POWER FACTOR CORRECTION USING BOOST CONVERTER

Similar documents
DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER

Study of Power Factor Correction in Single Phase AC-DC Converter

Power Factor improved by Variable Speed AC Drives By Mauri Peltola, ABB Oy, Drives

Power Factor and Power Factor Correction

Simulation & Hardware Implementation of APFC Meter to Boost Up Power Factor Maintain by Industry.

Single Phase Bridgeless SEPIC Converter with High Power Factor

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Power factor improvement of SMPS using PFC Boost converter

Power Factor. Power Factor Correction.

Power Quality Monitoring and Power Metering Tutorial

Application Guidance Notes: Technical Information from Cummins Generator Technologies

Improve Power Factor and Reduce the Harmonics Distortion of the System

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Analog and Digital Circuit Implementation for Input Power Factor Correction of Buck Converter in. Single Phase AC-DC Circuit

Buck-boost converter as power factor correction controller for plug-in electric vehicles and battery charging application

Thyristorised Automatic Power Factor

Influence of Switching Elements on Harmonics and Power Factor Improvement

Welcome to the rd. Annual Northern Ohio. 3 rd Energy Management Conference September 30, 2008

Alternating Current Page 1 30

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

AC Power Instructor Notes

CHAPTER 3 IMPROVEMENT OF LOAD POWER FACTOR USING FACTS CONTROLLERS

POWER FACTOR CORRECTION OF MACHINE LABORATORY AND CNC MACHINE BY USING IPFC CONTROLLER

Power Factor Correction Input Circuit

Power Factor Improvement in Switched Reluctance Motor Drive

ENERGY SAVINGS THROUGH POWER CONDITIONING WITH THE PowerGUARD SYSTEM

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October ISSN

3/29/2012 MAIN TOPICS DISCUSSED ELECTRICAL SYSTEMS AND ELECTRIC ENERGY MANAGEMENT SECTION K ELECTRIC RATES POWER COMPUTATION FORMULAS.

Technical News. Part 2: Harmonics. The link between harmonics and power factor. Industrial Electrical and Automation Products, Systems and Solutions

e-issn: p-issn:

INVESTIGATION OF BOOST AND INTERLEAVED BOOST SWITCHED MODE RECTIFIERS FOR POWER FACTOR CORRECTION

Testing Power Factor Correction Circuits For Stability

ELG 4125: ELECTRICAL POWER TRANSMISSION AND DISTRIBUTION: TUTORIAL 1: - BY:

POWER FACTOR CORRECTION USING AN IMPROVED SINGLE-STAGE SINGLE- SWITCH (S 4 ) TECHNIQUE

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

PRUDENT PRACTICES TO IMPROVE POWER FACTOR AND REDUCE POWER LOSS.

DESIGN OF TAPPED INDUCTOR BASED BUCK-BOOST CONVERTER FOR DC MOTOR

Monitoring And Control Over Power Factor By Using Pic Micro-Controller

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator

Reactive power compensation for linear and non linear loads by using active and passive filter for smart grid applications.

CHAPTER 1 INTRODUCTION

International Journal of Advance Engineering and Research Development

Harmonics and Their Impact on Power Quality. Wayne Walcott Application Engineering Manager June, 2017

A Single Phase Power Factor Correction Using Programmable Interface Circuit

Contents. Core information about Unit

Fundamentals of AC Power Measurements

World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering Vol:7, No:6, 2013

POWER FACTOR IMPROVEMENT USING CURRENT SOURCE RECTIFIER WITH BATTERY CHARGING CAPABILITY IN REGENERATIVE MODE OF SRM

What does Power Factor mean?

CASE STUDY. Implementation of Active Harmonic Filters at Ford Motor Company SA Silverton Plant

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation Analysis of Power Factor Correction Using Boost Converter with IC UC3854

ARDUINO BASED POWER FACTOR CORRECTION

Improving the Power Factor of Isolated Flyback Converters for Residential ENERGY STAR LED Luminaire Power Supplies

II. SINGLE PHASE BOOST TYPE APFC CONVERTER

Level-2 On-board 3.3kW EV Battery Charging System

How Harmonics have led to 6 Power Factor Misconceptions

APPLICATION NOTE - 018

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

Question Paper Profile

CHAPTER 4 HARMONICS AND POWER FACTOR

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

Dynamic Harmonic Mitigation and Power Factor Correction

UNIVERSITY OF BRITISH COLUMBIA

POWER FACTOR CORRECTION AND HARMONIC CURRENT REDUCTION IN DUAL FEEDBACK PWM CONTROLLED AC/DC DRIVES.

