System/Prescription Data

Similar documents
Design for a new Prime Focus Corrector on the Wyoming InfraRed Observatory (WIRO) 2.3 m Telescope Final Pre-fabrication design of 12 January, 2004

Mechanical Tolerancing Results For the SALT/PFIS Collimator and Camera. January 24, 2003 J. Alan Schier

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Sequential Ray Tracing. Lecture 2

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Lens Design I Seminar 1

Optical Design with Zemax

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter:

Computer exercise 2 geometrical optics and the telescope

Area of the Secondary Mirror Obscuration Ratio = Area of the EP Ignoring the Obscuration

OSLO Doublet Optimization Tutorial

Optical Design with Zemax

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

OPTICAL IMAGING AND ABERRATIONS

Geometric optics & aberrations

Magnification, stops, mirrors More geometric optics

Exam Preparation Guide Geometrical optics (TN3313)

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Solutions: Lens Design I Part 2. Exercise 2-1: Apertures, stops and vignetting

Actually, you only need to design one monocular of the binocular.

Tutorial Zemax 8: Correction II

Section 11. Vignetting

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Optical System Design

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Chapter 34 Geometric Optics

Cardinal Points of an Optical System--and Other Basic Facts

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

2.710 Optics Spring 09 Problem Set #3 Posted Feb. 23, 2009 Due Wednesday, March 4, 2009

REFLECTION THROUGH LENS

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

Why is There a Black Dot when Defocus = 1λ?

Optical design of Dark Matter Telescope: improving manufacturability of telescope

Chapter 3 Op,cal Instrumenta,on

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2

always positive for virtual image

New ENT Laser Micromanipulator Design

Tutorial Zemax Introduction 1

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

Tutorial Zemax 9: Physical optical modelling I

Lens Design I Seminar 5

Evaluation of Performance of the Toronto Ultra-Cold Atoms Laboratory s Current Axial Imaging System

ME 297 L4-2 Optical design flow Analysis

College of Optics & Photonics

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

ECEN 4606, UNDERGRADUATE OPTICS LAB

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Big League Cryogenics and Vacuum The LHC at CERN

A new prime-focus corrector for paraboloid mirrors

Chapter 3 Op+cal Instrumenta+on

OPTICAL SYSTEMS OBJECTIVES

2.2 Wavefront Sensor Design. Lauren H. Schatz, Oli Durney, Jared Males

Optical Design with Zemax for PhD

Performance Factors. Technical Assistance. Fundamental Optics

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Chapter Ray and Wave Optics

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Research Article Spherical Aberration Correction Using Refractive-Diffractive Lenses with an Analytic-Numerical Method

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Waves & Oscillations

The optical analysis of the proposed Schmidt camera design.

Speed and Image Brightness uniformity of telecentric lenses

Compound Lens Example

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Ch 24. Geometric Optics

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Applied Optics. , Physics Department (Room #36-401) , ,

Study on Imaging Quality of Water Ball Lens

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

For rotationally symmetric optical

Classical Optical Solutions

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Solution of Exercises Lecture Optical design with Zemax Part 6

OPAC 202 Optical Design and Inst.

Design of a Lens System for a Structured Light Projector

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Advanced Lens Design

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

General Physics II. Ray Optics

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Transcription:

System/Prescription Data File : U:\alpi's designs\1.0 Meter\1.0 meter optical design\old Lenses- Design Stuff\LCOGT 1.0meter Telescope Design for UCSB.zmx Title: LCOGT 1.0 Meter Telescope Date : THU NOV 19 2009 LENS NOTES: GENERAL LENS DATA: Surfaces : 12 Stop : 2 System Aperture : Float By Stop Size = 500 Glass Catalogs : SCHOTT BIREFRINGENT MISC CORNING Ray Aiming : Off Apodization : Uniform, factor = 0.00000E+000 Temperature (C) : 2.00000E+001 Pressure (ATM) : 1.00000E+000 Adjust Index Data To Environment : Off Effective Focal Length : 7954.554 (in air at system temperature and pressure) Effective Focal Length : 7954.554 (in image space) Back Focal Length : 10.03642 Total Track : 2513 Image Space F/# : 7.954554 Paraxial Working F/# : 7.954554 Working F/# : 7.953982 Image Space NA : 0.06273327 Object Space NA : 4.999999e-008 Stop Radius : 500 Paraxial Image Height : 58 Paraxial Magnification : 0 Entrance Pupil Diameter : 1000 Entrance Pupil Position : 1900 Exit Pupil Diameter : 117.6256 Exit Pupil Position : -935.6225 Field Type : Real Image height in Millimeters 1

