Tunnel current on DC and Dynamic Properties of Si based Terahertz IMPATT source

CHAPTER 5 A NEAR-LOSSLESS RUN-LENGTH CODER

Semi-conductors. Semi-Conductors. R. C. Tailor, Asso Prof. Recall Semiconductors. UT, M.D. Anderson Cancer Center

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Oct 2005

SEVEN-LEVEL THREE PHASE CASCADED H-BRIDGE INVERTER WITH A SINGLE DC SOURCE

Internet and Parallel Computing in Semiconductor Device Simulation

Analysis and Optimization Design of Snubber Cricuit for Isolated DC-DC Converters in DC Power Grid

High Speed, High Voltage, and Energy Efficient Static Induction Devices

Comparative Analysis of DDR and DAR IMPATT Diodes for Wide Frequency Band

CHAPTER 8 The pn Junction Diode

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Chapter 2 PN junction and diodes

Components. Magnetics. Capacitors. Power semiconductors. Core and copper losses Core materials

Lecture 16. The Bipolar Junction Transistor (I) Forward Active Regime. Outline. The Bipolar Junction Transistor (BJT): structure and basic operation

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

A new Power MOSFET Generation designed for Synchronous Rectification

Methods to Reduce Arc-Flash Hazards

GENERALIZED SCATTERING MATRIX FOR OPTICAL STRUCTURES. Sunit Mehrotra,Reena Kumbhare and Girish P. Saraph

x y z HD(x, y) + HD(y, z) HD(x, z)

Technical Explanation for Counters

Analog Electronics (Course Code: EE314) Lecture 5 7: Junction contd, BJT. Course Instructor: Shree Prakash Tiwari

SELECTION AND CONNECTION OF SPRING APPLIED FAILSAFE AND PERMENANT MAGNET BRAKES

Logarithms APPENDIX IV. 265 Appendix

A SELECTIVE POINTER FORWARDING STRATEGY FOR LOCATION TRACKING IN PERSONAL COMMUNICATION SYSTEMS

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

A Monte Carlo Algorithm for Multi-Robot Localization

A New Basic Unit for Cascaded Multilevel Inverters with the Capability of Reducing the Number of Switches

TO DETERMINE THE NUMERICAL APERTURE OF A GIVEN OPTICAL FIBER. 2. Sunil Kumar 3. Varun Sharma 4. Jaswinder Singh

GENERATE AND MEASURE STANDING SOUND WAVES IN KUNDT S TUBE.

Multilevel Inverter with Dual Reference Modulation Technique for Grid-Connected PV System

ICM7213. One Second/One Minute Timebase Generator. Features. Description. Ordering Information. Pinout. August 1997

Lecture 4. pn Junctions (Diodes) Wednesday 27/9/2017 pn junctions 1-1

Lecture 28: MOSFET as an Amplifier. Small-Signal Equivalent Circuit Models.

Optimum Design of the Current-Source Flyback Inverter for Decentralized Grid-Connected Photovoltaic Systems

Design of FPGA- Based SPWM Single Phase Full-Bridge Inverter

hi-rel and space product screening MicroWave Technology

Power semiconductors

INF 5460 Electronic noise Estimates and countermeasures. Lecture 11 (Mot 8) Sensors Practical examples

A study on traffic accident measures in municipal roads by using GIS

Single Bit DACs in a Nutshell. Part I DAC Basics

Cross-Layer Performance of a Distributed Real-Time MAC Protocol Supporting Variable Bit Rate Multiclass Services in WPANs

Part II. Devices Diode, BJT, MOSFETs

By: Pinank Shah. Date : 03/22/2006

AC : USING ELLIPTIC INTEGRALS AND FUNCTIONS TO STUDY LARGE-AMPLITUDE OSCILLATIONS OF A PENDULUM

10/27/2009 Reading: Chapter 10 of Hambley Basic Device Physics Handout (optional)

Application of Improved Genetic Algorithm to Two-side Assembly Line Balancing

NAME: Last First Signature

Space-saving edge-termination structures for vertical charge compensation devices

3. Error Correcting Codes

Distorting and Unbalanced Operating Regime A Possible Diagnosis Method?