Power Factor Correction of Three Phase Induction Motor

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme

ARE HARMONICS STILL A PROBLEM IN DATA CENTERS? by Mohammad Al Rawashdeh, Lead Consultant, Data Center Engineering Services

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

POWER FACTOR CORRECTION AND ITS PITFALLS

Lab 4 Power Factor Correction

CHAPTER 2. Basic Concepts, Three-Phase Review, and Per Unit

VFDs and Harmonics in HVAC Applications

SHUNT ACTIVE POWER FILTER

A New Active Power Factor Correction Controller Using Boost Converter

FINAL - ET 60 - Electrician Theory Examination Marking Schedule

Simulation of Closed Loop Controlled PFC Boost Converter fed DC Drive with Reduced Harmonics and Unity Power Factor

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Power Factor Correction in Digital World. Abstract. 1 Introduction. 3 Advantages of Digital PFC over traditional Analog PFC.

On Analysis of Front End Current of Rectifier Converter for low THD and high PF with SEPIC

ECET Modern Power

Reducing Total Harmonic Distortion with Variable Frequency Drives

Introduction to Rectifiers and their Performance Parameters

Sizing Generators for Leading Power Factor

Design, Fabrication and Experimentally Testing Of a Buck-Boost Converter System (0-50v) a Prototype

ELECTRONIC CONTROL OF A.C. MOTORS

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM. Unit Objectives. Unit Objectives 2/29/2012

Electric cars: Technology

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

Understanding Input Harmonics and Techniques to Mitigate Them

Converters with Power Factor Correction

LV PFC Basics. Power Factor Correction - Basics FK PC PM PFC Januar 07 Page: 1

Power Electronics. Contents

McGill Power Sales & Engineering, INC.

Hours / 100 Marks Seat No.

Low Pass Harmonic Filters

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives

Transcription:

POWER FACTOR CORRECTION USING BOOST CONVERTER Hiten Pahilwani Accenture Services, Mumbai 400708 ABSTRACT In an electrical Power systems, a load with a low power factor draws more current than a load with a high power factor for the same amount of useful power transferred. Linear loads with low power factor (induction motor) can be corrected with a passive network of capacitors or inductors. Non-linear loads (rectifier) distort the current drawn from the system. Boost converter topology is used to accomplish this active power factor correction using IC NCP1601A which has a superior performance, making the device capable of working in wide input voltage range (85V-265V) applications with an excellent total harmonic distortion. Most off-line appliances use a bridge rectifier associated to a huge bulk capacitor to derive raw D.C voltage from the utility A.C line. This technique results in a high harmonic content and in poor power factor ratios. Active solutions are the most popular way to meet the legislation requirements. They consist of inserting a P.F.C pre-regulator between the rectifier bridge and the bulk capacitor. Keywords : Active PFC, Passive PFC, Boost Converter. 1.INTRODUCTION The main objective behind this paper is to provide industries with a techy solution i.e. power factor correction circuit using power electronic devices. There are various solution available in the market for power factor correction for example switched capacitor filters, LC circuits. But as the saying goes there pros and cons of all things so does these circuits have. Switched capacitor circuits for power factor correction are bulky in nature and LC circuit is lossy in nature due to L & C present in them. Hence, power factor correction circuit, using power electronic components, provides an optimum solution for industries to overcome their heavy billing problems. 2.WHAT IS POWER FACTOR Power Factor is a measure of how efficiently electrical power is consumed. The ideal Power Factor is unity - or one. Anything less than one, (or 100% efficiency), means that extra power is required to achieve the actual task at hand. This extra energy is known as Reactive Power, which unfortunately is necessary to provide a magnetizing effect required by motors and other inductive loads to perform their desired functions. However, Reactive Power can also be interpreted as watt-less, magnetizing or wasted power and an extra burden on the electricity supply. Power Factor Correction is the term given to a technology that has been used since the turn of the 20th century to restore Power Factor to as close to unity as is economically possible. This is normally achieved by the addition of capacitors to the electrical network, which compensate for the Reactive Power demand of the inductive load and thus reduce the burden on the supply Power factor is the ratio between the kw and the kva drawn by an electrical load where the kw is the actual load power and the kva is the apparent load power. Simply, it is a measure of how efficiently the load current is being converted into useful work output and more particularly is a good indicator of the effect of the load current on the efficiency of the supply system. Consider this scenario When we buy fuel for a vehicle, the manufacturer makes in it in liters, the pump dispenses it in liters and we pay for it in liters. /liter simple! When we buy potatoes, the supplier bags them in kilos the shop sells them in kilos and we pay for them in kilos. /kg simple! When we buy electricity, the manufacturer (electricity generator) makes kva (kilo volt amperes) and we pay for it in kwh (kilowatt hours) or maybe on our bill (Units) not so simple! Maybe we all should have kva meters to make life simple. So the kilowatt hour (or unit) that we get on our bills is simply 1000 watts of electricity being used for 1 hour. Example: 10 x 100 watt lamps x 1 hour=1000 watts/hr divided by 1000=1kWh simple! Power factors are usually stated as "leading" or "lagging" to show the sign of the phase angle. Capacitive loads are leading (current leads voltage), and inductive loads are lagging (current lags voltage). Volume 4, Issue 8, August 2015 Page 134