Maximum Radial Field : 58 Primary Wavelength : 0.4 µm Lens Units : Millimeters Angular Magnification : 8.501553 Fields : 6 Field Type: Real Image height in Millimeters # X-Value Y-Value Weight 1 0.000000 0.000000 1.000000 2 0.000000 25.900000 1.000000 3 0.000000 36.700000 1.000000 4 0.000000 44.900000 1.000000 5 0.000000 51.900000 2.000000 6 0.000000 58.000000 2.000000 Vignetting Factors # VDX VDY VCX VCY VAN 1 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.000000 0.000000 0.000000 0.000000 0.000000 3 0.000000 0.000000 0.000000 0.000000 0.000000 4 0.000000 0.000000 0.000000 0.000000 0.000000 5 0.000000 0.000000 0.000000 0.000000 0.000000 6 0.000000 0.000000 0.000000 0.000000 0.000000 Wavelengths : 5 Units: µm # Value Weight 1 0.400000 1.000000 2 0.486000 1.000000 3 0.587000 1.000000 4 0.656000 1.000000 5 1.000000 1.000000 2

SURFACE DATA SUMMARY: Surf Type Radius Thickness Glass Diameter Conic Comment OBJ STANDARD Infinity Infinity 0 0 STAR AT INFINITY 1 STANDARD Infinity 1900 1027.668 0 STO STANDARD -5000-1755.958 MIRROR 1000-1.1367 PRIMARY MIRROR 3 STANDARD -2170.96 1931.958 MIRROR 325-5.1389 SECONDARY MIRROR 4 STANDARD 846.49 22 C79-80 240 0 LENS 1 5 STANDARD 3955.63 36 240 0 6 STANDARD -1256.84 18 C79-80 240 0 LENS 2 7 STANDARD 4000.67 295 240 0 8 STANDARD Infinity 8 BK7 130 0 FILTER 9 STANDARD Infinity 40 130 0 10 STANDARD -665.93 8 C79-80 130 0 LENS 3 11 STANDARD Infinity 10 130 0 IMA STANDARD Infinity 116 0 IMAGE SURFACE DATA DETAIL: Surface OBJ : STANDARD STAR AT INFINITY Surface 1 : STANDARD Surface STO : STANDARD PRIMARY MIRROR Mirror Substrate : Curved, Thickness = 1.71000E+002 Aperture : Circular Aperture Minimum Radius : 175 Maximum Radius : 500 Surface 3 : STANDARD SECONDARY MIRROR Mirror Substrate : Curved, Thickness = 5.50000E+001 Aperture : Circular Aperture Minimum Radius : 41 Maximum Radius : 162.5 Surface 4 : STANDARD LENS 1 Maximum Radius : 120 Surface 5 : STANDARD Maximum Radius : 120 Surface 6 : STANDARD LENS 2 Maximum Radius : 120 Surface 7 : STANDARD 3

Maximum Radius : 120 Surface 8 : STANDARD FILTER Maximum Radius : 65 Surface 9 : STANDARD Maximum Radius : 65 Surface 10 : STANDARD LENS 3 Maximum Radius : 65 Surface 11 : STANDARD Maximum Radius : 65 Surface IMA : STANDARD IMAGE COATING DEFINITIONS: EDGE THICKNESS DATA: Surf Edge 1 1875.008538 STO -1737.012966 3 1946.553309 4 15.271729 5 28.437622 6 25.541872 7 293.199896 8 8.000000 9 36.820153 10 11.179847 11 10.000000 IMA 0.000000 SOLVE AND VARIABLE DATA: Thickness of 2 : Variable Semi Diameter 2 : Fixed Thickness of 3 : Solve, Pickup from surface 2 scaled by -1, offset by 176 Semi Diameter 3 : Fixed 4

Semi Diameter 4 : Fixed Semi Diameter 5 : Fixed Semi Diameter 6 : Fixed Semi Diameter 7 : Fixed Semi Diameter 8 : Fixed Semi Diameter 9 : Fixed Semi Diameter 10 : Fixed Semi Diameter 11 : Fixed Semi Diameter 12 : Fixed INDEX OF REFRACTION DATA: System Temperature: 20.0000 Celsius System Pressure : 1.0000 Atmospheres Absolute air index: 1.000278 at wavelength 0.400000 µm Index data is relative to air at the system temperature and pressure. Wavelengths are measured in air at the system temperature and pressure. Surf Glass Temp Pres 0.400000 0.486000 0.587000 0.656000 1.000000 0 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 2 MIRROR 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 3 MIRROR 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 4 C79-80 22.00 1.00 1.47012739 1.46314007 1.45848677 1.45637677 1.45042055 Corning 7980 KrF Grade glass 5 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 6 C79-80 22.00 1.00 1.47012739 1.46314007 1.45848677 1.45637677 1.45042055 Corning 7980 KrF Grade glass 7 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 8 BK7 20.00 1.00 1.53084854 1.52238589 1.51682355 1.51433085 1.50750220 9 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 10 C79-80 22.00 1.00 1.47012739 1.46314007 1.45848677 1.45637677 1.45042055 Corning 7980 KrF Grade glass 11 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 12 20.00 1.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 THERMAL COEFFICIENT OF EXPANSION DATA: Surf Glass TCE *10E-6 0 0.00000000 1 0.00000000 5