RF Circuit Designs for Reliability and Process Variability Resilience

Lecture 29: MOSFET Small-Signal Amplifier Examples.

Formation and Behavior of Es Layers Under the Influence of AGWs Evolving in a Horizontal Shear Flow

10GBASE-T. length of precoding response, and PMA training

Two-Dimensional Carrier Profiling by Scanning Tunneling Microscopy and Its Application to Advanced Device Development

Intrinsic Semiconductor

High performance of cubic AlxGa1-xN/GaN Double Gate MOS-HEMTs

What is the highest efficiency Solar Cell?

RAD-Hard HEXFET SURFACE MOUNT (LCC-28)

HVIC Technologies for IPM

A SIMPLE METHOD OF GOAL DIRECTED LOSSY SYNTHESIS AND NETWORK OPTIMIZATION

B drift dependence of fluctuations and turbulent transport in DIII-D

The Firing Dispersion of Bullet Test Sample Analysis

A Probabilistic Approach to Collaborative Multi-Robot Localization

E X P E R I M E N T 13

INCREASE OF STRAIN GAGE OUTPUT VOLTAGE SIGNALS ACCURACY USING VIRTUAL INSTRUMENT WITH HARMONIC EXCITATION

Design of FPGA Based SPWM Single Phase Inverter

Analysis and Design of LVTSCR-based EOS/ESD Protection Circuits for Burn-in Environment

AME50461 SERIES EMI FILTER HYBRID-HIGH RELIABILITY

Transcription:

Chater 6. PN Juctio Diode : I-V Characteristics Chater 6. PN Juctio Diode: I-V Characteristics Sug Jue Kim kimsj@su.ac.kr htt://helios.su.ac.kr

Cotets Chater 6. PN Juctio Diode : I-V Characteristics q Qualitative Derivatio q Quatitative Solutio Strategy q Quasieutral Regio Cosideratios q Deletio Regio Cosideratios q Boudary Coditios

Chater 6. PN Juctio Diode : I-V Characteristics q The Ideal Diode Equatio ü The I-V characteristics of the ideal diode are modeled by the ideal diode equatio à qualitative ad quatitative derivatio Qualitative Derivatio ü Equilibrium situatio balace high-eergy carrier drift diffusio otetial hill E

Chater 6. PN Juctio Diode : I-V Characteristics ü Forward bias situatio à a lowerig of the otetial hill ü The same umber of miority carriers are beig swet ü More majority carriers ca surmout the hill à I N ad I P à I ü The umber of carriers that have sufficiet eergy to surmout the barrier goes u exoetially with V A à exoetial icrease of the forward curret

Chater 6. PN Juctio Diode : I-V Characteristics ü Reverse bias situatio à a icrease of the otetial hill ü The barrier icrease reduces the majority carrier diffusio to a egligible level ü The -side electros ad -side holes ca wader ito the deletio regio ad be swet to the other side à reverse I (à) ü Beig associated with miority carriers, the reverse bias curret is exected to be extremely small

Chater 6. PN Juctio Diode : I-V Characteristics ü The miority carrier drift currets are ot affected by the height of the hill (The situatio is similar to a waterfall) ü If the reverse bias saturatio curret is take to be I 0, the overall I-V deedece is I = I e - ( VA / Vref 1) 0 kt V ref = q Rectificatio I-V characteristic

Chater 6. PN Juctio Diode : I-V Characteristics ü Wheever a electro o the -side moves to the -side, it is relaced by a electro geerated through oe of the R-G ceters miority ohmic excess majority carriers à local E ohmic recombiatio excess majority carriers à local E Excess carriers move to the cotact with a relaxatio time à greatly fast miority ü Curret comoet Deletio regio : electros ad holes -regio (far) : holes -regio (far) : electros