If a purely resistive load is connected to a power supply, current and voltage will change polarity in step, the power factor will be unity (1), and the electrical energy flows in a single direction across the network in each cycle. Inductive loads such as transformers and motors (any type of wound coil) consume reactive power with current waveform lagging the voltage. Capacitive loads such as capacitor banks or buried cable generates reactive power with current phase leading the voltage. Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle. [1] 3.PROBLEM DESCRIPTION Figure 1: Relations between Power, Voltage, Resistance, Current Now here comes the problem: In an alternating current (AC) electrical supply, a mysterious thing called Power Factor comes into play. Power Factor is simply the measure of this efficiency of the power being used, so, a power factor of 1 would mean 100% of the supply is being used efficiently. A power factor of 0.5 means the use of the power is very inefficient or wasteful. So what causes Power Factor to change? In the real world of industry and commerce, a power factor of 1 is not obtainable because equipment such as electric motors, welding sets, fluorescent and high bay lighting create what is called an inductive load which in turn causes the amps in the supply to lag the volts. The resulting lag is called Power Factor. For a 3 phase power supply: kva, which the electricity generator makes=line Volts x Amps x 1.73 1000. This is converted to kilowatts kw by the formula: Line Volts x Amps x 1.73 1000 x Power Factor=kW (V x A x 1.73 1000 x pf) or kva x pf=kw (N.B. 1.73 is the square root of 3) so as the power factor worsens from say 0.98 to 0.5, the generator has to supply more kva for each kw you are using. For example, a large electric motor will typically have a Power Factor of about 0.85 at full load. If we have a hypothetical electric motor rated at 100kW, then ignoring the inherent inefficiency of the motor, when running at full load the electricity supplier would have to supply 100 0.85=118kVA to provide the 100kW to run the motor. Or put the other way they would be supplying 18% more electricity than they are charging you for. If the same motor was operating off load at say 50kW or being used on a cyclic duty then the power factor may go as low as 0.5. In this case the supplier would have to supply double the kva to match the 50kW duty point. (50 0.5=100kVA) How this power is wasted can be shown graphically since in 3 phase power supplies "power" can be represented and measured as a triangle. ACTIVE Power is the base line and is the real usable power measured and paid for in kw. REACTIVE power is the vertical or that part of the supply which causes the inductive load. The reactive power in is measured in kvar (kilo volt-amperes reactive). APPARENT Power is the hypotenuse. This is the component the electricity generator must supply and it is the resultant of the other two components, measured in kva. Mathematically the power can be calculated by Pythagoras or trigonometry whereby Power Factor is expressed as COS phi Ø (The angle between Apparent Power and Active power) Volume 4, Issue 8, August 2015 Page 135