2 MIRROR 0.00000000 3 MIRROR 0.00000000 4 C79-80 0.52000000 Corning 7980 KrF Grade glass 5 0.00000000 6 C79-80 0.52000000 Corning 7980 KrF Grade glass 7 0.00000000 8 BK7 7.10000000 9 0.00000000 10 C79-80 0.52000000 Corning 7980 KrF Grade glass 11 0.00000000 12 0.00000000 GLOBAL VERTEX COORDINATES, ORIENTATIONS, AND ROTATION/OFFSET MATRICES: Reference Surface: 2 Surf R11 R12 R13 X R21 R22 R23 Y R31 R32 R33 Z 1 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 0.0000000000 0.0000000000 1.0000000000-1.900000000E+003 2 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 PRIMARY MIRROR 0.0000000000 0.0000000000 1.0000000000 0.000000000E+000 3 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 SECONDARY MIRROR 0.0000000000 0.0000000000 1.0000000000-1.755957584E+003 4 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 LENS 1 0.0000000000 0.0000000000 1.0000000000 1.760000000E+002 5 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 0.0000000000 0.0000000000 1.0000000000 1.980000000E+002 6 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 LENS 2 6

0.0000000000 0.0000000000 1.0000000000 2.340000000E+002 7 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 0.0000000000 0.0000000000 1.0000000000 2.520000000E+002 8 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 FILTER 0.0000000000 0.0000000000 1.0000000000 5.470000000E+002 9 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 0.0000000000 0.0000000000 1.0000000000 5.550000000E+002 10 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 LENS 3 0.0000000000 0.0000000000 1.0000000000 5.950000000E+002 11 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 0.0000000000 0.0000000000 1.0000000000 6.030000000E+002 12 1.0000000000 0.0000000000 0.0000000000 0.000000000E+000 IMAGE 0.0000000000 0.0000000000 1.0000000000 6.130000000E+002 GLOBAL SURFACE CENTER OF CURVATURE POINTS: Reference Surface: 2 Surf X Y Z 1 - - - 2 0.0000000000 0.0000000000-5000.0000000000 PRIMARY MIRROR 3 0.0000000000 0.0000000000-3926.9175840150 SECONDARY MIRROR 4 0.0000000000 0.0000000000 1022.4900000000 LENS 1 5 0.0000000000 0.0000000000 4153.6300000000 6 0.0000000000 0.0000000000-1022.8400000000 LENS 2 7 0.0000000000 0.0000000000 4252.6700000000 8 - - - FILTER 7

9 - - - 10 0.0000000000 0.0000000000-70.9299999998 LENS 3 11 - - - 12 - - - IMAGE ELEMENT VOLUME DATA: For centered elements with plane or spherical circular faces, exact volumes are computed by assuming edges are squared up to the larger of the front and back radial aperture. For all other elements, approximate volumes are numerically integrated to 0.1% accuracy. Zero volume means the volume cannot be accurately computed. Single elements that are duplicated in the Lens Data Editor for ray tracing purposes may be listed more than once yielding incorrect total mass estimates. Volume cc Density g/cc Mass g Element surf 4 to 5 843.390626 2.201000 1856.302768 Element surf 6 to 7 984.791767 2.201000 2167.526679 Element surf 8 to 9 106.185832 2.510000 266.526438 Element surf 10 to 11 127.272417 2.201000 280.126590 Total Mass: 4570.482475 F/# DATA: F/# calculations consider vignetting factors and ignore surface apertures. Wavelength: 0.400000 0.486000 0.587000 # Field Tan Sag Tan Sag Tan Sag 1 0.00 mm: 7.9540 7.9540 7.9542 7.9542 7.9544 7.9544 2 25.90 mm: 7.9581 7.9564 7.9582 7.9565 7.9583 7.9566 3 36.70 mm: 7.9622 7.9588 7.9622 7.9589 7.9623 7.9589 4 44.90 mm: 7.9663 7.9612 7.9663 7.9612 7.9662 7.9612 5 51.90 mm: 7.9705 7.9636 7.9703 7.9635 7.9702 7.9635 6 58.00 mm: 7.9747 7.9660 7.9744 7.9659 7.9742 7.9658 Wavelength: 0.656000 1.000000 # Field Tan Sag Tan Sag 1 0.00 mm: 7.9544 7.9544 7.9546 7.9546 8