Chater 6. PN Juctio Diode : I-V Characteristics Quatitative Solutio Strategy ü Basic assumtios (1) Steady state coditios () A odegeerately doed ste juctio (3) Oe-dimesioal (4) Low-level ijectio (5) G L =0 I = AJ J = J ( x) + J ( x) N J N = que + qdn dx JP = qu E + qdp dx P d d

Chater 6. PN Juctio Diode : I-V Characteristics E @ 0 ad low-level ijectio à miority carrier diffusio equatios Quasieutral Regio Cosideratios D D D = - + G t DN x t D D D = - + G t DP x t L L N P d D D dx t 0 = D -... x -x d D D dx t 0 = D -... x ³ x

ü Sice E @ 0 Chater 6. PN Juctio Diode : I-V Characteristics ad d 0 /dx=d 0 /dx=0 i the quasieutral regios dd J qd x x dx dd JP = - qdp... x ³ x dx N = N... - Q = + D 0 = + D 0 ü We ca oly determie J N (x) i the quasieutral -regio ad J P (x) i the quasieutral -regio Deletio Regio Cosideratios 1 = Ñ J N + t q t = - t 1 Ñ J q P + t thermal R-G thermal R-G + t + t other rocesses other rocesses 1 dj 1 dj N P 0 = +, 0 = - + q dx t thermal q dx t thermal R-G R-G

Chater 6. PN Juctio Diode : I-V Characteristics ü Suose that thermal recombiatio-geeratio is egligible throughout the deletio regio; ü dj / dx = 0 ad dj / dx = 0 N deletio regio J (- x x x ) = J (-x ) N N J (- x x x ) = J ( x ) P P P / t = / t = 0 thermal R-G thermal R-G à J N ad J P are costats iside the J = J (- x ) + J ( x ) N P

Chater 6. PN Juctio Diode : I-V Characteristics Boudary Coditios ü At the Ohmic Cotacts The ideal diode is usually take to be a wide-base diode The cotacts may effectively be viewed as beig ositioed at x= ± D D ( x - ) = 0 ( x + ) = 0 ü At the Deletio Regio Edges ( F ) ( E F ) kt N -Ei / kt i - / Uder oequilibrium coditios: = e, = e i i Equilibrium coditios Noequilibrium coditios

Chater 6. PN Juctio Diode : I-V Characteristics = e ( FN -FP )/ kt i L L F = N - qv F A P E F N - E F If the equal sigal is assumed to hold throughout the deletio regio qva / kt = e... - x x x i : law of juctio

Chater 6. PN Juctio Diode : I-V Characteristics ü Evaluatig the equatio at the -edge ( -x ) ( - x ) = ( - x ) N = e A i i ( - x ) = e N A qv A / kt qv A / kt D - x = e - N i qva / kt ( ) ( 1) A ü Similarly,

Chater 6. PN Juctio Diode : I-V Characteristics D x = e - N i qva / kt ( ) ( 1) D

Chater 6. PN Juctio Diode : I-V Characteristics Derivatio Proer ü The origi of coordiates is shifted to the -edge of the deletio regio d D D ' 0 = DP -... x ³ 0 ' dx t ü Boudary coditios D ( x ' ) = 0 ' i qva / kt x e ND D ( = 0) = ( -1) ü The geeral solutio D = + ' - x'/ LP ( x ) A e A e 1 x'/ L P '... x 0 ³ Q LP = DPt

Chater 6. PN Juctio Diode : I-V Characteristics ü A à 0 because ex(x /L ) à as x à ü With, A 1 =D (x =0) D x = e - e x ³ N ' i qva / kt - x'/ LP ' ( ) ( 1)... 0 D dd D JP x qdp q e e x ' dx L N ' P i qva / kt - x'/ LP ' ( ) = - = ( - 1)... ³ 0 ü O the -side of the juctio with the x -coordiate. P D D x = e - e x ³ N " i qva / kt - x"/ LN ( ) ( 1)... " 0 A dd D J x qd q e e x "/ N N " dx LN NA " N i qva / kt - x LN " ( ) = - = ( - 1)... ³ 0