Figure 2: Power Triangle But we want a simple explanation so consider a barge being pulled by a horse: Figure 3: Example showing relation between active power & apparent power Since the horse cannot walk on water its pulling effort is reduced by the angle of the tow rope. If the horse could walk on water then the angle Phi Ø would be zero and COSINE Ø=1. Meaning all the horse power is being used to pull the load. However the relative position of the horse influences the power. As the horse gets closer to the barge, angle Ø1 increases and power is wasted, but, as the horse is positioned further away, then angle Ø2 gets closer to zero and less power is wasted So, by improving Power Factor (reducing the angle), the reactive power component is reduced 4.WHAT DOES IT DO TO MY ELECTRICITY BILL? As stated above in a 3 phase power supply, kw consumed is 3 phase VOLTS x AMPS x 1.73 x Power Factor. The Electricity Company supply you VOLTS x AMPS and they have to supply extra to make up for the loss caused by poor Power Factor. When the power factor falls below a set figure, the electricity supply companies charge a premium on the kw being consumed, or, charge for the whole supply as kva by adding reactive power charges (kvar) to the bill. 5.HOW DOES PFC WORK? By installing suitably sized switched capacitors into the power distribution circuit, the Power Factor is improved and the value becomes nearer to 1 thus minimizing wasted energy, improving the efficiency of a plant, liberating more kw from the available supply and saving you money. It can also be improved by using power electronics which will be discussed in this paper. 6.POWER FACTOR CORRECTION (PFC) Power factor correction is a modern concept which deals with increasing the degraded power factor of a power system by use of external equipments. The objective of this described in plain words is to make the input to a power supply appear as a simple resistor. As long as the ratio between the voltage and current is a constant the input will be resistive and the power factor will be 1.0. When the ratio deviates from a constant the input will contain phase displacement, harmonic distortion or both and either one will degrade the power factor. In simple words, Power factor correction (PFC) is a technique of counteracting the undesirable effects of electric loads that create a power factor (PF) that is less than 1. Volume 4, Issue 8, August 2015 Page 136

7.TYPES OF POWER FACTOR CORRECTION (PFC): Power Factor Correction (PFC) can be classified as two types : Passive Power Factor Correction Active Power Factor Correction 1.PASSIVE PFC The simplest way to control the harmonic current is to use a filter: it is possible to design a filter that passes current only at line frequency (50 or 60 Hz). This filter reduces the harmonic current, which means that the non-linear device now looks like a linear load. At this point the power factor can be brought to near unity, using capacitors or inductors as required. This filter requires large-value high-current inductors, however, which are bulky and expensive. Figure 4: Circuit for Passive PFC In Passive PFC, only passive elements are used in addition to the diode bridge rectifier, to improve the shape of the line current. By use of this category of power factor correction, power factor can be increased to a value of 0.7 to 0.8 approximately. With increase in the voltage of power supply, the sizes of PFC components increase in size. The concept behind passive PFC is to filter out the harmonic currents by use of a low pass filter and only leave the 50 Hz basic wave in order to increase the power factor. Passive PFC power supply can only decrease the current wave within the standard and the power factor cannot never be corrected to 1. And the output voltage cannot be controlled in this case. 2. ACTIVE PFC An active power factor corrector (active PFC) is a power electronic system that changes the waveshape of current drawn by a load to improve the power factor. The purpose is to make the load circuitry that is power factor corrected appear purely resistive (apparent power equal to real power). In this case, the voltage and current are in phase and the reactive power consumption is zero. This enables the most efficient delivery of electrical power from the power company to the consumer. Figure 5: Circuit for Active PFC An active PFC is a power electronic system that is designed to have control over the amount of power drawn by a load and in return it obtains a power factor as close as possible to unity. Commonly any active PFC design functions by controlling the input current of the load in order to make the current waveform follow the mains voltage waveform Volume 4, Issue 8, August 2015 Page 137