2 25.90 mm: 7.9583 7.9567 7.9584 7.9568 3 36.70 mm: 7.9623 7.9590 7.9623 7.9590 4 44.90 mm: 7.9662 7.9612 7.9661 7.9612 5 51.90 mm: 7.9702 7.9635 7.9700 7.9635 6 58.00 mm: 7.9741 7.9658 7.9739 7.9657 CARDINAL POINTS: Object space positions are measured with respect to surface 1. Image space positions are measured with respect to the image surface. The index in both the object space and image space is considered. Object Space Image Space W = 0.400000 (Primary) Focal Length : -7954.553932 7954.553932 Focal Planes : -65726.060508 0.036422 Principal Planes : -57771.506576-7954.517511 Anti-Principal Planes : -73680.614440 7954.590354 Nodal Planes : -57771.506576-7954.517511 Anti-Nodal Planes : -73680.614440 7954.590354 W = 0.486000 Focal Length : -7954.883285 7954.883285 Focal Planes : -65050.205159 0.056107 Principal Planes : -57095.321874-7954.827178 Anti-Principal Planes : -73005.088444 7954.939392 Nodal Planes : -57095.321874-7954.827178 Anti-Nodal Planes : -73005.088444 7954.939392 W = 0.587000 Focal Length : -7955.091268 7955.091268 Focal Planes : -64599.709664 0.068500 Principal Planes : -56644.618396-7955.022768 Anti-Principal Planes : -72554.800932 7955.159768 Nodal Planes : -56644.618396-7955.022768 Anti-Nodal Planes : -72554.800932 7955.159768 W = 0.656000 Focal Length : -7955.182809 7955.182809 Focal Planes : -64395.333276 0.073966 Principal Planes : -56440.150467-7955.108843 9

Anti-Principal Planes : -72350.516085 7955.256775 Nodal Planes : -56440.150467-7955.108843 Anti-Nodal Planes : -72350.516085 7955.256775 W = 1.000000 Focal Length : -7955.434072 7955.434072 Focal Planes : -63818.072147 0.089273 Principal Planes : -55862.638075-7955.344800 Anti-Principal Planes : -71773.506219 7955.523345 Nodal Planes : -55862.638075-7955.344800 Anti-Nodal Planes : -71773.506219 7955.523345 PHYSICAL OPTICS PROPAGATION SETTINGS SUMMARY: OBJ STANDARD STAR AT INFINITY 1 STANDARD STO STANDARD PRIMARY MIRROR 3 STANDARD SECONDARY MIRROR 4 STANDARD LENS 1 10

5 STANDARD 6 STANDARD LENS 2 7 STANDARD 8 STANDARD FILTER 9 STANDARD 10 STANDARD LENS 3 11 STANDARD 11

IMA STANDARD IMAGE FILES USED: ZEMAX File U:\ALPI'S DESIGNS\1.0 METER\1.0 METER OPTICAL DESIGN\OLD LENSES- DESIGN STUFF\LCOGT 1.0METER TELESCOPE DESIGN FOR UCSB.ZMX Session File U:\ALPI'S DESIGNS\1.0 METER\1.0 METER OPTICAL DESIGN\OLD LENSES- DESIGN STUFF\LCOGT 1.0METER TELESCOPE DESIGN FOR UCSB.SES Glass Catalogs C:\DOCUMENTS AND SETTINGS\RHAYNES\MY DOCUMENTS\ZEMAX\GLASSCAT\SCHOTT.AGF C:\DOCUMENTS AND SETTINGS\RHAYNES\MY DOCUMENTS\ZEMAX\GLASSCAT\BIREFRINGENT.AGF C:\DOCUMENTS AND SETTINGS\RHAYNES\MY DOCUMENTS\ZEMAX\GLASSCAT\MISC.AGF C:\DOCUMENTS AND SETTINGS\RHAYNES\MY DOCUMENTS\ZEMAX\GLASSCAT\CORNING.AGF Coating Data C:\DOCUMENTS AND SETTINGS\RHAYNES\MY DOCUMENTS\ZEMAX\COATINGS\COATING.DAT 12