Chater 6. PN Juctio Diode : I-V Characteristics ü The curret desities at the deletio regio edges, D J N x x J N x q e L N " N i A / ( = - ) = qv kt ( = 0) = ( - 1) D JP x x JP x q e L N ' P i A / ( = ) = ( = qv kt 0) = ( - 1) æ DN i DP ö i I = AJ = qaç + e - è LN NA LP ND ø P N D A qva / kt ( 1) I = I e - 0 qva ( / kt 1) æ D D ö ç è ø N i P i I0 º qa + L N N A L P N D Ideal diode equatio or Shockley equatio

Examiatio of Results Chater 6. PN Juctio Diode : I-V Characteristics

Chater 6. PN Juctio Diode : I-V Characteristics ü Carrier currets ü The total curret desity is costat ü The majority-carrier curret desities are obtaied by grahically subtractig the miority-carrier curret desities from the total curret desity

Chater 6. PN Juctio Diode : I-V Characteristics ü Carrier cocetratios ü Forward biasig icreases Reverse decreases the cocetratio ü Uder the low-level ijectio, the majority carrier cocetratios i these regios are everywhere aroximately equal to their equilibrium values

Chater 6. PN Juctio Diode : I-V Characteristics ü Uder reverse biasig the deletio regio acts like a sik for miority carriers ü Larger reverse biases have little effect N A > N D

6.. Reverse-Bias Breakdow Chater 6. PN Juctio Diode : I-V Characteristics

Chater 6. PN Juctio Diode : I-V Characteristics q Zeer Process Tuelig The article eergy remais costat durig the rocess. ü The article ad the barrier are ot damaged. (1) There must be filled states o oe side ad emty states o the other side at the same eergy. () d must be very thi.

Chater 6. PN Juctio Diode : I-V Characteristics Reverse bias # of filled valece electros laced oosite emty coductio-bad states curret 6..3 The R-G Curret ü A curret far i excess of that redicted by the ideal theory exists at small forward bias ad all reverse biases. thermal recombiatio-geeratio i the deletio regio

Chater 6. PN Juctio Diode : I-V Characteristics E c I R E c E f E f E v V R E v V R = 0 V (Equilibrium)

Chater 6. PN Juctio Diode : I-V Characteristics E c I R E c E f E f E v V R h e + - E v V R = < 0 V

Chater 6. PN Juctio Diode : I-V Characteristics E c I R E f E v e - e - e - e - e - E c E f V R E v V R << 0 V (Zeer Breakdow, V R = 0 V Tuelig)

Chater 6. PN Juctio Diode : I-V Characteristics < ü Reverse bias <, 0 0 thermal geeratio ü Forward bias, > recombiatio (1) The et R-G rate is the same for electros ad holes. () For every electro-hole air created or destroyed er secod, oe electro er secod flows ito or out of the diode cotacts. > 0 0

Chater 6. PN Juctio Diode : I-V Characteristics G R DIFF kt E E kt E E i i i G R x x i G R i G R thermal G R thermal x x G R I I I e e W qa I dx qa I t dx t qa I T i i T - - - - - - - - - - + = + = + º = - + + + - = + + + - = - = - ò ò ) ( 1 ) ( 1 0 0, ) ( ) ( ) ( ) ( )/ ( )/ ( 1 1 0 0 1 1 1 1 t t t t t t t t t t kt E E i kt E E i T i i T e e )/ ( 1 )/ ( 1 - - º º

Summary Chater 6. PN Juctio Diode : I-V Characteristics 31

Summary Chater 6. PN Juctio Diode : I-V Characteristics 3