closely (i.e. a sine wave). A combination of the reactive elements and some active switches are in order to increase the effectiveness of the line current shaping and to obtain controllable output voltage. [2] [3] In this thesis a method of active power factor correction is proposed. It makes use of a boost converter. 8.TOPOLOGY ADAPTED : BOOST CONVERTER 1.WHAT IS A BOOST CONVERTER A boost converter (step-up converter) is a DC-to-DC power converter with an output voltage greater than its input voltage. It is a class of switched-mode power supply (SMPS) containing at least two semiconductor switches (a diode and a transistor) and at least one energy storage element, a capacitor, inductor, or the two in combination. Filters made of capacitors (sometimes in combination with inductors) are normally added to the output of the converter to reduce output voltage ripple. Figure 6: Schema for Boost Converter It is a type of power converter in which the DC voltage obtained at the output stage is greater than that given at the input. It can be considered as a kind of switching-mode power supply (SMPS). Although it can be formed in different configurations, the basic structure must have at least two semiconductor switches (generally a diode and a transistor) and one energy storing element must be used. 2. OPERATING PRINCIPLE The inductor has this peculiar property to resist any change of current in them and that serves as the main principle which drives a boost converter. The inductor acts like a load (like resistor) when it is being charged and acts as a source of energy (like battery) when it is discharged. The rate of change of current decides the voltage that is built up in the inductor while it is being discharged. The original charging voltage is not responsible for this and hence it allows different input and output voltages. Figure 7: Operating Principle for Boost Converter The Boost converter has two distinct states: The On-state, in which the switch S is closed, and then there is a constant increase in the inductor current. The Off-state, in which the switch S is made open and the inductor current now flows through the diode D, the load R and the capacitor C. In this state, the energy that has been accumulated in the inductor gets transferred to the capacitor. Volume 4, Issue 8, August 2015 Page 138

Figure 8: Two operating states of Boost Converter The input current and the inductor current are the same. Hence as one can see clearly that current in a boost converter is continuous type and hence the design of input filter is somewhat relaxed or it is of lower value. The key principle that drives the boost converter is the tendency of an inductor to resist changes in current by creating and destroying a magnetic field. In a boost converter, the output voltage is always higher than the input voltage. A schematic of a boost power stage is shown in Figure 8. (a) When the switch is closed, current flows through the inductor in clockwise direction and the inductor stores some energy by generating a magnetic field. Polarity of the left side of the inductor is positive. (b) When the switch is opened, current will be reduced as the impedance is higher. The magnetic field previously created will be destroyed to maintain the current flow towards the load. Thus the polarity will be reversed (means left side of inductor will be negative now). As a result two sources will be in series causing a higher voltage to charge the capacitor through the diode D. If the switch is cycled fast enough, the inductor will not discharge fully in between charging stages, and the load will always see a voltage greater than that of the input source alone when the switch is opened. Also while the switch is opened, the capacitor in parallel with the load is charged to this combined voltage. When the switch is then closed and the right hand side is shorted out from the left hand side, the capacitor is therefore able to provide the voltage and energy to the load. During this time, the blocking diode prevents the capacitor from discharging through the switch. The switch must of course be opened again fast enough to prevent the capacitor from discharging too much. One of the design of PFC using Boost Converter is given below, Figure 9: Circuit showing PFC using Boost Converter Volume 4, Issue 8, August 2015 Page 139

Primary winding of LBoost, MOSFET M1, diode D7 and output capacitor Cout act as a boost converter. The output voltage obtained here is 400V DC, yes DC, because the AC power coming from the supply is first rectified and then passed to the PFC circuit which boosts the output voltage to 400V DC. The circuit consumes less power then the normal rectifier circuit, also the design is simple and economical. The power factor attained is approximately 0.75. [4][5][6] 9.Conclusion The key point is that power factor correction and most other concepts are probably not new from the point of view of formal circuit theory. The question is how the problem can be best understood from the basics, and then tackled in the best possible way. The Power factor correction using boost converter can be used to attain a decent power factor along with some advantages such as higher output voltage, light and less bulky as compared to capacitor banks used for PFC, the output voltage can be stepped down as per the requirement using chopper circuit preceding the PFC circuit. References [1] Power electronics by P.S Bhimra. [2] Power factor correction handbook by ON semiconductors. [3] Power Factor in Electrical Power Systems with Non-Linear Loads By: Gonzalo Sandoval, ARTECHE / INELAP S.A. de C.V. [4] Power factor correction using boost converter by Sukanta Kumar Sahoo. [5] Power factor correction using parallel boost converter by Roma Dash. [6] Power factor correction using boost converter by B.Bhuvana Manasa. AUTHOR Hiten Pahilwani has completed his Bachelor of Engineering in Electronics from VES Institute of Technology, Mumbai. He has also worked as an intern at L&T Automation. He is very passionate about core electronics and has presented many papers at state level. He has been finalist at Edifice- 2013 conducted by Emerson company. He has also implemented an end to end VLSI processor using Verilog and VHDL. He has been an active participant at all the events conducted by student chapters of Institute of Electrical and Electronics Engineering (IEEE), Indian Society of Technical Education (ISTE). He is currently working with Accenture. Volume 4, Issue 8, August 2015 Page 140